
Correctness of compiling Occam to

Transputer code�

Egon B�orger & Igor D- urd- anovi�c

Dipartimento di Informatica University Paderborn

Universit�a di Pisa Fachbereich 17 { Informatik

Cso Italia 40 Warburgerstr. 100

I-56125 Pisa 33098 Paderborn, Germany

boerger@di.unipi.it igor@uni-paderborn.de

fax: xx39{50{887226 fax: xx49{5251{603338

This paper contributes to the development of a rigorous mathematical framework

for the study of provably correct compilation techniques. The proposed method

is developed through an implementation of a real{life non{toy imperative pro-

gramming language with nondeterminism and parallelism { namely Occam { to a

commercial machine, namely the Transputer. We provide a mathematical de�nition

of the Transputer Instruction Set architecture for executing Occam together with a

correctness proof for a general compilation schema of Occam programs into Transputer

code.

We start from the ground model, an abstract processor, running a high and a

low priority queue of Occam processes, which formalizes the semantics of Occam at

the abstraction level of atomic Occam instructions. We develop here increasingly

more re�ned levels of Transputer semantics, proving correctness (and when possible

also completeness) for each re�nement step. Along the way we collect our proof

assumptions, a set of natural conditions for a compiler to be correct, thus making

our proof applicable to a large class of compilers. As a by{product our construction

provides a challenging realistic case study for proof veri�cation by theorem provers.

1. INTRODUCTION

It is well known that a reliable compilation method

which includes compiler veri�cation requires that the

semantics of both source and target language have been

rigorously de�ned. In [BD- R:94] a high{level mathemat-

ical model for the truly concurrent semantics of Occam

has been developed which captures the intuitive pro-

grammer's view of the dynamics of Occam in terms of

atomic Occam instructions. In this paper we provide

a mathematical model for the Transputer Instruction

Set architecture. We use these two models to prove

the correctness of the compilation scheme proposed in

[Inmos:88] for the compilation of Occam programs into

the Transputer instruction set.

Main Theorem Every compiler which satis�es the

conditions listed in this paper compiles arbitrary Occam

programs correctly into Transputer instructions.

The main problem in proving the theorem consists

in bridging the gap between the abstraction levels of

�In Computer Journal 1996. Preliminary version appeared
in Evolving Algebras Mini-Course, BRICS Notes Series NS-95-4,
ISSN 0909-3206, pp. 153-194, University of Aarhus, 1995.

Occam and the Transputer. We relate the Occam ground

model to the Transputer model by a series of stepwise re-

�ned intermediate models. At each re�nement step we

show the correctness and when possible also the com-

pleteness of the implementation. As a side product of

our work for the correctness proof we obtain a detailed

explanation of the rationale of the compilation scheme

in [Inmos:88].

Several remarks have to be made to avoid a possible

misunderstanding of the theorem.

� Correctness is to be understood as relative to the

formal Occam and Transputer ground models; along

the speci�cation of these models it is made explicit

and precise which parameters of the high{level model

are correctly preserved through the re�nement steps.

Unfortunately we could not make reasonable use of

any of the many re�nement notions in the literature.

There is also no general re�nement notion for evolv-

ing algebras; but for each speci�c re�nement step we

explicitly de�ne what this re�nement means. There-

fore it is crucial that these models are simple and

transparent and can independently be justi�ed, on

pragmatic grounds, as adequate formalization of the

programming language Occam and of the Transputer



2 Egon B�orger & Igor D- urd- anovi�c

processor respectively.

� The correctness claim and its proof are not abso-

lute but relative; indeed the mathematical models

contain a certain number of interfaces to the envi-

ronment which are supposed to work in accordance

with those properties which are used as assumptions

in the proof. Such relative correctness proofs are the

best one can reach by rigorous methods, given the

huge complexity of the problems under study.

� The proof is a mathematical proof in the classical

sense of the term, based upon human reasoning and

insight and providing understanding, not a machine

level veri�cation of details. It is split into numerous

steps which have been introduced in order to break

down the complexity of the whole construction into

manageable and well understood small pieces. In or-

der to be faithful to the Transputer implementation

of Occam (see [Inmos]) we have to meet the Compiler

Writer's Guide [Inmos:88]. The de�nitions of the se-

mantics of Occam and of the Transputer which are

authoritative for us come from these INMOS books,

not from the well known denotational descriptions

of Occam. This condition of having to re
ect faith-

fully the given INMOS de�nitions also implies that

we do not aim at providing any new ideas about

what Occam and the Transputer were constructed

for. However, in order to achieve the desired correct-

ness proof we have to structure the CompilerWriter's

Guide by decomposing it through many re�nement

steps whose correctness is amenable to the precise

formulation and to the proof of the relevant proper-

ties.

We have also made a particular e�ort in order to

achieve that most of our proofs become \local", i.e.

have to do with well de�ned speci�c features and

leave the whole rest abstract or unchanged; this

locality makes the approach modular in a strong

(not only syntactical) sense: we isolate orthogonal

Transputer instruction set components and often can

proceed with our proofs even instructionwise. The

guiding principle for breaking complex statements

into simpler ones has been to stop only where the

proofs become routine exercises which can be car-

ried out by an automatic theorem proving system.

Clearly we concentrate our attention on a precise

outline and full proof of the global proof strategy.

The routine exercises which consist in carrying out

simple inductions, case distinctions, etc. are left to

the reader. Our teaching experience is that in class,

average students solve these exercises without prob-

lems, satisfactorily.

� We prove the correctness of a compiling speci�ca-

tion. This means that we do not describe any spe-

ci�c compiler but formulate explicit conditions on

the compilation function, namely those properties of

the compilation process which we use for the cor-

rectness proof. These assumptions represent useful

directives for correct compiler design and can also be

used for variations of the design scheme for the un-

derlying architecture, preserving correctness without

need for testing of the unchanged components.

The overall structure of our re�nement hierarchy is di-

vided into two parts (sections 3. { 4. and 5. { 6.). It

highlights essential points of provably correct compiler

development, namely the implementation of the control

structure and of environments (including auxiliary func-

tions and dealing with relative addressing). The Occam

ground model comprises a re�nement of the concurrent

Occam semantics to an abstract sequential processor

which runs two queues of processes (one of low and one

of high priority); in order to concentrate on Occam's

distributed features | i.e. communication, parallelism

and alternation | the Occam ground model has been

based upon the usual layout of (imperative) programs

as 
owchart along which the process(es) (daemon(s))

are supposed to walk, each carrying along his own en-

vironment in which he executes at each node an atomic

Occam instruction. In section 4. the generation of this


owchart is replaced by compilation into still abstract

code. In section 6. the abstract code will be re�ned

to Transputer code whose execution is based upon the

Transputer model developed in section 5..

The re�nement of the 
owchart generation to code

compilation consists in replacing the walking of dae-

mons through the 
owchart by moving instruction

pointers through abstract code produced (together with

the environment) by compilation. Thus it was natural

to split this compilation again into two steps: compi-

lation of the control structure and compilation of the

environment. For the control structure compilation

we �rst linearize the 
owchart (by introducing goto{

instructions) and then describe its machine internal rep-

resentation by loading the result of a compilation func-

tion. For the compilation of the environment we �rst

re�ne environments to be determined by the program

structure and not any more by the daemons; we then

implement environments by blocks of memory (obtain-

ing eventually relocatable environment access by rela-

tive addresses of identi�ers with respect to daemons as

base addresses).

Section 6. re�nes the compilation from abstract to

Transputer instructions. Here again we have four re�ne-

ment steps: �rst we introduce the Transputer ground

model consisting of various registers used for the execu-

tion of Transputer instructions.

Then we eliminate the environment from the run{

time by building the relative addresses for identi�ers

into the compilation (with run{time calculation of the

absolute address). As third step we implement abstract

functions re�ning daemons to workspace addresses. At

the end we make the Transputer code relocatable by

introducing the technique of relative branching. At

compile{time the instruction address o�set (or dis-

tance) is calculated whereas at run{time this o�set is

The Computer Journal, Vol. 36, No. 5, 1993



Correctness of compiling Occam to Transputer code 3

ground

lin

env

env’

rel-env

daemon

ground

workspace

rel-code

Occam

Transputer

3.

lin

flowchart

flowchart

compile+load

4.1.

4.2.

4.3.

4.4.

4.5.

4.6.

5.

6.1.

6.2.

6.3.

...

compile+resolve+load

FIGURE 1. Re�nement structure

used to obtain the absolute addresses.

Diagram 1 summarizes the overall structure of our

re�nement hierarchy. The Appendixes 7.2. and 7.3.

summarize the complete rule system for the result of

sections 4. and 6.

In contrast to other work on compiler correctness in

the literature, we do not verify a series of compilers

which compile between various intermediate languages

to give a multi{stage compiler for the whole Occam lan-

guage. Rather each re�nement of our function compile

compiles directly from the Occam source language and

thus constitutes in itself a new compiler.

The re�nement hierarchy and the correctness proofs

work for the full Occam language. Since our main goal

is to let the characteristic Occam features stand out in

a transparent way along the whole implementation pro-

cess we have decided to leave the evaluation and compi-

lation of expressions and the implementation of values

still abstract; one can add to our re�nement chain fur-

ther levels which deal with this, including the partic-

ular Transputer scheme for encoding instructions and

providing large operands (i.e. post�xing and pre�x-

ing). (See the careful treatment of expression compila-

tion in [MMO:95], pages 38{49.) For notational conve-

nience and without loss of generality we also work with

only one processor (Transputer) but without loosing its

multi{task capabilities (queue).

The method which allows us the appropriate re�ne-

ments of the abstraction level, providing full mathemat-

ical rigor but avoiding heavy formal overhead, makes

use of Gurevich's notion of evolving algebras [Gur:95].

One essential feature of the potential of the evolving al-

gebra approach to speci�cation and veri�cation of large

systems is the fact that evolving algebra models can

be read and understood without any speci�c previous

formal training. We invite the reader who does not

know the notion of evolving algebra to read our mod-

els as \pseudo{code over abstract data"; that su�ces

for an understanding of the speci�cation. To carry out

the proofs, some more technical understanding of what

constitutes computations by evolving algebras is needed

however. To avoid a possible misunderstanding we want

to stress the point that our rules, which the practitioner

may read as abstract pseudo-code, do have however a

precise mathematicalmeaning, derived fromGurevich's

rigorous de�nition of the semantics of evolving algebras

in [Gur:95].

Section 2. summarizes the basic de�nitions and no-

tation. Section 3. recalls the basic constituents of the

Occam ground model which are the starting point of

the re�nements in section 4.. Along the way we use the

chance to adapt the Occam oriented ground model to

the needs of the Transputer, the target model of this pa-

per. We pay attention that these modi�cations preserve

the correctness theorems of [BD- R:94]. As a by{product

this permits the reader to follow the present paper with-

out knowing [BD- R:94].

We suppose the reader to be familiar with (the prob-

lems of) provably correct compiler development and to

have some idea about Occam or at least about the no-

tion of parallel computation.

2. EVOLVINGALGEBRA: PREREQUISITES

AND NOTATION

In our speci�cations we use the notion of evolving alge-

bras, see [Gur:95]. Evolving algebras represent a mathe-

matically rigorous form of fundamental operational in-

tuitions of computing. This permits to read and un-

derstand our description as `pseudocode over abstract

data', without any particular theoretical prerequisites.

For the sake of completeness we review here our nota-

tion and refer the interested reader for the foundational

justi�cation to [Gur:95].

We treat abstract data as elements of (possibly not

furthermore speci�ed) sets (domains, universes). The

operations allowed on universes will be represented by

partial functions. Dynamic changes are obtained by

executing function updates of form

f(t1; : : : ; tr) := t

whose execution is to be understood as setting (modi-

fying) the value of the function f at given arguments.

Note that the 0-ary functions play the role of variables

in programming.

An evolving algebra is de�ned by a �nite set of transi-

tion rules of form \if Cond then Updates" where Cond

(condition or guard) is an expression, the truth of which

triggers simultaneous execution of all updates in the �-

nite set of Updates. Simultaneous execution helps us

The Computer Journal, Vol. 36, No. 5, 1993



4 Egon B�orger & Igor D- urd- anovi�c

avoid fussing and coding to, say, interchange two values.

Since functions may be partial, equality in the guards is

to be understood as implying that both arguments are

de�ned.

Unless explicitly declared to be static, functions are

dynamic. For a given evolving algebra A a function

must be dynamic if it can be updated in rules of A,
i.e. if it is an f of a functional update; otherwise this

update would be syntactically incorrect. If we want to

stress that a dynamic function f may change its value

without being updated by a rule of A we declare this

function as external.

In applications an evolving algebra usually comes to-

gether with a set of integrity constraints, i.e. extralog-

ical axioms and/or rules of inference which specify the

intended domains.

Our rules will always be constructed so that the

guards imply consistency of updates.

Evolving algebras transform structures (abstract ma-

chine states) into structures, the term being taken in

the standard sense of (�rst{order) logic. Thus they can

be understood as transition systems whose states are

�rst order structures. This intuitively clear semantics

of evolving algebras has a rigorous de�nition given in

[Gur:95].

In applications of evolving algebras one usually en-

counters heterogenous signatures with several universes,

which may in general grow and shrink in time. There-

fore we use the following update form to extend a uni-

verse:

extend A by t1; : : : ; tr with Updates endextend

where Updates may (and should) depend on ti's, setting

the values of some functions on newly created elements

ti of A. [Gur:95] has shown how to reduce these domain

extensions and heterogeneous structures to the basic

model of a homogenous signature (with one universe).

The forms obviously reducible to the above basic syn-

tax, which we shall freely use as abbreviations, are

where, let and if then else.

As stated above all the updates appearing in a rule

are executed simultaneously. In the rare cases where we

need sequentiality we will use the update form:

seq Updates endseq

where the Updates are executed sequentially.

Instead of writing three rules which di�er only in

parts pi of their guards and in updates ui, we write

one rule of form:

if p1 j p2 j p3
^ : : :

then u1 j u2 j u3
: : :

We shall assume that we have the standard mathe-

matical universes of booleans, integers, lists of what-

ever etc (as well as the standard operations on them)

at our disposal without further mention. In general

we will write NAME for the universe of objects of type

name. We use notations x1.x2. : : : .xr , x1; x2; : : : ; xr,

(x1; x2; : : : ; xr) etc. for lists.

An evolving algebra, as given above, determines the

dynamics of a transition system. Evolving algebra

descriptions of systems are deliberately what is often

called \operational". they support directly the users'

point of view of a system which evolves due to actions

which take place in time. It has been explained in

[Boerger:95] why this rule{based but abstract modeling

of process does not lead to consideration of irrelevant or

\dirty" implementation details and why \operational"

is by no means contradictory to \abstract". We are

usually only interested in states reachable from some

designated initial states, which may be speci�ed in var-

ious ways.

3. REVIEW OF THE OCCAMground MODEL

We summarize here the �nal version of the Occam

ground model developed in [BD- R:94] which is the start-

ing point of the re�nements in this paper. We make an

e�ort to explain that ground model from scratch in or-

der to enable the reader to understand this paper with-

out knowing the details of [BD- R:94]. The reader who is

familiar with [BD- R:94] can skip this section and come

back to it should he want to check the justi�cation for

some slight technical (mostly notational) changes which

we incorporate here in order to smoothen the transition

from 
owchart generation to compilation.

The starting point OCCAMground of this paper is

itself the result of various re�nement steps de�ned in

[BD- R:94]. They lead from a high{level truly concurrent

model of Occam to abstract sequential processors run-

ning two queues of processes (for low and for high pri-

ority) with time{slicing and interrupt mechanism; these

sequential processors (Transputers) run concurrently to

other processors and external channels.

For notational convenience we restrict our attention

here to only one processor and skip external channels;

technically speaking this means only to suppress in cer-

tain functions and rules of our model the parameter

ranging over the universe of PROCESSORs. In order to

avoid repetitions we will also deal with just one queue,

the low priority queue which is subject to time{slicing

in order to preserve completeness of the sequential im-

plementation of concurrent runs; it would be easy to in-

corporate the interrupt handling by adding a new rule

within the Fetch-Execute mechanism.

The 
owchart

The usual layout of (imperative) programs as 
owchart

with nodes marked by atomic instructions is formalized

by a set of NODEs with functions:

next : NODE�N!NODE

cmd : NODE!CODE

The Computer Journal, Vol. 36, No. 5, 1993



Correctness of compiling Occam to Transputer code 5

representing the edges and marks respectively. For no-

tational convenience we use the following macros:

next(n)
def

= next(n; 0)

yes(n)
def

= next(n; 0)

no(n)
def

= next(n; 1)

Processes are represented as daemons (elements of an

abstract set DAEMON) which are placed into the


owchart by a dynamic function a (for \agent"):

loc : DAEMON!NODE:

The processor

The processor is formalized by a queue of running (i.e.

non sleeping) daemons, a currently active daemon and

clock functions (for time{slicing). Formally| the set of

of non sleeping processes, waiting to become active |

QUEUE � DAEMON
� comes with external functions:

�rst; last : QUEUE!DAEMON

rest : QUEUE!QUEUE

and a 0-ary dynamic function:

q : QUEUE

which represents the current incarnation of the queue.

The unique currently active process (the \agent") is

formalized by a 0-ary dynamic function:

a : DAEMON [ f nilg:

The processor clock is formalized by an external func-

tion:

timer : N

which is used to set the dynamic 0-ary function:

start : N

when a process is taken out of the queue to become

active. The dequeuing (activating the next process in

the queue) is done by the macro1:

dequeue
def

= if not empty q

then a := �rst(q)

q := rest(q)

start := timer

else a := nil

1In [BD- R:94] we had introduced the dequeue update as inde-
pendent rule \if a = nil ^ not empty q then dequeue" which was
the only executable rule each time a was set to nil (by time{slice,
stop or end rule or by sending a process to sleep). To smoothen
the transition to the Transputer we incorporate here the e�ect of
dequeuing directly into the relevant rules; it is obvious that this
modi�cation does not change the semantics. The present de�-
nition for dequeuing is in accordance with the INMOS manual
[Inmos:88] which says that the special daemon nil indicates that
no valid process is present. Our present de�nition re
ects that
when the Transputer runs out of processes to be executed nothing
happens: the processor runs in fetch mode (see below) until some

process shows up.

At places which are safe for time{slicing the currently

active process a 6= nil will be put back into the

queue when its time is elapsed, i.e. exceeds the time{

slicing period, a 0-ary external (implementationde�ned)

function2:

period : N

This is done by the rule3:

time{slice if a 6= nil ^ elapsed

then seq q := q.a

dequeue

endseq

where

elapsed
def

= timer� start > period

Beside of the queue q of running processes, there is an-

other queue for administrating time{waiting processes4 :

time q : QUEUE

If a daemon is in the time queue, then the dynamic

function:

tmin : DAEMON!N

holds the minimal time he is waiting for. We will

use the following macros5 for (non{deterministic) in-

sertion/deletion of daemons into/from the time-queue

time q:

time-insert
def

=

let time q = x1. : : : .xi.xi+1. : : : .xr
let tmin(xi) � tmin(a) � tmin(xi+1)

time q := x1. : : : .xi.a.xi+1. : : : .xr

time-delete x
def

=

let time q = x1. : : : .xi.x.xi+1. : : : .xr
time q := x1. : : : .xi.xi+1. : : : .xr

Dynamics of Processes

Daemons x are sitting at their current 
owchart node

(see 7.1.) loc(x) waiting to be activated by the processor

2The restriction to one processor comes up to have suppressed

the PROCESSOR parameter for the functions q, a, timer, period,
start. The restriction to one priority queue comes up to suppress

the parameter q of dequeue.
3Note the sequential execution of enqueuing and dequeuing

of a daemon. This is done to avoid problems with simultaneous
execution when only one daemon exists.

4Note that in the Transputer there are two timer-queues, one
for each priority. In [BD- R:94] we could formalize time queues

simply as sequencesmin time of pairs of daemons and their wait-
ing time. For a smooth transition to the Transputer model it
turns out to be advantageous to split min time into a list time-q
of daemons and a function tmin which records the waiting times.
We leave it as an exercise to show that this implementation is
correct.

5At the level of abstraction of the Occam interpreter in
[BD- R:94] we could a�ord to abstract from the order of the pro-
cesses in the timer queue. Since in reality the hardware is respon-

sible for taking waiting processes out of the time queue, we have
to make this sequentiality in the Transputer model explicit; see

the time wakeup rule below.

The Computer Journal, Vol. 36, No. 5, 1993



6 Egon B�orger & Igor D- urd- anovi�c

for execution of the instruction cmd(loc(x)) in this node.

We abbreviate this condition for a daemon to get his

instruction executed by the following:

cmd is c
def

= cmd(loc(a)) = c ^ not elapsed

Note that this condition is false if the time{slice rule can

�re6. After having executed the instruction of a daemon

the processor will proceed to the next instruction; we

abbreviate this action by:

proceed
def

= loc(a) := next(loc(a))

A daemon can become inactive either by time{slicing or

because for some reason he has to wait (for a commu-

nication partner to be ready or for a time condition to

become satis�ed) and therefore \goes to sleep". Going

to sleep means to become inactive without going back

into the process queue:

sleep at n
def

= loc(a) := n; dequeue

Being woken up then corresponds to return into the

queue:

wakeup x
def

= enqueue x

enqueue x
def

= q := q.x

The behavior of Occam programs can now be rigorously

de�ned by giving for each atomic instruction rules which

de�ne the semantics of that instruction.

Declarations

In the 
owchart model of Occam daemons carry their

ENVironment, associated to them by a dynamic func-

tion:

env : DAEMON!ENV

This function is updated through execution of dec-

laration instructions7. Without loss of generality we

can replace the abstract notion of ENVironment used in

[BD- R:94] by de�ning ENV as (ID�(VAR[CHANNEL))�;
clearly VAR and CHANNEL are supposed to be dis-

joint.

The semantics of declaration instructions is de�ned

by the following simple rules:

decl var(id1; : : : ; idr)

if cmd is decl var(id1; : : : ; idr)

then extend VAR by v1; : : : ; vr with

env(a) := append(e; env(a))

endextend

proceed

where e = (idr; vr); : : : ; (id1; v1)

6The condition a 6= nil in cmd is from [BD- R:94] could
be skipped with the understanding that cmd(undef) = undef,

loc(nil) = undef.
7As already in [BD- R:94] we skip the data-types of Occam and

procedures as they are not in any way characteristic for the lan-
guage and can be incorporated into our models in a standard
way.

For channel declarations one has to add the initializa-

tion of the channel agent (reader or writer) to nil; the

agents needed for the asynchronous arrival of commu-

nications partners (see below) are formalized by a dy-

namic function:

agent : CHANNEL!DAEMON [ fnil g:

decl chan(id1; : : : ; idr)

if cmd is decl chan(id1; : : : ; idr)

then extend CHANNEL by c1; : : : ; cr with

env(a) := append(e; env(a))

agent(c1) := nil

: : :

agent(cr) := nil

endextend

proceed

where e = (idr ; cr); : : : ; (id1; c1)

Note that the Occam scoping scheme is respected: the

later declaration overrides the previous one (see the def-

inition of bind function below). The environment is re-

stored once the daemon has left the scope of declaration:

decl end(r)

if cmd is decl end(r)

then let env(a) = (idr; vr); : : : ; (id1; v1); e
0

env(a) := e0

proceed

Expressions

Expression evaluation is kept abstract using a function:

bind : ID�ENV!VAR [CHANNEL

for binding identi�ers in a given environment and two

functions for evaluating variables and expressions (in a

given environment) to VALues which we keep abstract8:

eval : VAR!VAL

eval : EXP�ENV!VAL:

As expected bind is recursively de�ned by:

bind(id; [H jT ]) =

�
x if H = (id,x)

bind(id; T ) otherwise

Notationally we use �v; �c instead of bind(v; env(a)),

bind(c; env(a)) respectively. Thus we have the following

8We clearly assume these two evaluation functions to be re-
lated in the standard way.

The Computer Journal, Vol. 36, No. 5, 1993



Correctness of compiling Occam to Transputer code 7

rules for assignment, timing, test of boolean condition:

ass(v; t)

if cmd is v := t

then eval(�v) := eval(t; env(a))

proceed

time(v)

if cmd is TIME ? v

then eval(�v) := timer

proceed

if(b)

if cmd is if(b)

then if eval(b; env(a))

then loc(a) := yes(loc(a))

else loc(a) := no(loc(a))

The rules for skip and stop are as follows:

skip

if cmd is SKIP then proceed

stop

if cmd is STOP then dequeue

Communication

The communicating daemons might arrive indepen-

dently to the synchronizing channel. If a reader or

writer arrives at a channel c before his communication

partner, he will go to sleep after having noti�ed to the

channel his identity (updating the function agent(c))

and the place where he wants the input or the message

he wants to output respectively. For this purpose in

addition to the function agent two dynamic functions:

mssg : DAEMON!VAL

place : DAEMON!VAR

are introduced which are updated in the following two

rules, where idle c
def

= agent(c) = nil :

inp idle(c; v)

if cmd is c ? v

^ idle �c

then sleep at next(loc(a))

agent(�c) := a

place(a) := �v

com mode(a) := input

out idle(c; t)

if cmd is c ! t

^ idle �c

then sleep at next(loc(a))

agent(�c) := a

mssg(a) := eval(t; env(a))

Note that the auxiliary function:

com mode : DAEMON!finput; alt sleep; alt rung

is set here to the value input in order to distinguish or-

dinary input requests from input requests which appear

in the guard of an alternative (see the ALT-statement

below). Since we consider here only internal channels,

a daemon arriving as second communication partner to

a non idle channel { formalized by ready c
def

= agent(c) 6=
nil { completes the communication by placing the mes-

sage to the place in question, by waking up the commu-

nication partner and by cleaning the channel9. This is

formalized by the following two rules where clear c de-

notes the update agent(c) := nil which clears the chan-

nel once the communication is done:

inp ready(c; v)

if cmd is c ? v

^ ready �c

then eval(�v) := mssg(agent(�c))

wakeup agent(�c)

clear �c

proceed

out ready(c; t)

if cmd is c ! t

^ ready �c

^ com mode(agent(�c)) = input

then eval(place(agent(�c))) := eval(t; env(a))

wakeup agent(�c)

clear �c

proceed

There is the special case of a daemon trying to output

to a channel which received an input request through

the guard of an alternative, formally which has been

enabled by the �rst rule for the ALT-statement (alt a,

see below). In this case the output is allowed to be done

only after the alternative in question has been really se-

lected, but meantime, the outputting daemon has to an-

nounce his readiness (doing the updates of the out idle

rule) and to wake up the potentially input expecting

communication partner; this includes to put him from

the alt sleep mode into the alt run mode. This is for-

9The restriction to internal channels means that we do not
have to consider the chan rule of [BD- R:94], page 496.

The Computer Journal, Vol. 36, No. 5, 1993



8 Egon B�orger & Igor D- urd- anovi�c

malized by the rule:

out alt(c; t)

if cmd is c ! t

^ ready �c

^ com mode(agent(�c)) 6= input

then sleep at next(loc(a))

mssg(a) := eval(t; env(a))

agent(�c) := a

if com mode(agent(�c)) = alt sleep

then time-delete agent(�c)

wakeup agent(�c)

com mode(agent(�c)) := alt run

Alternation

In the sequential implementation of Occam the execu-

tion of ALT-statements is split into two phases:

� announcing | for each of the input requests ci ? vi or

time requirements TIME ?AFTER tj where the corre-

sponding boolean condition in the guard is true |

the readiness to select the corresponding alternative

once the corresponding input is ready or the time

requirement is satis�ed,

� selecting among the alternatives whose guards are

satis�ed.

The �rst phase is de�ned by the alt a rule: the channels

ci appearing in guards Gi = bi : ci?vi with true boolean

condition bi are \enabled" by setting their agents to the

executing daemon a:

enable(b; c)
def

= if eval(b; env(a))

^ agent(c) = nil

then agent(c) := a

The smallest among the enabled time requirements to

be checked against timer is recorded into the function

tmin. If no input is ready and none of the time re-

quirements is satis�ed yet, the daemon goes to sleep

(setting his communication mode to alt sleep) and in-

serts himself into the time-queue time q (if there was

at least one enabled time guard); it can be woken up

by an outputting communication partner (see above the

out alt rule) or because the minimal waiting time tmin

has been reached by timer (see time wakeup rule below).

If, when enabling, a daemon �nds at least one input

to be ready or one time requirement to be satis�ed { the

latter is immediately true in case of the empty require-

ment, denoted by SKIP { he goes into communication

mode alt run and proceeds to the execution of the alt s

instruction after having \disabled" the channels which

had been \enabled":

disable(b; c)
def

= if eval(b; env(a))

^ agent(c) = a

then agent(c) := nil

Note that the communication takes place only after the

corresponding alternative has been chosen.

alt a(~G)

if cmd is alt a(~G)

then

enable(b1; �c1)

: : :

enable(bp; �cp)

if 9 i (eval(bi; env(a)) ^ ready �ci)

_ t wait < timer

_ 9 k (eval(bk; env(a)))

then com mode(a) := alt run

proceed

else com mode(a) := alt sleep

sleep at next(loc(a))

if there is an enabled time guard

then seq tmin(a) := t wait

time-insert

endseq

where

Gi = bi : ci ? vi
Gj = bj : TIME ?AFTER tj
Gk = bk : SKIP

t wait =

�
1 if 8 j (:eval(bj; env(a))); otherwise
minjfeval(tj ; env(a)) j eval(bj; env(a))g

1 � i � p < j � q < k � r

Obviously, the sentence \there is an enabled time

guard" stands for the expression 9 j (eval(bj; env(a))),

where p < j � q. Note that here and in the sequel

we use indices and \: : :" only to have a concise nota-

tion without contradicting the formal character of our

model.

alt s com j alt s time j alt s skip (i; ~G)

if cmd is alt s(~G)

^ eval(bi; env(a))

^ agent(�ci) 6= a j timer > eval(ti; env(a)) j
then

disable(b1; �c1)

: : :

disable(bp; �cp)

loc(a) := next(loc(a); i)

where

Gi = bi : ( ci ? vi j TIME ?AFTER ti j SKIP )

The value p (as in previous rule) is the count of input

guards appearing in ALT construct. (Note our \j" no-

tation explained in the prerequisites section 2..)

time wakeup

if time q not empty

^ timer > tmin(�rst(time q))

then com mode(�rst(time q)) := alt run

wakeup �rst(time q)

time-delete �rst(time q)

Note that by our de�nition of insertion into the time

queue processes in that queue are ordered by the time

they are waiting for.

The Computer Journal, Vol. 36, No. 5, 1993



Correctness of compiling Occam to Transputer code 9

Parallelism

In executing a PAR-statement the newly created dae-

mons have to be linked to the currently executing dae-

mon using a function:

father : DAEMON!DAEMON

and the currently executing daemon { who will go to

sleep { has to record howmany processes he has created,

updating a function:

count : DAEMON!N

The two rules to execute (begin and end of) PAR-

statements are as follows10:

par(r) if cmd is par(r)

then extend DAEMON by x1 : : : xr with

q := q.x1. : : : . xr
: : :

father(xi) := a

loc(xi) := next(loc(a); i)

env(xi) := env(a)

: : :

count(a) := r

sleep at next(loc(a))

endextend

where 1 � i � r

end if cmd is end

then dequeue

if r = 1

then wakeup father(a)

r := r � 1

where r = count(father(a))

4. FLOWCHART AND ENVIRONMENT COM-

PILATION

In this section we compile into still abstract code the

Occam control structure (which is embodied in the


owchart of the ground model) and the environment

(which in the ground model is associated to the dae-

mons). In 4.1. the 
owchart is linearized (by intro-

ducing goto-instructions instead of multiple in/outgoing

edges). In 4.2. the resulting sequence of nodes, marked

by atomic Occam instructions, is described by a com-

pilation function whose output is loaded into memory.

In 4.3. environments are re�ned as determined recur-

sively by the program structure, resulting in their still

abstract de�nition by the compilation function. In 4.4.

this de�nition is re�ned by placing variables and chan-

nels into memory using an auxiliary function which

computes the needed environment size recursively along

the program structure. This allows us in 4.5. to make

10Since we concentrate the attention to one processor we do
not consider the PLACED PAR statement which is semantically
di�erent from the PAR-statement, it is allowed to be used only
once { at the beginning of the Occam program { to \place" dae-
mons on di�erent processors; the daemons are not supposed to
terminate and are not linked to the father.

the memory access relocatable by introducing identi-

�er addresses which are relative to daemons as base

addresses.

4.1. Flowchart linearization

The goal of our paper is to prove the correctness of com-

piling speci�cations and not the correctness of compiler

optimization techniques. Therefore the attention is fo-

cused on what happens to atomic Occam instructions

during the compilation. As a consequence the use of

the tree structure for the optimization of the code com-

piled for the given Occam program is not relevant for

our analysis. This is the reason why we deviate from

the usual practice in compilers and linearize the given


owchart at the very beginning of our analysis (instead

of keeping the linearization of the generated instruction

blocks for the end of the compilation).

In the sequel let S be an arbitrary Occam program

and 
owchart(S) the 
owchart by which the ground

model OCCAMground is initialized (see 7.1.). We trans-

form 
owchart(S) into a sequence lin(S) of nodes which

are marked with atomicOccam instructions or with new

goto-instructions whenever those are needed to avoid

multiple in/outgoing edges. We re�ne correspondingly

the OCCAMground { rules for branching instructions {

i.e. if, par, alt s; adding also a new goto-rule we obtain

a new evolving algebra OCCAMlin which if initialized

by lin(S) is equivalent to OCCAMground initialized by


owchart(S).

The transformation follows standard techniques:

through the linearization nodes which (at run time) are

the next ones might physically not be any more the

next ones; for such cases one has to introduce goto in-

structions. More formally: multiple incoming edges to

a node m from nodes in1; : : : ; inr

in1 inr

m

. . .

are replaced by new nodes n1; : : : ; nr marked by the new

instruction goto(m); multiple outgoing edges, say from

a node n with cmd(n) = instr to nodes m1; : : : ;mq are

replaced by assigning a new instruction instr(m1; : : : ;mq)

to nwith a modi�ed rule which will assume the intended


ow control. The precise form depends on the four pos-

sible cases for instr where multiple outgoing edges can

occur in 
owchart(S), namely IF, WHILE, PAR, ALT.

For a smooth transition (in 4.2.) from the linearized


owchart to the use of a compilation function whose

result is loaded into NODE we treat the parameters

for the modi�ed instructions as \labels" to which an

auxiliary function:

labeled loc : LABEL!NODE

will associate the intended target { location. In this

The Computer Journal, Vol. 36, No. 5, 1993



10 Egon B�orger & Igor D- urd- anovi�c

way the new OCCAMlin-function:

next : NODE!NODE

becomes monadic and is related to the old binary

OCCAMground function next by:

next(n; i) =

�
next(n) if i = 0

labeled loc(li) otherwise

In the case of nodes with an if instruction, one out-

S1

Sr

Out(l )

Out(l )

1 1(B ,l )

r r(B ,l )

...

...
l1

lr

lOut

1 1 r rB S ... B S

FIGURE 2. Flowchart Linearization for IF

going edge is chosen as next-exit, the other exit m is

implemented by using a new node marked with the

new instruction goto(m). For conventional reasons the

choice of the next-exit depends on whether the if in-

struction comes from an IF (see Fig. 2) or from a

WHILE (see Fig. 3) statement in the original Occam

program; the next-exit is the no-exit in the �rst and the

yes-exit in the second case. For 
owcharts correspond-

B S

S

( B,l )Out

lOut

(l )In

lIn

FIGURE 3. Flowchart Linearization for WHILE

ing to a statement of form PAR S1 : : : Sr (see Fig. 4) or

ALT G1 S1 : : : Gr Sr (see Fig. 5) the linear sequences

constructed by induction for the subprograms are con-

nected in the order in which the latter appear in the

Occam program. The correct transfer of control to the

entry node of lin(Si) or lin(Gi; Si) labeled by li is imple-

mented by the additional assignment of labeled loc(li)

as location in the modi�ed par and alt rule. Formally

(l)

(l )Out

l1

l

l

S1

r

Out

Sr

S .. S1 r

FIGURE 4. Flowchart Linearization for PAR

this linearized 
owchart can be generated by a simple

system of EA rules, similar to the 
owchart generating

rules given in appendix 7.1.. We leave this as an ex-

ercise to the reader. The new OCCAMlin algebra has

new rules for three re�ned instructions (if, alt s and par

of the preceding section) and for one new instruction

(goto). In the branching rules the additional parame-

ter l is introduced together with a location update by

labeled loc(l).

if(b,l) if cmd is if(b; l)

then if eval(b; env(a))

then loc(a) := labeled loc(l)

else proceed

goto(l) if cmd is goto(l)

then loc(a) := labeled loc(l)

par(~l) if cmd is par(l1; : : : ; lr)

then extend DAEMON by x1 : : : xr with

q := q.x1. : : : .xr
: : :

father(xi) := a

loc(xi) := labeled loc(li)

env(xi) := env(a)

: : :

count(a) := r

sleep at next(loc(a))

endextend

where 1 � i � r

The Computer Journal, Vol. 36, No. 5, 1993



Correctness of compiling Occam to Transputer code 11

(l )Out

(l )Out

lp+1

lr

lOut

Sp+1

Sr

(G,l)

(l )Out

(l )Out

l1

lp

S1

Sp

1c ? v1

pc ? vp

...

...

G S ... G S1 1 r r

FIGURE 5. Flowchart Linearization for ALT

alt s com j alt s time j alt s skip (i; ~G;~l)

if cmd is alt s(~G;~l)

^ eval(bi; env(a))
^agent(�ci) 62 f nil; a g j timer > eval(ti; env(a)) j

then

disable(b1; �c1)

: : :

disable(bp; �cp)

loc(a) := labeled loc(li)

where
~l = l1; : : : ; lr
~G = G1; : : : ; Gr

Gi = bi : ( ci ? vi j TIME ?AFTER ti j SKIP )

The value p is the count of input guards appearing in

the ALT construct.

It is easy to de�ne the notion of corresponding

runs and of the equivalence between OCCAMground

on 
owchart(S) and OCCAMlin on lin(S) where ho-

monymous rules | corresponding to each other via

next(n; i) = labeled loc(li) | have the same e�ect.

This allows us to prove the following simple proposi-

tion:

Proposition 4.1. Corresponding runs of

OCCAMground on 
owchart(S) and of OCCAMlin on

lin(S) are equivalent.

Corollary 4.2. Corresponding runs of

OCCAMground on 
owchart(S) and of OCCAMlin on

lin(S) preserve daemons together with their environ-

ment and the values of variables appearing there, com-

munication traces, termination, deadlock and diver-

gence.

4.2. Compilation and Loading of programs

In this section we describe the generation of the lin-

earized 
owchart lin(S) through an abstract compila-

tion function:

compile : STATEMENT! (CODE [ LABEL)�

In order to achieve a simple de�nition of compile we will

use the natural and quite standard recursion on the pro-

gram structure. Therefore we separate the de�nition of

compile(S) from its \loading", i.e. from the generation

of nodes which will be marked by the atomic instruc-

tions in compile(S). As a consequence we separate now

the syntactical status of labels l | to be names for pa-

rameters of instructions goto, if, par, alt s | from their

semantical interpretation as nodes labeled loc(l) associ-

ated to them during the loading process. The loading

itself is described by two new rules which constitute the

LOAD algebra: they assign instructions to the next free

node { \memory location" loading loc { and assign to

labels the current loading location loading loc as value

(to which value the next compiled instruction will be

associated).

Formally the LOAD algebra has the two new dynamic

functions:

loading loc : NODE

load prg : (CODE [ LABEL)�

for the current loading location and the remaining pro-

gram to be loaded which are thought to be initialized

by begin { the initial node where the program execution

starts { and compile(S) respectively. The two rules are:

load label(l,t)

if load prg = [ l j t ]
^ l 2 LABEL

then labeled loc(l) := loading loc

load prg := t

load cmd(c,t)

if load prg = [ c j t ]
^ c 2 CODE

then cmd(loading loc) := c

load prg := t

extend NODE by n with

next(loading loc) := n

loading loc := n

endextend

In de�ning now the compilation function by induction

on S we tacitly assume that each time where labels ap-

pear they are distinct from each other and fresh for the

compilation process; this assumption re
ects the fact

The Computer Journal, Vol. 36, No. 5, 1993



12 Egon B�orger & Igor D- urd- anovi�c

that semantically the labels have to represent di�erent

nodes in lin(S), generated during the construction of

the (linearized) 
owchart. We abstain from the routine

formalization of this assumption.

compile(SKIP) = SKIP

compile(STOP) = STOP

compile(v := t) = v := t

compile(TIME ? v) = TIME ? v

compile(c ! t) = c ! t

compile(c ? v) = c ? v

compile(VAR id1; : : : ; idr : S) =

decl var(id1; : : : ; idr);

compile(S);

decl end(r)

compile(CHAN id1; : : : ; idr : S) =

decl chan(id1; : : : ; idr);

compile(S);

decl end(r)

compile(IF B1 S1 : : : Br Sr) =

: : :

if(Bi; li);

: : :

compile(STOP);

: : :

li;

compile(Si);

goto(lOut);

: : :

lOut

where l1; : : : ; lr ; lOut are new labels

1 � i � r:

compile(WHILE B S) =

lIn;

if(:B; lOut);

compile(S);

goto(lIn);

lOut

where lIn; lOut are new labels:

compile(PAR S1 : : : Sr) =

par(l1; : : : ; lr);

goto(lOut);

: : :

li;

compile(Si);

end;

: : :

lOut

where l1; : : : ; lr ; lOut are new labels

1 � i � r:

compile(SEQ S1 : : : Sr) =

compile(S1);

: : : ;

compile(Sr)

compile(ALT G1 S1 : : :Gr Sr) =

alt a(~G);

alt s(~G;~l);

: : :

li;

compile(ci ? vi);

compile(Si);

goto(lOut);

: : :

lj ;

compile(Sj);

goto(lOut);

: : :

lOut

where ~l = l1; : : : ; lr are new labels
~G = G1; : : : ; Gr

Gi = bi : ci ? vi
Gj = bj : ( TIME?AFTER tj or SKIP )

1 � i � p < j � r:

Using the convention on fresh labels during the com-

putation of compile(S) it is easy to see that the following

is true:

Proposition 4.3. The LOAD algebra, started with

load prg = compile(S), computes a sequence of nodes

marked with Occam instructions which is isomorphic to

lin(S).

Proof. Induction on S, observing that labels li oc-

curring during the recursive computation of compile(S)

correspond to the nodes labeled loc(li) associated to

them by the loading rules.

Corollary 4.4. Let OCCAMcompile be the union

of OCCAMlin and the LOAD algebra. The runs of

OCCAMlin on lin(S) and of OCCAMcompile started

with load prg = compile(S) are equivalent. Therefore

they preserve daemons together with their environments

and the values of the variables appearing there, commu-

nication traces, termination, deadlock and divergence.

You would probably have expected that we de�ne

OCCAMcompile by using the modi�cation ofOCCAMlin

where the all rules get the additional guard load prg =

[ ]. As a matter of fact it is irrelevant whether applica-

tions of OCCAMlin rules and of LOAD rules are inter-

leaved or not.

Remark 4.1. Once the 
owcharts have been lin-

earized and the programs are compiled and loaded, it is

of no help any more to speak of nodes as placeholders

for instructions. In the following we switch therefore to

the following new notation and naming which brings us

The Computer Journal, Vol. 36, No. 5, 1993



Correctness of compiling Occam to Transputer code 13

closer to the intuition of the Transputer memory:

NODE = LOC next = +1 begin = 0:

Since at this level of abstraction we do not care about

e�cient use of locations, we assume +1 : LOC!LOC

to be a total (if you wish even injective) function on

locations (we will also use the binary + function de�ned

in the usual way from +1). As a consequence the extend

update in the load cmd rule can be replaced equivalently

by:

loading loc := loading loc+ 1:

As further step towards the Transputer we introduce the

Transputer store abstractly by a function:

content : LOC!VAL

which yields the value stored in a location. From now

on we consider programs to be \stored in memory" by

requiring cmd to be subfunction of content. Clearly

these cosmetic changes (pure data re�nements) of the

OCCAMcompile algebra do not e�ect the truth of propo-

sition 4.3.

4.3. Environment Compilation

This section is devoted to the compilation of the envi-

ronment which however still remains abstract and will

be re�ned in the next section.

For the interpreter model OCCAMground it did pay

out to let daemons carry their environment; daemons

only have to extend or shrink their current environment

upon execution of a declaration begin or end instruc-

tion. In order to obtain e�cient code the management

of environments is assigned as much as possible to the

compiler. Indeed for the Occam language an environ-

ment is really determined by the structure of the piece

of program to which it belongs, namely it is the result

of the still active declarations which lie on the path of

locations (instructions) traversed by the executing dae-

mon.

Therefore the environments can be computed in ad-

vance by the compilation function and be used at run

time by the daemons as context for the execution of

atomic Occam instructions. This means that env(a) is

replaced by an environment parameter e of the atomic

Occam instructions, computed by compile.

This is the idea for the following re�nement of

OCCAMcompile into the evolving algebra OCCAMenv.

The function compile receives as additional parameter

the environment within which the (sub)program has to

be executed:

compile : STATEMENT�ENV

! ((CODE�ENV) [ LABEL)�:

For better readability we will write code(e) instead of

(code, e) and suppress the environment parameter for

code where it doesn't matter (i.e. for SKIP, STOP, goto,

end).

The rules decl var, decl chan, decl end ofOCCAMcompile

in section 3. are deleted because their e�ect is now com-

puted by the following clauses which re�ne the clauses

for declarations of the function compile of the preced-

ing section. As we did already for labels, we abstain

from the routine formalization of the creation of \new"

variables and channels.

compile(VAR id1; : : : ; idr : S; e) = compile(S; e0)

where e0 = append(enew; e)

enew = (idr ; vr); : : : ; (id1; v1)

v1; : : : ; vr are \new" variables

compile(CHAN id1; : : : ; idr : S; e) =

init chan(id1; : : : ; idr; e
0);

compile(S; e0)

where e0 = append(enew; e)

enew = (idr ; cr); : : : ; (id1; c1)

c1; : : : ; cr are \new" channels

Note that our compilation of declarations \allocates"

statically variables and channels. During the run{time

they are reused, therefore the initialization of channels

has to be re{done every time a channel is \created".

Obviously this cannot be done at compile time, there-

fore we have to generate an init chan instruction with a

rule which executes the updates (initializations) of the

decl chan instruction of OCCAMcompile:

if cmd is init chan(c1; : : : ; cr; e)

then agent( �c1) := nil

: : :

agent( �cr) := nil

where �ci = bind(ci; e)

Note also that the generation of the instruction decl end

in OCCAMcompile in section 3. can be eliminated be-

cause e is the \restored" environment of e0.

The compilation of atomic Occam instructions whose

semantics depends upon the environment generates cor-

responding instructions which re�ne the instructions

generated in the preceding subsection by passing to

them also the environment parameter:

compile(v := t; e) = ass(v; t; e)

compile(TIME ? v; e) = time(v; e)

compile(c ! t; e) = out(c; t; e)

compile(c ? v; e) = inp(c; v; e)

The rules for those re�ned instructions are obtained

from corresponding OCCAMcompile rules of section 3.

by using the generated environment parameter e instead

of env(a) (except for the instructions SKIP, STOP, goto,

end where nothing does change because their semantics

The Computer Journal, Vol. 36, No. 5, 1993



14 Egon B�orger & Igor D- urd- anovi�c

does not depend upon the environment):

ass(v,t,e)

if cmd is ass(v; t; e)

then eval(�v) := eval(t; e)

proceed

time(v,e)

if cmd is time(v; e)

then eval(�v) := timer

proceed

if(b,l,e)

if cmd is if(b; l; e)

then if eval(b; e)

then loc(a) := labeled loc(l)

else loc(a) := next(loc(a))

Analogously for the re�ned rules for input and output

and for alt a and alt s. For WHILE, IF, ALT, SEQ, PAR

we have the same compilation as in OCCAMcompile (see

section 3.), adding to compile and to the generated in-

structions the parameter e. We assume as before that

each generated label is \new".

compile(WHILE B S; e) =

lIn;

if(:B; lOut; e);

compile(S; e);

goto(lIn);

lOut

compile(IF B1 S1 : : : Br Sr ; e) =

: : :

if(Bi; li; e);

: : :

compile(STOP; e);

: : :

lj ;

compile(Sj ; e);

goto(lOut);

: : :

lOut

where 1 � i; j � r

Analogously compile(SEQ S1; : : : ; Sr) is re�ned intro-

ducing the parameter e.

compile(ALT G1 S1 : : :Gr Sr ; e) =

alt a(~G; e);

alt s(~G;~l; e);

: : :

li;

compile(ci ? vi; e);

compile(Si; e);

goto(lOut);

: : :

lj ;

compile(Sj ; e);

goto(lOut);

: : :

lOut

where ~l = l1; : : : ; lr
~G = G1; : : : ; Gr

Gi = bi : ci ? vi
Gj = bj : ( TIME?AFTER tj or SKIP )

1 � i � p < j � r

Analogously compile(PAR S1; : : : ; Sr) is re�ned by in-

troducing the parameter e. In the re�ned rule for par

the update of the environment function env is deleted.

It is easy (see the proof below) to de�ne the corre-

spondence of runs of OCCAMcompile and the re�ned

evolving algebra OCCAMenv started with compile(S)

and compile(S; [ ]) respectively.

Proposition 4.5. Corresponding

runs of OCCAMcompile and of OCCAMenv, started with

compile(S) and compile(S; [ ]) respectively, are equiva-

lent. Therefore they preserve daemons, environments,

the values of variables appearing there, communication

traces, termination, deadlock and convergence.

Proof. By induction on the structure of S. The

linear structure of the compiled code is the same

in both algebras, except for the declaration code of

OCCAMcompile. No such code is generated inOCCAMenv

where instead compile { assisted by the channel initial-

izing instruction { provides the environment computed

in OCCAMcompile at run time by the declaration code.

Homonymous rules in both algebras have the same ef-

fect. The environment env(a) within which an instruc-

tion is executed in OCCAMcompile is the same as the

environment parameter e of the corresponding instruc-

tion in the corresponding run of OCCAMenv.

In the sequel our compilation function will undergo

further re�nements. Besides instructions and environ-

ments several other entities will be generated like labels,

daemons, etc. We use them as parameters in very the

same way as we did with e. Therefore they are to be

understood without further mentioning to go together

with the introduction or re�nement of corresponding

dynamic functions which will be updated correctly in

the LOAD algebra.

The Computer Journal, Vol. 36, No. 5, 1993



Correctness of compiling Occam to Transputer code 15

Remark 4.2. Note that for the compilation of en-

vironments in OCCAMenv we assume fresh variables to

have value undef, as is the case when new variables are

created in OCCAMcompile . In any case it is hardly the

compiler which should be blamed if a variable used by

a program is wrongly initialized.

4.4. Re�ning variables and channels

In this section we implement variables and channels

as locations. Thus the abstract environments become

mappings to blocks of memory. Formally we require:

VAR;CHANNEL � LOC

and re�ne the variable evaluation function eval and the

function agent to be subfunctions of content. Due to

the static memory allocation for Occam programs we

can store environments internally as blocks of mem-

ory. As preparation for the re�nement to relocatable

memory access in the next subsection we provide the

compilation function with an additional parameter m

for the next free memory position starting from which

the environment will be stored in a contiguous memory

area:

compile : STATEMENT�ENV�LOC

! ((CODE�ENV) [ LABEL)�

The recursive de�nition of the placement of environ-

ments into memory by the compilation function is as-

sisted by an auxiliary function:

env size : STATEMENT!N

which yields the number of memory locations needed

by a subprogram for its variables and channels. This

function is also recursively de�ned; the de�nition takes

advantage from the decision to place environments into

contiguous memory positions. We �rst give this re-

cursive de�nition and then show how the re�nement

of compile a�ects the de�ning clauses for declarations

and PAR-statements. Through declarations, the envi-

ronments are extended:

env size(VAR id1; : : : ; idr : S) = r + env size(S)

env size(CHAN id1; : : : ; idr : S) = r + env size(S):

Some statements don't introduce new variables, there-

fore in those cases we have:

env size(SKIP) = 0

env size(STOP) = 0

env size(TIME ? v) = 0

env size(c ? v) = 0

For output and assignment statements additional (tem-

porary) variables might be needed through the still ab-

stract evaluation. Thus we require:

env size(c ! t) = eval size(t)

env size(v := t) = eval size(t)

where eval size is an auxiliary function which will be

speci�ed together with expression evaluation.

Sequential execution of SEQ components requires

that the reserved place must cover the maximal space

requirement among the components. Therefore:

env size(SEQ S1 : : :Sr) = max
r

i=1 env size(Si)

Also statements operating on boolean expression(s)

may need some additional temporary variables for eval-

uation; this explains the de�nition of eval size for

ALT; IF and WHILE:

env size(ALT G1 S1 : : :Gr Sr) =

max
r

i=1 (eval size(bi); env size(Si))

env size(IF B1 S1; : : :Br Sr) =

max
r

i=1 (eval size(Bi); env size(Si))

env size(WHILE B S) =

max( eval size(B); env size(S) )

In the case of a PAR program statement, its component

statements run concurrently, so their variables/channels

must be present concurrently. Therefore the env size

sums the size of the components:

env size(PAR S1 : : : Sr) =

rX
i=1

env size(Si):

During the compilation of declarations the �rst free

memory location has to be updated (advanced to the

next location) to express the e�ect of the \location in

use". Thus the compilation of variable declarations of

the preceding section is re�ned as follows.

compile(VAR id1; : : : ; idr : S; e;m) =

compile(S; e0 ;m+ r)

where

e0 = append(enew; e)

enew = (idr;m+ r � 1); : : : ; (id1;m):

The re�nement of the compilation function is similar

for all other cases except for PAR. During the compi-

lation of PAR-statements we have to pass now to each

son a di�erent free memory location for his private dec-

larations. The requirement that all variables/channels

have to be placed in a contiguous block comes handy

now. We simply give each son enough space (deter-

mined using the value of env size for the subprograms

of the sons). Hence the compilation of PAR statements

The Computer Journal, Vol. 36, No. 5, 1993



16 Egon B�orger & Igor D- urd- anovi�c

of the preceding subsection is re�ned as follows:

compile(PAR S1 : : :Sr ; e;m) =

par(~l);

goto(lOut);

: : :

li;

compile(Si; e;mi);

end;

: : :

lOut

where ~l = l1; : : : ; lr
m1 = m

mj = mj�1 + env size(Sj�1)

1 � i � r

2 � j � r

The environment space splitting is shown in �gure11

6. The space is reserved by the LOAD algebra by

setting loading loc initially to env size(S), and pass-

ing 0 as �rst free location for the compilation func-

tion. In this way the instructions are loaded immedi-

ately after the space dedicated to the environment, i.e.

starting at env size(S). The re�nement OCCAMenv0

...

env(x
)

r

en
v(x

)

env(x
)

1

env(x
)

2

m=m1

m2

mr

...
en

v(x
)

FIGURE 6. Splitting of space among new daemons xi

of OCCAMenv obtained by placing environments into

memory is a pure data re�nement for compile and for

the initialization by compile(s; [ ]; 0). It does not involve

new rules.

Proposition 4.6. Proposition 4.5 is true for

OCCAMenv0 modulo the re�nement of variables and

channels.

11Here and in the sequel we will put the content of the memory
into boxes, the boxes themselves represent arbitrary chunks of
memory. Where needed the size of each chunk is indicated next
to the boxes. Sometimes, where known, the "address" where the
boxes start is also annotated. Di�erent shadowing of the boxes
is intended for visual distinguishing semantically di�erent data
placed into the memory.

4.5. Relative addressing for environments

In this section we formalize a standard technique to

introduce relative addressing for bindings of identi�ers.

The goal is to make the environment relocatable.

In the Occam ground model the role of daemons is

that of agents who execute Occam programs. In the

Transputer this role is reduced to that of holding the

base address of the corresponding environment. Indeed

the compilation function does not need to know (and

in a real system cannot know) where the memory block

for the environment will begin at run time.

For the compilation it is su�cient \to assume" a pa-

rameter x as base address with respect to which ad-

dresses are calculated as distances n � x from x. At

run time the actual address can then be calculated by

adding this distance to the current base address, namely

the active daemon a in our model. Making the address-

ing of locations mapped to identi�ers relative to a dae-

mon x as base address means that the execution of a

piece of code \by x" is done by the Transputer through

a computation in which the locations mapped to iden-

ti�ers are accessed through x.

To realize this idea we augment the compilation func-

tion of the preceding and the binding function of sec-

tion 3. with an additional parameter for the environ-

ment base address (\daemon") and place daemons into

memory by requiring DAEMON � LOC:

compile : STATEMENT�ENV�LOC�DAEMON

! ((CODE�ENV�DAEMON) [ LABEL)�

bind : ID�ENV�DAEMON!LOC

For the re�ned code produced by the new compilation

function we put again the new daemon parameter as ar-

gument of the original code | writing code(x) instead

of (code, x) | and suppress the parameter x in instruc-

tions where it plays no role.

The new function compile is obtained from the func-

tion of OCCAMenv0 by passing the new parameter x

uniformly from arguments to rules whenever the base

address (daemon) does not change. The scheme is illus-

trated for assignment. The compilation of assignments

in subsection 4.3. is re�ned as follows:

compile(v := t; e;m; x) = ass(v; t; e; x)

The new rule for assignment instructions will use the

compile-time parameter x to calculate the distance and

from that the correct run-time address of the correct

binding of v and the variables in t (see below). New

daemons appear only as consequence of the execution

of PAR instructions where the new compilation func-

tion will compute these new base addresses. It is nat-

ural to de�ne the ith son as the memory position mi

which had been assigned by the compilation function

of OCCAMenv0 for his private declarations. Hence the

compilation of PAR statements of the preceding subsec-

The Computer Journal, Vol. 36, No. 5, 1993



Correctness of compiling Occam to Transputer code 17

tion is re�ned as follows:

compile(PAR S1 : : :Sr ; e;m; x) =

par(x; ~m;~l);

goto(lOut);

: : :

li;

compile(Si; e;mi;mi);

end;

: : :

lOut

where
~l = l1; : : : ; lr
~m = m1; : : : ;mr

m1 = m

mj = mj�1 + env size(Sj�1)

1 � i � r

2 � j � r

The new rule for par(x; ~m;~l) will use the compile time

distance xi�x between father x and son xi to calculate

the correct run-time base address a+ (xi � x) for each

i.

Similarly the new binding function computes the dis-

tance:

bind(id; e; x) = bind(id; e) � x

between the absolute addresses bind(id; e) { computed

by the binding function of OCCAMenv0 { and the base

address x. In this way the relation between compile

time and run time addresses is characterized by the sim-

ple equation (see Fig. 7):

run-time address = compile-time relative address + a

m

x

x’

m’

x-m
x’-m’

FIGURE 7. Assumed and Real addresses

Therefore the rules of the new evolving algebra

OCCAMrel�env with relocatable environments are ob-

tained from the rules of OCCAMenv0 as follows. When-

ever bind(id; e) is used it is replaced by bind(id; e; x)

with the appropriate x, given by the rule context.

Whenever content(�v) is used, it is replaced by content(�v+

a). A typical example is the assignment rule of subsec-

tion 4.3. which is re�ned as follows:

ass(v,t,e,x)

if cmd is ass(v; t; e; x)

then content(�v + a) := eval(t; e; x)

proceed

The relative addressing of a location associated to an

identi�er v in an environment e with respect to the

compile-time base address x is re
ected by the fact that

at run time the distance �v = bind(v; e; x) of the identi-

�er's address from the compile time base address x is

added to the run time base address, here the value of

the active daemon a. Note that the expression evalua-

tion function eval which has indirectly to call bind to get

the values of the variables which occur in the expression

has to be extended by an argument for the value of the

daemon which has been assumed at compile time:

eval : EXP�ENV�DAEMON!VAL:

The same re�nement is done for time and input. The

new rule for par(x; ~m;~l) re�nes the corresponding rule

in OCCAMenv0 (compare the formulation in subsection

4.1.) by computing the new daemons from the compile

time parameters x; ~m, i.e. the abstract creation of new

daemons is replaced by a de�nition of the new base

addresses they represent. The de�nition of the run time

value x0
i
for the ith son adds the run-time value of the

creating father { namely a { to the distance xi � x of

the ith son from its father which has been computed by

the compilation function.

env_size(S)

x

mr

m2

env_size(S1)

env_size(S2)

env_size(Sr)

m=m1

env(x)

...

env(x)

...

FIGURE 8. \Creation" of daemons in PAR

The Computer Journal, Vol. 36, No. 5, 1993



18 Egon B�orger & Igor D- urd- anovi�c

par(x; ~x;~l)

if cmd is par(x; ~x;~l)

then q := q.x01. : : : .x
0

r

: : :

father(x0
i
) := a

loc(x0
i
) := labeled loc(li)

: : :

count(a) := r

sleep at next(loc(a))

where ~l = l1; : : : ; lr
~x = x1; : : : ; xr
x0
i
= a+ xi � x

1 � i � r

Figure 8-a shows the interpretation of daemons as base

addresses, �gure 8-b illustrates the optimization of the

next section where the father x takes over the role of

his �rst son. The e�ect of the relative addressing is

expressed by the following lemma.

Lemma 4.7. Let m;x;m0; x0 be such that m � x =

m0 � x0. Then the computations of OCCAMrel�env

started with compile(S; [ ];m; x) and compile(S; [ ];m0; x0)

respectively are equivalent.

Proof. The claim follows by induction an S and in-

duction on the computations using the de�nition of the

new binding function and the de�nition of new daemons

for the PAR construct, which have been given in terms

of distances to x.

Corollary 4.8. Corresponding runs of OCCAMenv0

and OCCAMrel�env, started with compile(S; [ ]; 0) and

compile(S; [ ]; 0; 0) respectively, are equivalent, preserv-

ing daemons, environments, the values of variables

appearing there, communication traces, termination,

deadlocks and convergence.

4.6. Optimization for PAR statements

Figure 8 shows that when a daemon x creates sons

x1; : : : ; xk, his next free memory position m coincides

with the �rst free memory positionm1 of his �rst son x1.

Due to the fact that the father is sleeping while his sons

are running we can reuse the father to do the work of

his �rst son; indeed due to our compilation schema the

environment of the �rst son is adjacent to the father's

environment. In this way we can save the creation of

one daemon. This idea can be realized by the following

re�nement of OCCAMrel�env to an optimized evolving

algebraOCCAMdaemon. The assignment of the environ-

ment space is re�ned by not creating x1 any more. The

compilation function is re�ned on the PAR statement by

eliminating the �rst element from ~m and ~l | i.e. cre-

ating only k�1 instead of k sons | and by eliminating

the instruction goto(lOut), i.e. by letting the father pro-

ceed with the execution of the subprogram of the old

�rst son. As a consequence the last (�nishing) son must

take up the role of his father instead of waking him up.

This implies re�nements of the rules for the instructions

par and end of the preceding subsection (see below).

compile(PAR S1 : : : Sr ; e;m; x) =

par(x; ~m;~l; lOut);

l1;

compile(S1; e;m; x);

end;

l2;

compile(S2; e;m2;m2);

end;

: : :

lr ;

compile(Sr ; e;mr;mr);

end;

lOut

where
~l = l2; : : : ; lr
~m = m2; : : : ;mr

m1 = m

mi = mi�1 + env size(Si�1)

2 � i � r

When the last son �nishes his work | i.e. when he

executes the end instruction | he has to reset his base

address to the base address of his father and to proceed

with the program of his father. For this purpose the

goto-parameter lOut has to be made available. We store

it through a function:

end par : DAEMON!LABEL

The par-instruction is re�ned to include lOut as param-

eter which upon execution of the par-rule is assigned

to end par(a); upon execution of the re�ned end-rule it

will be used to let the last son take up the work of his

father.

par(x; ~x;~l; lOut)

if cmd is par(x; ~x;~l; lOut)

then q := q.x01. : : : .x
0

r

: : :

father(x0
i
) := a

loc(x0
i
) := labeled loc(li)

: : :

count(a) := r

end par(a) := lOut

proceed

where ~l = l1; : : : ; lr
~x = x1; : : : ; xr
x0
i
= a� x+ xi

1 � i � r

The Computer Journal, Vol. 36, No. 5, 1993



Correctness of compiling Occam to Transputer code 19

end

if cmd is end

then if r > 1

then dequeue

r := r � 1

else a := xf
loc(xf ) := aOut

where r = count(xf )

xf = father(a)

lOut = end par(xf )

aOut = labeled loc(lOut)

Proposition 4.9. Let OCCAMdaemon be the op-

timization of OCCAMrel�env, obtained by saving one

son in the compilation of PAR statements. Runs of

OCCAMdaemon are equivalent to the corresponding runs

of OCCAMrel�env. Therefore environments, the val-

ues of variables appearing there, communication traces,

deadlocks and divergence are preserved.

Proof. The runs in the two algebras are in one-

to-one correspondence: the same rules are applied al-

though by di�erent agents. Indeed fathers work for

their �rst sons and they do this correctly, as assured

by the re�ned clause for the compile function: x goes

to execute the code of his �rst son (because the goto

instruction has been eliminated); the last son instead of

killing himself takes up the role of his father by reset-

ing himself (the base address) to that of his father and

his location to where the father had stopped to do his

own job. The compilation of the variables of x1 is done

correctly because the environment produced for x1 is

the same as before, it is only accessed from the father's

base address x instead of x1.

We can summarize the results of this section by the

following theorem:

Theorem 4.10. OCCAMdaemon is a correct and

complete implementation of OCCAMground, i.e. for

each Occam program, its OCCAMground semantics is

the same as its OCCAMdaemon semantics.

5. Transputer (GROUND) MODEL

In this section we introduce the signature of the Transputer

ground model which is relevant for the execution of the

Transputer code to which the abstract code of the pre-

ceding section will be re�ned in the next section.

We introduce here the registers Wreg (for the current

agent) and Ireg (for the pointer to the current instruc-

tion), the three (stack like) registers Areg,Breg,Creg for

the management of instruction operands and the regis-

ters for the implementation of the queues q and time q.

We also de�ne which Transputer instructions are safe for

time{slicing and introduce the instruction fetch mecha-

nism which also takes care of the Transputer time{slicing

mechanism.

5.1. Queue Implementation

Two special{purpose Transputer registers12:

FPtrReg;BPtrReg : DAEMON [ f nil g

known as front/back (queue) pointer registers, together

with the function13:

next : DAEMON!DAEMON

implement the abstract queues of OCCAMdaemon.

As a matter of fact, the latter can be recovered by

the following de�nition of the list queue(l):

q = queue(FPtrReg)

queue(l) =

�
l if l = BPtrReg

l.queue(next(l)) otherwise

(Remember that we use the dot for list notation.)

Clearly �rst(q) = FPtrReg, last(q) = BPtrReg, rest(q) =

queue(next(FPtrReg)). The queue is said to be empty if

FPtrReg = nil; we assume that the queue registers are

initialized with nil. The abstract updates for enqueu-

ing and dequeuing of the Occam algebra in section 3.

are now implemented by the following macro:

enqueue x
def

= BPtrReg := x

if FPtrReg = nil

then FPtrReg := x

else next(BPtrReg) := x

The macro dequeue formalizes the dequeuing mecha-

nism. Note that if the process queue is empty, then

the cpu is idle, waiting for some daemon to appear (ei-

ther by completing an external communication or by an

application of the time wakeup rule).

dequeue
def

= if FPtrReg = nil

then a := nil

else a := FPtrReg

loc(a) := loc(FPtrReg)

start := timer

if FPtrReg = BPtrReg

then FPtrReg := nil

else FPtrReg := next(FPtrReg)

Note that strictly speaking the update loc(a) :=

loc(FPtrReg) is unnecessary; we include it already here

because in subsection 5.3. we re�ne loc(a) to be the reg-

ister Ireg which is independent of a.

It is a routine exercise to formalize and to prove the

correctness and completeness statement for this imple-

mentation of queues of OCCAMdaemon. Note that this

re�nement is essentially a data re�nement.

5.2. Time queue

The administration of time is implemented in the

Transputer by Timer{hardware. It takes care of incre-

12Really two for each priority
13Not to be confused with the function next in the 
owcharts

of OCCAMground .

The Computer Journal, Vol. 36, No. 5, 1993



20 Egon B�orger & Igor D- urd- anovi�c

menting the timer function(s) and administrating the

time queue.

The time queue is implemented by a 0-ary function14

(a reserved location (register) Time Pointer Location):

TPtrLoc : DAEMON [ f nil g

together with the above indicated function next. Note

that we are allowed to reuse the same next function for

scheduler and timer queue because these two queues

are always disjoint. Assume that an ALT process is

waiting for a communication partner and for the time;

at the moment he is woken up by his communication

partner he is thrown out from the timer queue and

put into the scheduler queue (see out alt and OUT alt

rules). Clearly time q can be recovered in the standard

way from TPtrLoc = �rst(time q) using next. In the

Transputer we �nd for e�ciency reasons also another

reserved location (register):

TNextReg : LOC

to hold the time the process in TPtrLoc is waiting for

(i.e. TNextReg = tmin(TPtrLoc)).

It is routine to re�ne the notions of time-insert and

time-delete accordingly.

When the time recorded in TNextReg is reached the

re�ned time wakeup rule �res and wakes up the corre-

sponding waiting daemons. The re�ned version of the

time wakeup rule of section 3. is the following:

time wakeup

if TPtrLoc 6= nil ^ timer > TNextReg

then com mode(TPtrLoc) := alt run

enqueue TPtrLoc

time-delete TPtrLoc

We leave again as an exercise to the reader to for-

malize and prove the correctness and the completeness

statement for this implementation of time queues |

which is again a pure data re�nement. Note that the

time wakeup rule runs concurrently to the other rules,

thus re
ecting that an independent piece of hardware

is responsible for timing.

Note that on the basis of the notions of process queue

and time queue and with appropriate register initializa-

tion we can de�ne deadlock as process and timer queue

being empty without any process waiting for an exter-

nal communication.

5.3. Registers

The Transputer has three general purpose registers:

Areg;Breg;Creg : VAL

which behave like a stack, allowing us to access directly

only the top of the stack, Areg15. Therefore we will use

the following stack{like macros for accessing registers:

14Really for each priority
15By requiring that the registers take the values in VAL we

abstract from the hardware implementation of registers; e.g. the

push(v)
def

= Areg := v; Breg := Areg; Creg := Breg

pop
def

=Areg := Breg;Breg := Creg; Creg := random

pop(v)
def

= v := Areg; pop

In pop we use a 0-ary external function random which

takes values in VAL. The update of Creg by random

in pop formalizes the non{deterministic behavior of the

hardware which may assign any value to Creg.

The Transputer has two special{purpose registers:

Wreg; Ireg : VAL

to hold the current agent and a pointer to the current

instruction. From the workspace (pointer) register Wreg

and the instruction (pointer) register Iregwe can recover

a and loc of OCCAMdaemon as follows:

a
def

= Wreg

loc(a)
def

= Ireg

Correspondingly the macro proceed of previous sections

becomes:

proceed
def

= Ireg := Ireg+ 1

Similarly the de�nitions and rules where a and loc(a)

appear have to be interpreted with Wreg and Ireg (see

in particular the dequeue rules). For the time being it

Wreg

Ireg

ENV

CODE

FIGURE 9. Example of Wreg and Ireg

su�ces to assume that the general purpose Transputer

registers range over a subdomain of LOC so that the

function content can be applied to registers.

Since this introduction of Transputer registers is a

pure data re�nement, with respect to an appropriate

register initialization it preserves the correctness and

the completeness statement.

5.4. Time slicing

As a rule the scheduling of processes is a time consum-

ing operation. In fact before actually starting a pro-

cess one has to restore his context, represented by cer-

tain processor registers which have to be preserved on

implementation of the workspace register introduced below, in
T800 uses only 30 bits for values and one bit for priority.

The Computer Journal, Vol. 36, No. 5, 1993



Correctness of compiling Occam to Transputer code 21

rescheduling. For the sake of e�ciency this context |

in a narrow sense | has been reduced in the Transputer

to Wreg and Ireg only. The introduction of the notion

of safe places de�nes "safe" points in a program start-

ing from where the code doesn't depend on the context

| in a broad sense | including values of Areg, Breg

and Creg registers which have been generated before

reaching such a point. It is the duty of the compilation

function to meet the proposed requirement for being a

safe place when the code is generated. At such safe

places time-slicing can be applied correctly.

For time-slicing it is natural that its execution is cou-

pled to the fetch phase in which, anyway, the CPU has

to recognize the type of instruction to be executed. We

formalize this by introducing a 0-ary function:

mode : f fetch; execute g

together with a function16:

cmd : CODE

which holds the instruction fetched by the CPU for ex-

ecution so that cmd = content(Ireg� 1).

Since all the rules de�ned so far have to do with the

execution of instructions they are put under the ad-

ditional guard mode = execute by re�ning the macro

cmd is of section 3. to:

cmd is c
def

= cmd = c ^ mode = execute ^ Wreg 6= nil

and by adding to each rule the update mode := fetch

and deleting the update proceed. The time{slice rule of

section 3. is re�ned correspondingly as follows:

time{slice

if mode = fetch ^ Wreg 6= nil

then if elapsed

^ safe(content(Ireg))

then seq enqueue Wreg

dequeue

endseq

else cmd := content(Ireg)

proceed

mode := execute

Under the assumption that in an in�nite run there are

in�nitely many safe instructions which are executed this

new rule is a correct implementation of the previous

time{slice rule. We reassume this section in the follow-

ing proposition.

Proposition 5.1. The re�nement of OCCAMdaemon

by implementing process and time queues and by intro-

ducing time{slicing as part of the fetch mechanism is

correct and complete.

Proof. It is easy to check comparing homonymous

rules that the OCCAMdaemon update proceed is han-

dled correctly by the time{slicing rule. By de�nition a

16Not to be confused with the function cmd of the Occam

algebra.

\safe" place in a program is represented by code which

doesn't depend on the \context" in the broad sense gen-

erated before reaching that place but only on the \con-

text" in the narrow sense. The \context" in the broad

sense is represented in the Transputer by Wreg; Ireg and

the three stack registers Areg;Breg;Creg for holding the

parameters. The claim therefore follows by induction

on the number of times when the time has elapsed for

time{slicing, using the fact that Occam processes which

run in parallel are independent and in particular do not

compete for resources.

Note that the Transputer designers have de�ned the

jump instruction (as well as the loop end instruction

LEND) to be safe. (Note that our compilation function

prevents pieces of code which follow a jump instruction

to depend on the values of Areg;Breg;Creg unless these

registers are set by that piece of code.) The compilation

of WHILE constructs contains a jump so that no execu-

tion of a compiled WHILE program on the Transputer

can diverge without containing in�nitely many execu-

tions of jumps and therefore time{slicing.

6. COMPILATION INTO Transputer CODE

In this section we re�ne the compile function of sec-

tion 4. to output instructions which are executed in

the Transputer model de�ned in section 5.. We do this

in three steps: �rst we compile into code which still

uses the abstract auxiliary functions of OCCAMdaemon

but implements the relative addressing of variables and

channels by the run{time calculation of the absolute ad-

dresses from the distance from the base address which

has been calculated at compile{time. Then we imple-

ment the abstract auxiliary Occam functions by gener-

alizingWreg from the daemon's base address to the pro-

cess workspace it represents (points to). We re�ne the

compile function according to the workspace implemen-

tation and �nally make the code relocatable by applying

the technique of relative branching (relative addressing

for target positions of branching instructions).

Our de�nition of the compile function really describes

a speci�c compiler. However this de�nition is by no

means unique. Any de�nition will do which satis�es

the constraints which we use for our correctness proof.

In this section we make extensive use of the locality

principle built into evolving algebras which allows us

to proceed instructionwise. Instruction per instruction

we de�ne the new function compile together with the

corresponding rule(s) for the execution of the produced

target code and prove the correctness with respect to

OCCAMdaemon. These local proofs are mostly trivial

and altogether will prove the following theorem:

Theorem 6.1. (TRANSPUTERground correctness)

Arbitrary runs of OCCAMdaemon on compile
daemon

(S; [ ]; 0; 0) are implemented correctly by corresponding

runs of TRANSPUTERground on

compileground(S; [ ]; 0; 0) where TRANSPUTERground

The Computer Journal, Vol. 36, No. 5, 1993



22 Egon B�orger & Igor D- urd- anovi�c

is the evolving algebra de�ned in section 5. and 6.1.

and where compile
daemon

and compile
ground

are the

respective compile functions.

From the following de�nition of the new rules for

TRANSPUTERground which execute the code produced

by the new function compile it will be clear how to de�ne

the \correspondence" of runs on the basis of \local" cor-

respondences of single OCCAMdaemon instructions to

short sequences of TRANSPUTERground instructions.

Note that the theorem cannot be extended to com-

pleteness of corresponding runs due to the particular

Transputer strategy for the computation of ALT.

6.1. Abstract Transputer compilation

In this section we de�ne the compilation to Transputer

instructions which still uses abstract auxiliary

OCCAMdaemon functions.

We proceed stepwise, de�ning for each Occam state-

ment S the value of compile together with the

TRANSPUTERground rules for the execution of the

code. Each time we show that this implements cor-

rectly the semantics of S as compiled to and executed

in OCCAMdaemon.

Declarations

The compilation of variable declarations remains the

same as in OCCAMdaemon. For the channel declara-

tions (see subsection 4.3.) we have to compile the pseudo

instruction init chan for the initialization of channels to

nil. This is realized by �rst loading nil into the register

Areg (using the MINT instruction) and then storing it

from there to the channel (using the local storing in-

struction STL) with appropriate address:

compile(CHAN id1; : : : ; idr : S; e;m; x) =

compile(init chan(~id); e0;m; x);

compile(S; e0;m+ r; x)

where ~id = id1; : : : ; idr
e0 = (idr ;m+ r � 1); : : : ; (id1;m); e

compile(init chan(~c); e;m; x) =

: : :

MINT;

STL bind(ci; e; x);

: : :

where ~c = c1; : : : ; cr
1 � i � r

if cmd is MINT

then push(nil)

if cmd is STL n

then pop(content(Wreg+ n))

Note that the binding function (see section 4.5.) yields

the o�set bind(id; e; x) calculated at compile time with

respect to the compile{time base address x; this rela-

tive address is used at run time by the instruction STL

to calculate the absolute address by adding the current

base address Wreg. In this way the environment be-

comes spurious at run-time.

Looking at the rule for init chan in OCCAMdaemon

(see section 4.3.) it should become clear that the follow-

ing correctness lemma holds for declaration statements:

Lemma 6.2. (Correctness lemma) For declara-

tion statements S of Occam, the execution of the rules of

OCCAMdaemon on compile1(S; e;m; x) is correctly im-

plemented by the execution of the rules of

TRANSPUTERground on compile2(S; e;m; x) where

compile1, compile2 denote the function compile of

OCCAMdaemon and TRANSPUTERground respectively.

Assignment

We still keep the expression evaluation abstract by using

an abstract instruction eval which stores the evaluation

result in Areg. The compilation of v := t has then to

make sure that fromAreg this value gets stored into the

right variable. Remembering that for evaluation of vari-

ables we have eval(v; e; x) = content(�v +Wreg), where

�v = bind(v; e; x), makes clear that the following compi-

lation of assignment statements satis�es the correctness

lemma 6.2 (see the compilation of assignments in sec-

tion 4.5.); similarly for time statements where instead

of an expression the current value of timer17 is loaded

into Areg.

compile(v := t; e;m; x) =

eval(t; e; x)

STL bind(v; e; x)

compile(TIME ? v; e;m; x) =

LDTIMER

STL bind(v; e; x)

if cmd is eval(t; e; x)

then push(eval(t; e; x))

if cmd is LDTIMER

then push(timer)

There is no Transputer equivalent for the no-operation

instruction SKIP, therefore it disappears:

compile(SKIP; e;m; x) =

The STOP instruction is directly implemented by the

Transputer instruction STOPP (see the stop rule in section

3.):

compile(STOP; e;m; x) = STOPP

if cmd is STOPP then Areg;Breg;Creg := random

dequeue

Note that in our compilation schema the process exe-

cuting STOPP will never be woken up, thus rendering

the necessity of storing Ireg in the workspace | as it is

really done in the Transputer | super
uous.

Obviously the correctness lemma 6.2 holds for the

new compilation of SKIP and STOP.

The compilation of SEQ remains unchanged.

17The timer function for the priority of the currently active
process is used.

The Computer Journal, Vol. 36, No. 5, 1993



Correctness of compiling Occam to Transputer code 23

Input

The compilation of an input statement starts with in-

structions LDLPwhich loads the absolute variable/channel

addresses into the �rst two stack registers. Then the in-

struction IN uses the information stored there and ac-

tually takes the message from the channel and stores it

into the variable.

compile(c ? v; e;m; x) =

LDLP bind(c; e; x);

LDLP bind(v; e; x);

IN

if cmd is LDLP n then push(Wreg+ n)

The corresponding rules are the following:

IN idle

if cmd is IN ^ content(Breg) = nil

then content(Breg) := Wreg

place(Wreg) := Areg

com mode(Wreg) := input

dequeue

IN ready

if cmd is IN ^ content(Breg) 6= nil

then content(Areg)) := mssg(content(Breg))

content(Breg) := nil

enqueue content(Breg)

Clearly the rules IN idle and IN ready directly im-

plement the OCCAMdaemon rules inp idle(x; c; v) and

inp ready(x; c; v) for internal channels, with a being

Wreg, �c being Breg and �v being Areg (loaded by LDLP)

(see the input rules in section 3. and 4.3.). This proves

the correctness lemma 6.2 for the compilation of input

commands. 18

Output

Also in the output case19 we abstract from the memory

organization (see footnote 18). Note however that we

could have use a specialized OUTW instruction which

explicitly uses a unit size.

compile(c ! t; e;m; x) =

LDLP bind(c; e; x);

eval(t; e; x)

OUT

As in the input case, the following rules OUT idle,

OUT ready and OUT alt directly implement the

OCCAMdaemon rules out idle(x; c; t), out ready(x; c; t)

and out alt(x; c; t); this proves the correctness lemma

18Since at this level of abstraction we don't deal with the orga-
nization of memory into bytes, words, etc., we omit the compila-

tion of the message size which is taken here as unit size.
19Note that when the compiler does also the compilation of

expressions then the expression evaluation would �rst generate
code for the expression evaluation and then will load the address
of the channel (and then reorder the values in the registers).

6.2 for the compilation of output commands.

OUT idle

if cmd is OUT

^ content(Breg) = nil

then content(Breg) := Wreg

mssg(Wreg) := Areg

dequeue

OUT ready

if cmd is OUT

^ content(Breg) 6= nil

^ com mode(content(Breg)) = input

then content(place(content(Breg))) := Areg

content(Breg) := nil

enqueue content(Breg)

OUT alt

if cmd is OUT

^ agent 6= nil

^ com mode(agent) 6= input

then dequeue

agent := Wreg

mssg(Wreg) := Areg

if com mode(agent) = alt sleep

then time-delete agent

com mode(agent) := alt run

enqueue agent

where agent = content(Breg)

Conditionals

For IF and WHILE we compile the pseudo instruction if

by using an unconditional jump instruction:

compile(IF B1 S1 : : : Br Sr ; e;m; x) =

: : :

compile(if(Bi; li); e;m; x);

: : :

compile(STOP; e;m; x);

: : :

lj ;

compile(Sj ; e;m; x);

J lOut;

: : :

lOut

where 1 � i; j � r

compile(if(B;L); e;m; x) =

eval(:B; e; x);
CJ L

The negated boolean expression (:B) is evaluated be-

cause CJ performs the conditional branch if the value in

The Computer Journal, Vol. 36, No. 5, 1993



24 Egon B�orger & Igor D- urd- anovi�c

Areg is false:

if cmd is CJ L

then if Areg = false

then Ireg := labeled loc(L)

else Areg := Breg

Breg := Creg

Creg := random

compile(WHILE B S; e;m; x) =

lIn;

compile(if(:B; lOut); e;m; x);

compile(S; e;m; x);

J lIn;

lOut

Clearly, this compilation of IF and WHILE satis�es the

correctness lemma 6.2 (see their compilation in section

4.2.).

Time{Slicing

The pseudo instruction goto is implemented by the

Transputer instruction J and serves as safe place to per-

form time{slicing.

Statistical analysis of program behavior has taught

us the well known locality rule for optimizations, saying

that the locations which will be used in the next execu-

tion step won't be far away from the data used in the

last step. The rule can be split into two rules, one for

data and one for code. From this viewpoint branching

instructions are expensive. They destroy the locality of

code because the next instruction can be located very

far away from the previous instruction location; implic-

itly they also destroy the locality of data because it is

highly improbable that the context for code which is

far away from the last instruction will have anything

in common with the current context. From the point

of view of locality branching is similar to reschedul-

ing. Therefore branching places are a natural place for

rescheduling of processes20 , i.e. to de�ne function safe

to be true only for the jump instruction.

if cmd is J L then Ireg := labeled loc(L)

To prove the correctness of this implementation of time

slicing it is su�cient to consider the following. The

only instruction in Occam which can produce a loop is

WHILE. The compilation of WHILE however contains a

jumpwhich will be executed at the end of each iteration.

Therefore no compiled Occam program, when executed

on the Transputer, can diverge without containing an

in�nite number of executions of jumps and thereby of

time slicing.21

20The conditional jump di�ers from the unconditional jump
because its execution destroys the locality only in one of the two

possible cases. That is the reason why usually the locality pre-
serving non jumping case is favored.

21Note that there are however simple Transputer programs
which produce in�nite runs without any unconditional jump.
Here is an example, implementing an unconditional jump

For ALT-statements we have to compile the two

pseudo-instructions alt a and alt s. The compilation of

alt a results in \enabling" code, the compilation of alt s

in code for \disabling" and the selection of one alterna-

tive.

ALT announce

The parallelism which is built into evolving algebras

through the simultaneous execution of possibly many

updates allowed us in OCCAMdaemon to formulate alt a

as one computation step of the following simultaneous

actions for the guards (see section 3.):

1. check whether among the communication guards

there are some with true boolean condition; if yes,

enable the corresponding channel;

2. compute the new minimal time requirement tmin(a)

appearing in time guards with true boolean condi-

tion;

3. check whether there is at least one SKIP command

with true boolean condition;

4. depending on the result of 1 { 3 proceed to compute

the communication mode (com mode) for a or oth-

erwise insert a into the time queue and send him to

sleep.

The Transputer has to do these computations in some or-

der. compilewill produce for each communication guard

the channel enabling instruction ENBC (preceded by in-

structions LDLP to load the channel bind(c; e; x) and the

evaluated boolean condition eval(b; e; x)). Upon execu-

tion ENBC will also record into an auxiliary function:

alt ready : DAEMON!ftrue; falseg

whether there is already an outputting partner wait-

ing for the communication. (An initialization instruc-

tion, namely ALT or TALT, will set this auxiliary func-

tion at the beginning to false.) For each time guard

compile produces the time enabling instruction ENBT

(preceded by instructions to evaluate the time argument

eval(t; e; x) and the boolean condition eval(b; e; x)). Upon

execution ENBT records into an auxiliary function:

time enabled : DAEMON!f true; falseg

whether there is at least one enabled time guard and

updates tmin(a) if the encountered enabled time value

is smaller then the previously encountered ones. (The

appropriate initialization of time enabled(a) to false is

again done by the initialization instruction TALT.) For

each SKIP guard compile produces an ENBS instruction

(preceded by an instruction eval(b; e; x)) which will set

alt ready(a) to true if eval(b; e; x) is true.

The compilation of alt a terminates with an alt{

waiting instruction ALTWT or TALTWT whose execution

computes (through evaluation of alt ready, tmin and

by a conditional jump with guard which is constantly false:
L; LDC 0; CJ L. Such programs do not appear as result of our

compilation function.

The Computer Journal, Vol. 36, No. 5, 1993



Correctness of compiling Occam to Transputer code 25

time enabled) whether the current daemon is to be sent

to sleep (and into timer queue) or whether he can pro-

ceed to execute the code for alt s.

This explains the following de�nitions for the com-

pilation of alt a and alt s instructions22 and proves the

correctness lemma 6.2 for them. (A technical detail: in

the initializing instructions ALT and TALT com mode(a)

is set to alt run which will be changed to alt sleep if

ALTWT or TALTWT �nds out that indeed the process has

to go to sleep.) For an explanation of the update of the

auxiliary function alt choice in ALTWT and TALTWT see

below.

compile(alt a(~G); e;m; x) =

ALT;

: : :

LDLP bind(ci; e; x);

eval(bi; e; x);

ENBC;

: : :

eval(tj ; e; x);

eval(bj; e; x);

ENBT;

: : :

eval(bk; e; x);

ENBS;

: : :

ALTWT

where
~G = G1; : : : ; Gr

Gi = bi : ci ? vi
Gj = bj : TIME?AFTER tj
Gk = bk : SKIP

1 � i � p < j � q < k � r

In case l 6= p, the same sequence of instructions but with

TALT and TALTWT instead of ALT and ALTWT respectively

is generated.

if cmd is TALT j ALT
then time enabled(Wreg) := false j

com mode(Wreg) := alt run

alt ready(Wreg) := false

if cmd is ENBC

then if Areg = true

then if content(Breg) = nil

then content(Breg) := Wreg

elsif content(Breg) 6= Wreg

then alt ready(Wreg) := true

Breg := Creg

Creg := random

Note that the Transputer scheme keeps Areg untouched

by \enabling" instructions ENBC, ENBT and ENBS in or-

der to o�er the possibility to collect the boolean guard

22For the sake of de�nitenesswe choose as order communication
guards followed by time guards followed by SKIP guards. Since
completeness cannot be preserved when a particular order is cho-
sen, any order will do for the correctness claim. A suggestion of
INMOS [Inmos:88] for making ALT appear non deterministic is
to let the function compile reorder the alternatives randomly.

appearing there.

if cmd is ENBT

then if Areg = true

then if time enabled(Wreg) = false

then time enabled(Wreg) := true

tmin(Wreg) := Breg

elsif Breg < tmin(Wreg)

then tmin(Wreg) := Breg

Breg := Creg

Creg := random

if cmd is ENBS

then if Areg = true

then alt ready(Wreg) := true

if cmd is TALTWTjALTWT
then if tmin(Wreg) � timer ^ j

alt ready(Wreg) = false

then if time enabled(Wreg)

then time-insert

com mode(Wreg) := alt sleep

dequeue

Areg;Breg;Creg := random

alt choice(Wreg) := nil

The selection of an alternative through alt s is done

in the Transputer by searching sequentially through

all communication, time and skip guards for the �rst

one which is ready. This deterministic Transputer

strategy is responsible for the loss of completeness of

TRANSPUTERground with respect to OCCAMdaemon;

only correctness can be preserved.

A realization of this deterministic Transputer strategy

needs also a mechanism to prevent the processor from

getting involved in a further ready alternative once the

�rst one has been encountered. We formalize this by an

auxiliary function:

alt choice : DAEMON!LABEL [ f nilg

which will hold (the label for) the �rst ready alterna-

tive and has to be initialized to nil before starting the

execution of the alt s code. This is why alt choice is

initialized in the rule for the last instruction issued by

compile for alt a (see above).

compile will produce for each guard an instruction

which covers the disjunctive choice among readiness

through communication, time or skip guards; these

instructions are DISC, DIST, DISS and each of them

will be preceded by instructions which load the cor-

responding channel or time value, the boolean guard

and the label marking the code for the alternative. The

last instruction generated for the compilation of alt s,

namely ALTEND, branches to the selected �rst (ready)

alternative by setting Ireg to the location recorded in

alt choice(Wreg).

ALT select

The Computer Journal, Vol. 36, No. 5, 1993



26 Egon B�orger & Igor D- urd- anovi�c

This explains the following compilation 23 of alt s and

proves the correctness lemma 6.2 for ALT{statements.

compile(alt s(~G;~l); e;m; x) =

: : :

LDLP bind(ci; e; x);

eval(bi; e; x);

LDC li;

DISC;

: : :

eval(tj ; e; x);

eval(bj ; e; x);

LDC lj ;

DIST;

: : :

eval(bk; e; x);

LDC lk;

DISS;

: : :

ALTEND

where
~l = l1; : : : ; lr
~G = G1; : : : ; Gr

Gi = bi : ci ? vi
Gj = bj : TIME ?AFTER tj
Gk = bk : bk : SKIP

1 � i � p < j � q < k � r

if cmd is DISC

then if Breg

then if content(Creg) = Wreg

then content(Creg) := nil

Areg := false

elsif content(Creg) 6= nil

^ alt choice(Wreg) = nil

then alt choice(Wreg) := Areg

Areg := true

else Areg := false

else Areg := false

Breg;Creg := random

if cmd is DIST

then if Breg

then if Creg < timer

^ alt choice(Wreg) = nil

then alt choice(Wreg) := Areg

Areg := true

else Areg := false

else Areg := false

Breg;Creg := random

23To avoid repetition we skip the compilation of PRI ALT; it
would come up to respect the order in which the guards appear
in the source program.

if cmd is DISS

then if Breg

then if alt choice(Wreg) = nil

then alt choice(Wreg) := Areg

Areg := true

else Areg := false

else Areg := false

Breg;Creg := random

if cmd is ALTEND

then Ireg := labeled loc(alt choice(Wreg))

if cmd is LDC n then push(n)

Parallelism

For PAR statements we have to compile the two pseudo

instructions par and end. The Transputer has to start

the processes sequentially, for de�niteness we stick here

to the order in which they appear in the Occam PAR

statement. The start instruction STARTP is preceded by

instructions which load the location li and the (relative)

base address xi � x (of xi with respect to his father);

upon execution of STARTP the run{time base address of

the ith son is calculated by adding the run{time base

address Wreg of his father to the relative base address

xi � x which at this moment is loaded into Areg. This

explains the following de�nition:

compile(par(x; ~x;~l; lOut); e;m; x) =

count(Wreg) := r;

end par(Wreg) := lOut;

: : :

LDC li;

LDLP xi � x

STARTP;

: : :

where ~l = l1; : : : ; lr
~x = x1; : : : ; xr
1 � i � r

if cmd is STARTP

then loc(Wreg+ Areg) := labeled loc(Breg)

enqueue Wreg+Areg

The ENDP instruction terminates the process, causing

rescheduling except when the process to be terminated

is the last son. Note that ENDP is preceded by an LDLP

instruction which loads into Areg the negative value of

the distance between son and the father which has to be

added to the current value of Wreg, namely �(xi � x)

= x�xi. This explains the following compilation of the

end instruction.

compile(end(xi); e;m; x) = LDLPx� xi; ENDP

The Computer Journal, Vol. 36, No. 5, 1993



Correctness of compiling Occam to Transputer code 27

if cmd is ENDP

then if count(xf ) > 1

then dequeue

count(xf ) := count(xf )� 1

else Ireg := labeled loc(end par(xf ))

Wreg := xf
where xf = Wreg+ Areg

The arguments above show that this compilation of the

instructions par and end correctly implements their ab-

stract versions in OCCAMdaemon (see section 4.5.) and

thus prove the correctness lemma 6.2 for PAR state-

ments. The proof of the theorem 6.1 follows by induc-

tion on S putting together the preceding local correct-

ness lemmata.

6.2. Compilation of Workspace

In this section we implement our abstract functions.

The de�nition of a daemon as process base address will

be extended to daemons as workspace address. This

term describes a memory block which is associated

with a process. It is used to implement the environ-

ment together with all the functions which are needed

by the process at run time. We will re�ne the func-

tion compile accordingly and show that the resulting

evolving algebra TRANSPUTERworkspace implements

TRANSPUTERground correctly.

6.2.1. De�ning the abstract functions

The abstract functions which are used in our rules are

here mapped into the memory by de�ning them rel-

ative to daemons. It would be a routine exercise to

prove the correctness for a scheme which simply reserves

for each of the eleven abstract functions and each dae-

mon x some space, say content(workspace(x; i)), which

is kept separate from the space for the environment of x.

More sophistication is needed for the Transputer layout

with optimized use of memory characterized by re-use

of space for di�erent non con
icting purposes. In accor-

dance with the organization of environments as falling

stack | where local variables of process x are addressed

as positive o�sets from x = Wreg| locations with neg-

ative o�sets from x are used for recording the values

fi(x) of the abstract functions. The values which are

likely to be used most often are put closest to x, namely

loc(x) and next(x) which are needed when x is in the

queue:

next(x) = content(x� 2) loc(x) = content(x� 1)

Since every daemon x can execute at any time only one

Occam statement, functions which belong to di�erent

statements can be mapped to the same location without

creating a con
ict among them. This is the case for

mssg(x), end par(x) and alt choice(x) whose values are

stored at Wreg = x:

mssg(x); end par(x); alt choice(x) = content(x)

Note that as consequence of this decision in [Inmos:88]

to use the location Wreg as an extra `register" for cer-

tain instructions one has to take care to avoid any con-


icting use of this location for storing the �rst local vari-

able of the daemon x = Wreg. This will be done by allo-

cating in these cases an extra workspace slot for the use

ofWreg to record one ofmssg(x), end par, alt choice(x);

see below the introduction of Wreg adjustment instruc-

tions AJW into the compilation of output, ALT and PAR

statements.

The three functions place, alt ready, com mode can

be encoded in a consistent way by one function whose

value is mapped to location content(x � 3). To avoid

con
icts we introduce one new value alt ready by use of

which we can restore the three functions as follows:

alt ready(x) =8<
:
false if content(x-3) 2 f alt sleep, alt rung
true if content(x-3) = alt ready

undef otherwise

com mode(x) =8<
:
alt sleep if content(x-3) = alt sleep

alt run if content(x-3) 2 f alt run, alt ready g
input otherwise

place(x) =8<
:
undef if content(x-3) 2

f alt sleep, alt run,alt ready g
content(x� 3) otherwise

For processes x executing the code for an ALT statement

with time guards the locations x� 4, x� 5 are used to

encode the relevant values of the functions time enabled

and tmin:

time enabled(x) = content(x� 4)

tmin(x) = content(x� 5)

Note that the compilation schema de�ned below opti-

mizes the use of memory by distinguishing ALT state-

ments with and without time guards. For a PAR exe-

cuting process x location x + 1 is used to encode the

son counter:

count(x) = content(x+ 1)

This use of location x + 1 for workspace makes a cor-

responding workspace adjustment instruction necessary

(see below de�nition of env size and the re�nement of

compile). Note that we still keep the function labeled loc

here; it will disappear in section 6.3.1..

The layout of these functions into consecutive posi-

tions x+ 1; : : : ; x� 5 realizes an optimized use of mem-

ory: each time a daemon is in the queue, locations

x� 1 and x� 2 are used. When a daemon executes in-

put/output for variables, also x�3 is needed, for values

also x is used. When a daemon executes an ALT state-

ment, locations x; : : : ; x� 3 are used. In addition also

x�4; x�5 are used if ALT contains a time guard. For a

daemon executing a PAR statement locations x+1; x+2

are used. It is easy to formalize these observations for

a proof of the following interesting

The Computer Journal, Vol. 36, No. 5, 1993



28 Egon B�orger & Igor D- urd- anovi�c

Lemma 6.3. (Workspace Optimization lemma)

Assuming a proper initialization it never happens in

runs of TRANSPUTERworkspace that there are any

holes between used locations.

In order to incorporate this implementation of func-

tions by content correctly into the rules of

TRANSPUTERground we have to reserve for each dae-

mon x enough space to encode his functions without

touching the space of other daemons.

For the convenience of the reader we collected the

�nal rules in appendix (see 7.2.).

6.2.2. Workspace Size

In this section we re�ne the function env size (which

calculates the space needed by a daemon for his envi-

ronment) to the real Transputer workspace by coupling

it with a function spec size which takes into account

the special space needed for the implementation of the

abstract functions as de�ned above. We introduce two

new functions:

spec size : STATEMENT!N

work size : STATEMENT!N

work size(S) = env size(S) + spec size(S)

spec size calculates the space to be reserved for the ab-

stract functions. spec size for declarations is already

covered by env size, therefore:

spec size(VAR id1; : : : ; idr : S) = spec size(S)

spec size(CHAN id1; : : : ; idr : S) = spec size(S)

For each statement it must be foreseen that the process

is in the queue; this requires two locations:

spec size(SKIP) = 2

spec size(STOP) = 2

spec size(v := t) = 2

spec size(TIME ? v) = 2

The input statements use in addition the functions place

and com mode, both implemented by content(x� 3):

spec size(c ? v) = 3

Output statements require the function mssg and

com mode. As we want to output the value of a vari-

able without actually having the variable, a temporary

variable is allocated using the function mssg and its ad-

dress is stored in place. Since com mode and place are

mapped to the same location we de�ne:

spec size(c ! t) = 4

Due to the sequential execution of component state-

ments of SEQ, IF and WHILE, spec size is de�ned there

as maximum of the spec size of components.

spec size(SEQ S1 : : :Sr) =

max
r

i=1 spec size(Si)

spec size(IF B1 S1; : : :Br Sr) =

max
r

i=1 (spec size(Si)

spec size(WHILE B S) = spec size(S)

In ALT statements we distinguish two cases: case

(a) without timer guard(s): the functions alt ready,

alt choice and com mode are needed; case (b) with timer

guard(s), where also time enabled and tminare needed.

Therefore:

spec size(ALT G1 S1 : : :Gr Sr) =�
max

r

i=1 (4; spec size(Si)) case (a)

max
r

i=1 (6; spec size(Si)) case (b)

For PAR statements we need the additional functions

count and end par. Because of the father doing his �rst

son's job we must check the �rst component statement:

spec size(PAR S1 : : : Sr) =

max(4; spec size(S1))

We must extend also env size because each son (except

the �rst who is covered by his father) has to receive

enough space not only for his environment but also for

his functions:

env size(PAR S1 : : :Sr) = env size(S1)+

rX
i=2

work size(Si)

6.2.3. Workspace Adjustment

In this section we re�ne the function compile with re-

spect to the implementation of the abstract Occam func-

tions by the special workspace assigned to daemons.

This re�nement has to prevent con
icting requests for

already used locations x and x + 1 in the case of dae-

mon x executing statements which make use of Occam

functions encoded there. (We will see that in general

what is and has to be prevented are con
icting requests

for the use of already used locations.) The three cases

are output, ALT, and PAR statements.

In the case of a daemon x executing an output state-

ment we must prevent that content(x) = mssg(x) over-

writes a local variable stored in content(x). Function

compile takes care of this by generating an instruction

which provides an extra location for the encoding of

mssg(x): the instruction AJW adjusts the workspace ad-

dress by n, in this case by minus one, making temporar-

ily location x � 1 location x and restoring the original

workspace address once the output is done:

compile(c ! t; e;m; x) =

LDLP bind(c; e; x);

eval(t; e; x)

AJW � 1

OUT

AJW + 1

The Computer Journal, Vol. 36, No. 5, 1993



Correctness of compiling Occam to Transputer code 29

The rule which executes the new instruction is:

if cmd is AJW n then Wreg := Wreg+ n

Note that the de�nition of spec size for output state-

ments provides the three locations which are needed to

make this workspace sliding con
ict free. This proves

the correctness lemma for the implementation of output

statements in TRANSPUTERworkspace.

This proves the following lemma:

Lemma 6.4. (Correctness lemma) For output

statements S of Occam, the execution of the rules of

TRANSPUTERground on compile1(S; e;m; x) is cor-

rectly implemented by the execution of the rules of

TRANSPUTERworkspace on compile2(S; e;m; x) where

compile1, compile2 denote the function compile of

TRANSPUTERground and TRANSPUTERworkspace re-

spectively.

A daemon x who executes an ALT statement will

make use of alt choice(x), stored as content(x). We can

proceed as in the case of output statements to prevent

the use of location x as �rst position for the environ-

ment part which contains the local variables. Since any

alternative might be chosen by executing ALT, compile

emits a workspace adjusting instruction at the entry of

each branch. Note that in accordance with the initial

workspace adjustment by �1 the compilation of alt a

and alt s receives the workspace pointer parameter x�1
to ensure the correct access to the environment part.

Note that the de�nition of env size for ALT state-

ments makes sure that the space which is necessary for

a con
ict free workspace adjustment has been provided.

Since we don't know in advance which branch will

be chosen by ALT, we have to generate the re-sliding

instruction in each branch:

compile(ALT G1 S1 : : :Gr Sr ; e;m; x) =

AJW � 1;

compile(alt a(~G); e;m; x� 1);

compile(alt s(~G;~l); e;m; x� 1);

: : :

li;

AJW + 1;

compile(ci ? vi; e;m; x);

compile(Si; e;m; x);

J lOut;

: : :

lj ;

AJW + 1;

compile(Sj ; e;m; x);

J lOut;

: : :

lOut

where ~l = l1; : : : ; lr
~G = G1; : : : ; Gr

Gi = bi : ci ? vi
Gj = bj : ( TIME ?AFTER tj or SKIP )

1 � i � p < j � r

We can now prove the correctness lemma 6.4 for ALT

statements. Note that at the moment when ALTEND is

executed the slided Wreg points to the correct location

where the reference to the chosen alternative is stored.

For a daemon x executing a PAR statement we have

to consider two possible sources for con
icting reuse

of memory. One is similar to the situation we know

already from output and ALT statements: location

Wreg = x is used to store end par(x) and location x+1

for count(x). Con
icting use of these two locations for

local variables is avoided by a workspace adjustment

through the instruction AJW � 2. The second con
ict

to prevent is a con
ict between x and his sons. First

of all each son has to receive enough space for his own

values of the relevant abstract Occam functions; this is

provided by the re�nement of mi in the re�nement of

compile which includes the special workspace (see �gure

11). But note that also the workspace con
ict between

x acting as father and x acting as his �rst son has to be

prevented in case that his son is again responsible for a

PAR statement. Here is an example:

PAR

PAR

p

q

r

L: s

L':
... ...

x

m

x end_par(x)

count(x)

env(x)
env(x)

FIGURE 10. Sliding of the father

The overwriting of the values content(x) = L24 and

content(x + 1) = 3 belonging to the father by the val-

ues end par(x1) = L0 and count(x1) = 2 belonging to

the �rst son x1 = x is avoided by the initial workspace

pointer adjustment AJW � 2 (see �gure 10). Note that

24Note that the labels L and L' we have inserted here are not
part of the Occam program but will be generated by compile to
mark the exit of a PAR statement.

The Computer Journal, Vol. 36, No. 5, 1993



30 Egon B�orger & Igor D- urd- anovi�c

here as for ALT statements the adjusted value x�2 be-

comes the workspace pointer passed as parameter for

the compilation of par and end.

compile((PAR S1 : : :Sr); e;m; x) =

AJW � 2

compile(par(x; ~m;~l; lOut); e;m; x� 2);

compile(S1; e;m1; x� 2);

compile(end(x � 2); e;m; x� 2);

l2;

compile(S2; e;m2;m2);

compile(end(m2); e;m2; x� 2);

: : :

lr ;

compile(Sr ; e;mr;mr);

compile(end(mr); e;mr ; x� 2);

lOut; AJW + 2

where ~l = l2; : : : ; lr
~m = m2; : : : ;mr

m1 = m

mi = mi�1 + env size(Si�1)+

spec size(Si)

2 � i � r

Together with the implementation of the abstract func-

tions count and end par the �rst two abstract assign-

ment instructions in the de�nition of

compile(par(x; ~x;~l; lOut); e;m; x) in TRANSPUTERground

are replaced by:

...

x =x1

m1

m2

mr

env(x)

env_size(x )1

spec_size(x )2

env_size(x )2

spec_size(x )r

env_size(x )r

end_par(x)

count(x)

FIGURE 11. Sliding of sons

LDC r;

STL 1;

LDC lOut

STL 0

As we have seen each process upon its creation must be

(initially) slided into the plus direction pointing to the

base address of the environment as shown in �gure 12.

For the very �rst process | the daemon Demiurge |

we must do this manually, therefore the initial state of

the loading algebra is re�ned by:

load prg = AJW + spec size(S)

compile(S; [ ]; 0; 0)

AJW � spec size(S)

The preceding reasoning proves the correctness lemma

workspace(x)

x

spec(x)

env(x)

x

FIGURE 12. Initial sliding

6.4 for PAR statements.

Theorem 6.5. The implementation of

TRANSPUTERground in TRANSPUTERworkspace is

correct. Corresponding runs of the two evolving alge-

bras on arbitrary Occam programs S are equivalent.

Proof. By induction on S. The cases where there is

no con
ict among the abstract functions are covered by

compile providing enough workspace work size(S). The

non trivial case where a con
ict might have occurred are

covered by the above correctness lemmata for output,

ALT and PAR statements.

6.3. Relocatable code

The real Transputer code uses relative branching in-

structions and doesn't have labels. In this section we

eliminate labels from the compiled code (and thereby

the function labeled loc from our rules) in two steps:

�rst we re�ne the function compile to incorporate rela-

tive addressing of instructions, then we add a label res-

olution phase to the loading procedure which is based

upon location distances.

It is easy to apply the technique of relative addressing

to instructions. What matters for the execution of a

branching instruction is to know its distance from the

place where the target instruction resides. Here is the

re�nement for the compilation ofWHILE commands and

the related jump rule:

compile(WHILE B S; e;m; x) =

lIn;

compile(if(:B; lOut); e;m; x);

compile(S; e;m; x);

J lIn � lOut;

lOut

if cmd is J l1 � l2
then Ireg := Ireg+ (labeled loc(l1)� labeled loc(l2))

The Computer Journal, Vol. 36, No. 5, 1993



Correctness of compiling Occam to Transputer code 31

Clearly the correctness lemma holds for this re�nement

of WHILE statements.

For alt s we have a similar re�nement of compile and

of the related ALTEND rule (where again the auxiliary

function labeled loc disappears). Note that the jump-

ing action takes place in ALTEND, therefore from lhere
(forward) to the chosen alternative with label li.

compile(alt s(~G;~l); e;m; x) =

: : :

LDLP bind(ci; e; x);

eval(bi; e; x);

LDC li � lhere;

DISC;

: : :

eval(tj; e; x);

eval(bj; e; x);

LDC lj � lhere;

DIST;

: : :

eval(bk; e; x);

LDC lk � lhere;

DISS;

: : :

ALTEND;

lhere

where ~l = l1; : : : ; lr
~G = G1; : : : ; Gr

Gi = bi : ci ? vi
Gj = bj : TIME ?AFTER tj
Gk = bk : SKIP

1 � i � p < j � q < k � r

if cmd is ALTEND

then Ireg := Ireg+ alt choice(Wreg)

The same technique applies to the re�nement of

compile on IF statements:

compile(IF B1 S1 : : : Br Sr; e;m; x) =

: : :

compile(if(Bi; li); e;m; x);

: : :

compile(STOP; e;m; x);

: : :

li;

compile(Si; e;m; x);

J lOut � li+1;

: : :

lOut

where lr+1 = lOut

1 � i � r

For the corresponding environment of compile on if(B;L)

we have no name lOut and therefore create a new label

lhere to mark the place where the instruction pointer

Ireg will point to when the Transputer is executing the

branching instruction (see fetch phase in 5.4.). Thus we

have the following re�nement of compile on if(B;L) and

of the rule for conditional jump (note that the auxiliary

function labeled loc disappears from the rule):

compile(if(B;L); e;m; x) =

eval(:B; e; x);
CJ L � lhere;

lhere

if cmd is CJ l1 � l2
then if Areg = false

then Ireg := Ireg+

(labeled loc(l1) � labeled loc(l2))

else Areg := Breg

Breg := Creg

Creg := random

Again it is obvious that this re�nement satis�es the cor-

rectness lemma for IF statements. For the compilation

of PAR we can proceed in a similar way replacing the

starting address li of the i
th son by the distance li � l0

i

to the location l0
i
of the instruction STARTP which actu-

ally starts the process. The rule for STARTP is re�ned

correspondingly by adding the relevant distance to the

current value of Ireg; here too labeled loc disappears.

There is a slight additional complication. For the ex-

ecution of the jump in the instruction ENDP the absolute

(return) address is needed. It can be computed upon

entering the PAR code when the distance lOut� lhere is

loaded into Areg to get stored into content(x): it su�ces

to add to this compile{time value the current value of

Ireg. This is done by the new instruction LDPI which is

inserted after LDC lOut � lhere.

compile(par(x; ~x;~l; lOut); e;m; x) =

LDC r;

STL 1;

LDC lOut � lhere
LDPI;

lhere;

STL 0;

: : :

LDC li � l0
i
;

LDLP xi � x

STARTP;

l0
i
;

: : :

where ~l = l1; : : : ; lr
~x = x1; : : : ; xr
1 � i � r

if cmd is LDPI

then Areg := Ireg+Areg

if cmd is STARTP

then loc(Wreg +Areg) := Breg+ Ireg

enqueue Wreg+Areg

Let TRANSPUTERrel�code be the re�nement of

TRANSPUTERworkspace by introducing relative ad-

dressing of instructions for relocatable code as de�ned

The Computer Journal, Vol. 36, No. 5, 1993



32 Egon B�orger & Igor D- urd- anovi�c

in this section. The preceding arguments prove the fol-

lowing:

Lemma 6.6. TRANSPUTERrel�code is a correct im-

plementation of TRANSPUTERworkspace.

6.3.1. Resolving Labels

The rules of TRANSPUTERrel�code show that at run{

time only the distances labeled loc(l1) � labeled loc(l2)

between labeled locations are used but not any more the

labels l1; l2 themselves. We therefore eliminate in this

section the appearance of labels from the code which is

loaded into the Transputer memory.

The idea is to transfer the computation of the dis-

tances between labeled locations from the execution

time of Transputer instructions to the very moment

where the values labeled loc(li) become known. Before

loading we therefore pre-process the compiled program

compile(S; [ ]; 0; 0) by a variant LOAD-LABEL of the

LOAD algebra, whose function is to compute the values

of the function labeled loc | followed by the evaluation

of the distances:

labeled loc(l1)� labeled loc(l2):

Let LOAD-LABEL be obtained from the algebra

LOAD (see section 4.2.) by adding the guard mode =

load-label to the rules and by replacing the update:

cmd(labeled loc) := c

by the update:

tmp prg := append(tmp prg; c)

where tmp prg : (CODE[LABEL)� is a new 0-ary func-

tion. LOAD-LABEL algebra is initialized by:

load prg = AJW spec size(S)

compile(S; [ ]; 0; 0)

AJW � spec size(S)

tmp prg = [ ]

loading loc = 0

LOAD-LABEL computes labeled loc(l) for each label l

appearing in load prg and stores a copy of load prg in

tmp prg. Upon termination of LOAD-LABEL the fol-

lowing rule switches to the computation of distances

between labeled locations:

if mode = load-label ^ load prg = [ ]

then loading loc := 0

mode := compute-distances

The following rule replaces l1 � l2 by labeled loc(l1) �
labeled loc(l2) in the code produced by compile:

if mode = compute-distances ^ tmp prg 6= [ ]

then loading loc := loading loc+

tmp prg := tail(tmp prg)

if �rst(tmp prg) = c l1 � l2
then load prg := append(load prg;

c labeled loc(l1)� labeled loc(l2))

else load prg := append(load prg; �rst(tmp prg))

When this rule cannot be applied any more, the follow-

ing rules switches to the algebra obtained from LOAD

by adding the condition mode = load to the guard and

by deleting the rule load label:

if mode = compute-distances ^ tmp prg = [ ]

then mode := load

Where the loading rule cannot be applied any more, the

following rule switches to the rules of

TRANSPUTERrel�code:

if mode = load ^ load prg = [ ]

then mode := fetch

Let TRANSPUTER be the evolving algebra consisting

of all the rules described above added to the rules of

TRANSPUTERrel�code. It is an exercise to prove the

following lemma:

Lemma 6.7. TRANSPUTER implements

TRANSPUTERrel�code correctly.

The proof of the theorem 6.1 follows by induction on

S putting together the single local correctness lemmata

stated and proved above. The 4.10 theorem, the 6.1

theorem and the 6.5 theorem prove the Main theorem.

CONCLUSION AND OUTLOOK

We have built a formal model for the Transputer in-

struction set architecture and have used it to formu-

late and prove a correctness theorem for a general

compilation schema of Occam programs into Transputer

code. Occam and Transputer here served as non trivial

paradigm taken from the real world and independent

from the compiler veri�cation project. The method de-

veloped in this paper to support correct compiler design

is general and can be appliedmutatis mutandis to other

architectures and other programming languages which

exhibit the characteristic features of distributed com-

puting, namely nondeterminism and concurrency.

There are several directions for future work which we

consider challenging and worthwhile to be investigated.

One is to re�ne the Transputer actions to sequences of

hardware actions which are executed by a hardware in-

terpreter; other processors might also be interesting for

this line of research. Another direction is to �gure out

whether our proofs can be carried out in interesting

deductive frameworks. In this context it would be es-

pecially interesting to compare our approach with the

work done on the subject within the PROCOS II Es-

prit Basic Research Action. A directly related investi-

gation is M�uller{Olm's forthcoming doctoral disserta-

tion (see [MMO:95] where a code generator correctness

proof for a sequential sublanguage of Occam is given

by delivering increasingly more abstract levels starting

from the Transputer). We guess that some of the evolv-

ing algebras developed here are models of the algebraic

laws employed for M�uller{Olm's proofs. In general it

could be interesting to investigate the relation between

The Computer Journal, Vol. 36, No. 5, 1993



Correctness of compiling Occam to Transputer code 33

evolving algebras and Hoare's re�nement algebra ap-

proach to prove correctness of compiling speci�cations

(see [Hoare:91], [Hoare et al.:87], [Hoare et al.:93]). A

challenging project is to verify our proofs by theorem

provers. Note that the corresponding computer veri�-

cation of the WAM correctness proof of [B�oRo:95b] in

KIV and ISABELLE at present looks promising.

Acknowledgments

We thank the following colleagues for criticism and use-

ful comments on previous versions of this paper: Peter

Baumann, Markus Mueller-Olm, Kirsten Winter, Wolf

Zimmermann and two anonymous referees. We also

thank Schlo� Dagstuhl for many weekends we have been

o�ered there to work on this paper.

7. APPENDIX

7.1. Generating Flowcharts (section 4.1)

Given two nodes, Begin and End , such that next(Begin) =

End , the following rules will generate the 
owchart for

an Occam program S = cmd(Begin) (assuming that

there are no further nodes or function values, and that

S belongs to the fragment of Occam treated in the main

text).

S

In

Out

id ,...,id : S1 r

(id)

(r)

if cmd(n) = VAR id1; : : : ; idr : S

then extend NODE by n1; n2 with

cmd(n) := decl var(~id)

next(n) := n1
cmd(n1) := S

next(n1) := n2
cmd(n2) := decl end(r)

next(n2) := next(n)

endextend

where ~id = id1; : : : ; idr

if cmd(n) = CHAN id1; : : : ; idr : S

then extend NODE by n1; n2 with

cmd(n) := decl chan(~id)

next(n) := n1
cmd(n1) := S

next(n1) := n2
cmd(n2) := decl end(r)

next(n2) := next(n)

endextend

where ~id = id1; : : : ; idr

S ... S1 r

...S1 Sr
In Out

if cmd(n) = SEQ S1 : : : Sr
then extend NODE by n2; : : : ; nr with

: : :

cmd(ni) := Si
next(ni) := ni+1
: : :

endextend

where n1 = n

nr+1 = next(n)

1 � i � r

B S

SIn

Out

(B)
no

yes

if cmd(n) =WHILE B S

then extend NODE by n1 with

cmd(n) := if(B)

no(n) := next(n)

yes(n) := n1
cmd(n1) := S

next(n1) := n

endextend

B S ... B S1 1 r r

...
S1 Sr

In

Out

(B )1 (B )r

no

yes

The Computer Journal, Vol. 36, No. 5, 1993



34 Egon B�orger & Igor D- urd- anovi�c

if cmd(n) = IFB1 S1 : : :Br Sr
then extend NODE by n1; : : : ; nr;

m2; : : : ;mr+1

with

: : :

cmd(mi) := if(Bi)

yes(mi) := ni
no(mi) := mi+1

cmd(ni) := Si
next(ni) := next(n)

: : :

cmd(mr+1) := STOP

endextend

where m1 = n

1 � i � r

(G)

G S ... G S1 1 r r

c ? v1 1 c ? vp p

... ...

S1 Sp Sp+1 Sr

In

Out

if cmd(n) = ALT G1 S1 : : :Gr Sr
then extend NODE by n0; : : : ; nr;

m1; : : : ;mp

with

cmd(n) := alt a(~G)

next(n) := n0

cmd(n0) := alt s(~G)

: : :

next(n0; i) := ni
cmd(ni) := ci ? vi
next(ni) := mi

cmd(mi) := Si
next(mi) := next(n)

: : :

next(n0; j) := nj
cmd(nj) := Sj
next(nj) := next(n)

: : :

endextend

where ~G = G1; : : : ; Gr

Gi = bi : ci ? vi
Gj = bj : ( TIME ? AFTER tj or SKIP )

1 � i � p < j � r

S ... S1 r

...
S1 Sp

In

Out

if cmd(n) = PAR S1 : : :Sr
then extend NODE by n1;m1 : : : ; nr;mr with

cmd(n) := par(r)

: : :

next(n; i) := ni
cmd(ni) := Si
next(ni) := mi

cmd(mi) := end

: : :

endextend

where 1 � i � r

7.2. Summary of OCCAMdaemon (section 4.6)

The Processor

content : LOC!VAL

+1 : LOC!LOC

a : DAEMON [ f nilg

QUEUE � DAEMON
�

�rst; last : QUEUE!DAEMON

rest : QUEUE!QUEUE

q : QUEUE

enqueue x
def

= q := q.x

dequeue
def

= if not empty q

then a := �rst(q)

q := rest(q)

start := timer

else a := nil

timer : N

start : N

period : N

elapsed
def

= timer� start > period

The Computer Journal, Vol. 36, No. 5, 1993



Correctness of compiling Occam to Transputer code 35

time{slice if a 6= nil

^ elapsed

then seq q := q.a

dequeue

endseq

time q : QUEUE

tmin : DAEMON!N

time-insert
def

=

let time q = x1. : : : .xi.xi+1. : : : .xr
let tmin(xi) � tmin(a) � tmin(xi+1)

time q := x1. : : : .xi.a.xi+1. : : : .xr

time-delete x
def

=

let time q = x1. : : : .xi.x.xi+1. : : : .xr
time q := x1. : : : .xi.xi+1. : : : .xr

proceed
def

= loc(a) := loc(a) + 1

sleep at n
def

= loc(a) := n; dequeue

wakeup x
def

= enqueue x

cmd is c
def

= content(loc(a)) = c ^ not elapsed

Compilation & Loading

compile : STATEMENT�ENV�LOC�DAEMON

! ((CODE�ENV�DAEMON) [ LABEL)�

loading loc : NODE

load prg : ((CODE�ENV�DAEMON) [ LABEL)�

load label(l,t)

if load prg = [ l j t ] ^ l 2 LABEL

then labeled loc(l) := loading loc

load prg := t

load cmd(c,t)

if load prg = [ c j t ] ^ c 2 CODE

then content(loading loc) := c

load prg := t

loading loc := loading loc+

Declarations

compile(VAR id1; : : : ; idr : S; e;m; x) =

compile(S; e0;m + r; x)

where e0 = append(enew; e)

enew = (idr;m + r � 1); : : : ; (id1;m):

compile(CHAN id1; : : : ; idr : S; e;m; x) =

init chan(~id; e0; x);

compile(S; e0;m+ r; x)

where e0 = append(enew; e)

enew = (idr;m+ r � 1); : : : ; (id1;m):

ENV = (ID�(VAR [ CHANNEL))�

bind : ID�ENV�DAEMON

! VAR [ CHANNEL

bind(id; [H jT ]; x) =

�
o� x if H = (id,o)

bind(id; T; x) otherwise

�v = bind(v; e)

�c = bind(c; e)

init chan(~c; e; x)

if cmd is init chan(c1; : : : ; cr; e; x)

then agent( �c1) := nil

: : :

agent( �cr) := nil

Expressions

eval : VAR!VAL

eval(v)
def

= content(v)

eval : EXP�ENV�DAEMON!VAL

compile(v := t; e;m; x) = ass(v; t; e; x)

ass(v,t,e,x)

if cmd is ass(v; t; e; x)

then content(�v + a) := eval(t; e; x)

proceed

compile(TIME ? v; e;m; x) = time(v; e; x)

time(v,e,x)

if cmd is time(v; e; x)

then content(�v + a) := timer

proceed

Conditionals

compile(WHILE B S; e;m; x) =

lIn;

if(:B; lOut; e; x);

compile(S; e;m; x);

goto(lIn);

lOut

The Computer Journal, Vol. 36, No. 5, 1993



36 Egon B�orger & Igor D- urd- anovi�c

compile(IF B1 S1 : : : Br Sr ; e;m; x) =

: : :

if(Bi; li; e; x);

: : :

STOP;

: : :

lj ;

compile(Sj ; e;m; x);

goto(lOut);

: : :

lOut

where 1 � i; j � r

if(b,l,e,x)

if cmd is if(b; l; e; x)

then if eval(b; e; x)

then loc(a) := labeled loc(l)

else proceed

goto(l)

if cmd is goto(l)

then loc(a) := labeled loc(l)

compile(SKIP; e;m; x) = SKIP

skip if cmd is SKIP then proceed

compile(STOP; e;m; x) = STOP

stop if cmd is STOP then dequeue

Input

idle c
def

= agent(c) = nil

clear c
def

= agent(c) := nil

ready c
def

= agent(c) 6= nil

compile(c ? v; e;m; x) = inp(c; v; e; x)

inp idle(c; v; e; x)

if cmd is inp(c; v; e; x) ^ idle �c

then sleep at next(loc(a))

agent(�c) := a

place(a) := �v + a

com mode(a) := input

inp ready(c; v; e; x)

if cmd is inp(c; v; e; x) ^ ready �c

then content(�v + a) := mssg(agent(�c))

wakeup agent(�c)

proceed

clear �c

Output

compile(c ! t; e;m; x) = out(c; t; e; x)

out idle(c; t; e; x)

if cmd is out(c; t; e; x) ^ idle �c

then sleep at next(loc(a))

agent(�c) := a

mssg(a) := eval(t; e; x)

out ready(c; t; e; x)

if cmd is out(c; t; e; x)

^ ready �c

^ com mode(agent(�c)) = input

then content(place(agent(�c))) := eval(t; e; x)

wakeup agent(�c)

proceed

clear �c

out alt(c; t; e; x)

if cmd is out(c; t; e; x)

^ ready �c

^ com mode(agent(�c)) 6= input

then sleep at next(loc(a))

mssg(a) := eval(t; e; x); agent(�c) := a

if com mode(agent(�c)) = alt sleep

then time-delete agent(�c)

wakeup agent(�c)

com mode(agent(�c)) := alt run

Alternation

compile(ALT G1 S1 : : :Gr Sr ; e;m; x) =

alt a(~G; e; x);

alt s(~G;~l; e; x);

: : :

li;

inp(ci; vi; e; x);

compile(Si; e;m; x);

goto(lOut);

: : :

lj ;

compile(Sj ; e;m; x);

goto(lOut);

: : :

lOut

where ~l = l1; : : : ; lr
~G = G1; : : : ; Gr

Gi = bi : ci ? vi
Gj = bj : ( TIME?AFTER tj or SKIP )

1 � i � p < j � r

The Computer Journal, Vol. 36, No. 5, 1993



Correctness of compiling Occam to Transputer code 37

alt a(~G; e; x)

if cmd is alt a(~G; e; x)

then

enable(b1; �c1)

: : :

enable(bp; �cp)

if 9 i (eval(bi; e; x) ^ ready �ci)

_ t wait < timer

_ 9 k (eval(bk; e; x))

then com mode(a) := alt run

loc(a) := next(loc(a))

else com mode(a) := alt sleep

sleep at next(loc(a))

if 9 j (eval(bj ; e; x))

then seq tmin(a) := t wait

time-insert

endseq

where

Gi = bi : ci ? vi
Gj = bj : TIME ?AFTER tj
Gk = bk : SKIP

t wait =

�
1 if 8 j (:eval(bj; e; x)); otherwise
minjfeval(tj; e; x) j eval(bj; e; x)g

1 � i � p < j � q < k � r

alt s com j alt s time j alt s skip (i; ~G;~l; e; x)

if cmd is alt s(~G;~l; e; x)

^ eval(bi; e; x)

^ agent(�ci) 62 f nil; ag j timer > eval(ti; e; x) j
then

disable(b1; �c1)

: : :

disable(bp; �cp)

loc(a) := labeled loc(li)

where
~l = l1; : : : ; lr
~G = G1; : : : ; Gr

Gi = bi : ( ci ? vi j TIME ?AFTER ti j SKIP )

time wakeup

if time q not empty

^ timer > tmin(�rst(time q))

then com mode(�rst(time q)) := alt run

wakeup �rst(time q)

time-delete �rst(time q)

Parallelism

env size(SKIP) = 0

env size(STOP) = 0

env size(TIME ? v) = 0

env size(c ? v) = 0

env size(c ! t) = eval size(t)

env size(v := t) = eval size(t)

env size(VAR id1; : : : ; idr : S) = r + env size(S)

env size(CHAN id1; : : : ; idr : S) = r + env size(S):

env size(WHILE B S) =

max( eval size(B); env size(S) )

env size(IF B1 S1; : : :Br Sr) =

max
r

i=1 (eval size(Bi); env size(Si))

env size(SEQ S1 : : :Sr) =

max
r

i=1 env size(Si)

env size(ALT G1 S1 : : :Gr Sr) =

max
r

i=1 (eval size(bi); env size(Si))

env size(PAR S1 : : :Sr) =P
r

i=1
env size(Si)

compile(PAR S1 : : : Sr; e;m; x) =

par(x; ~m;~l; lOut);

l1;

compile(S1; e;m; x);

end;

l2;

compile(S2; e;m2;m2);

end;

: : :

lr ;

compile(Sr ; e;mr;mr);

end;

lOut

where ~l = l2; : : : ; lr
~m = m2; : : : ;mr

m1 = m

mi = mi�1 + env size(Si�1)

2 � i � r

par(x; ~x;~l; lOut)

if cmd is par(x; ~x;~l; lOut)

then q := q.x01. : : : .x
0

r

: : :

father(x0
i
) := a

loc(x0
i
) := labeled loc(li)

: : :

count(a) := r

end par(a) := lOut

proceed

where ~l = l1; : : : ; lr
~x = x1; : : : ; xr
x0
i
= a� x+ xi

1 � i � r

The Computer Journal, Vol. 36, No. 5, 1993



38 Egon B�orger & Igor D- urd- anovi�c

end

if cmd is end

then if r > 1

then dequeue

r := r � 1

else a := xf
loc(xf ) := aOut

where r = count(xf )

xf = father(a)

lOut = end par(xf )

aOut = labeled loc(lOut)

7.3. Summary of TRANSPUTERrel�code

Processor

content : LOC!VAL

+1 : LOC!LOC

FPtrReg;BPtrReg : DAEMON [ f nilg

next : DAEMON!DAEMON

enqueue x
def

= BPtrReg := x

if FPtrReg = nil

then FPtrReg := x

else next(BPtrReg) := x

dequeue
def

= if FPtrReg = nil

then a := nil

else a := FPtrReg

loc(a) := loc(FPtrReg)

start := timer

if FPtrReg = BPtrReg

then FPtrReg := nil

else FPtrReg := next(FPtrReg)

TPtrLoc : DAEMON [ f nilg

TNextReg : LOC

Areg;Breg;Creg : VAL

random : VAL

push(v)
def

=

Areg := v; Breg := Areg; Creg := Breg

pop
def

=

Areg := Breg;Breg := Creg; Creg := random

pop(v)
def

=

v := Areg; pop

Wreg; Ireg : VAL

proceed
def

= Ireg := Ireg+ 1

cmd : CODE

cmd is c
def

= cmd = c ^ mode = execute ^ Wreg 6= nil

mode = f load-label; compute-distance;

load; fetch; execute g

time{slice

if mode = fetch ^ Wreg 6= nil

then if elapsed

^ safe(content(Ireg))

then seq enqueue Wreg

dequeue

endseq

else cmd := content(Ireg)

proceed

mode := execute

Compilation, Resolving, Loading, : : :

compile : STATEMENT�ENV�LOC�DAEMON

! (CODE [ LABEL)�

loading loc : LOC

tmp prg; load prg : (CODE [ LABEL)�

if mode = load-label

then if load prg = [ ]

then mode := compute-distances

else let load prg = [H jT ]

load prg := T

if H 2 LABEL

then labeled loc(l) := loading loc

if H 2 CODE

then tmp prg := append(tmp prg; c)

loading loc := loading loc+

if mode = compute-distances

then if load prg = [ ]

then mode := load

else let tmp prg = [H jT ]

loading loc := loading loc+

tmp prg := T

if H = c l1 � l2
then load prg := append(load prg;H0)

else load prg := append(load prg;H)

where H0 = c labeled loc(l1)� labeled loc(l2)

load cmd(c,t)

if mode = load

then if load prg = [ ]

then mode := fetch

else let load prg = [H jT ]

load prg := T

content(loading loc) := H

loading loc := loading loc+

The Computer Journal, Vol. 36, No. 5, 1993



Correctness of compiling Occam to Transputer code 39

Declarations

compile(VAR id1; : : : ; idr : S; e;m; x) =

compile(S; e0;m+ r; x)

where ~id = id1; : : : ; idr
e0 = (idr;m+ r � 1); : : : ; (id1;m) j e

compile(CHAN id1; : : : ; idr : S; e;m; x) =

compile(init chan(~id); e0;m; x);

compile(S; e0;m+ r; x)

where ~id = id1; : : : ; idr
e0 = (idr;m+ r � 1); : : : ; (id1;m) j e

compile(init chan(~c); e;m; x) =

: : :

MINT;

STL bind(ci; e; x);

: : :

where ~c = c1; : : : ; cr
1 � i � r

ENV = (ID�LOC)�

bind : ID�ENV�DAEMON!LOC

bind(id; [H jT ]; x) =

�
o� x if H = (id,o)

bind(id; T; x) otherwise

if cmd is MINT then push(nil)

if cmd is STL n then pop(content(Wreg + n)

Expressions

eval : EXP�ENV�DAEMON!VAL

compile(v := t; e;m; x) =

eval(t; e; x)

STL bind(v; e; x)

if cmd is eval(t; e; x) then push(eval(t; e; x))

compile(TIME ? v; e;m; x) =

LDTIMER

STL bind(v; e; x)

if cmd is LDTIMER

then push(timer)

compile(SKIP) =

compile(STOP; e;m; x) = STOPP

if cmd is STOPP

then Areg;Breg;Creg := random

dequeue

Conditionals

compile(WHILE B S; e;m; x) =

lIn;

compile(if(:B; lOut); e;m; x);

compile(S; e;m; x);

J lIn � lOut;

lOut

compile(if(B;L); e;m; x) =

eval(:B; e; x);
CJ L � lhere;

lhere

if cmd is J n then Ireg := Ireg+ n

if cmd is CJ n

then if Areg = false

then Ireg := Ireg+ n

else Areg := Breg

Breg := Creg

Creg := random

compile(IF B1 S1 : : : Br Sr ; e;m; x) =

: : :

compile(if(Bi; li); e;m; x);

: : :

compile(STOP; e;m; x);

: : :

li;

compile(Si; e;m; x);

J lOut � li+1;

: : :

lOut

where lr+1 = lOut

1 � i � r

Input

compile(c ? v; e;m; x) =

LDLP bind(c; e; x);

LDLP bind(v; e; x);

IN

if cmd is LDLP n

then push(Wreg+ n)

IN idle

if cmd is IN ^ content(Breg) = nil

then content(Breg) := Wreg

content(Wreg� 3) := Areg

dequeue

IN ready

if cmd is IN ^ content(Breg) 6= nil

then content(Areg) := content(agent)

agent := nil

enqueue agent

where agent = content(Breg)

The Computer Journal, Vol. 36, No. 5, 1993



40 Egon B�orger & Igor D- urd- anovi�c

Output

compile(c ! t; e;m; x) =

LDLP bind(c; e; x);

eval(t; e; x)

AJW � 1

OUT

AJW + 1

if cmd is AJW n then Wreg := Wreg+ n

OUT idle

if cmd is OUT ^ content(Breg) = nil

then content(Breg) := Wreg

content(Wreg) := Areg

dequeue

OUT ready

if cmd is OUT

^ agent 6= nil

^ place 62 f alt sleep; alt run; alt ready g
then content(place) := Areg

agent := nil

enqueue agent

where agent = content(Breg)

place = content(agent � 3)

OUT alt

if cmd is OUT

^ agent 6= nil

^ place 2 f alt sleep; alt run; alt ready g
then dequeue

agent := Wreg

content(Wreg) := Areg

if place = alt sleep

then time-delete agent

place := alt run

enqueue agent

where agent = content(Breg)

place = content(agent � 3)

Alternation

compile(ALT G1 S1 : : :Gr Sr ; e;m; x) =

AJW � 1;

compile(alt a(~G); e;m; x� 1);

compile(alt s(~G;~l); e;m; x� 1);

: : :

li;

AJW + 1;

compile(ci ? vi; e;m; x);

compile(Si; e;m; x);

J lOut;

: : :

lj ;

AJW + 1;

compile(Sj ; e;m; x);

J lOut;

: : :

lOut

where ~l = l1; : : : ; lr
~G = G1; : : : ; Gr

Gi = bi : ci ? vi
Gj = bj : ( TIME?AFTER tj or SKIP )

1 � i � p < j � r

compile(alt a(~G); e;m; x) =

ALT;

: : :

LDLP bind(ci; e; x);

eval(bi; e; x);

ENBC;

: : :

eval(tj; e; x);

eval(bj; e; x);

ENBT;

: : :

eval(br; e; x);

ENBS;

: : :

ALTWT

where
~G = G1; : : : ; Gr

Gi = bi : ci ? vi
Gj = bj : TIME ?AFTER tj
Gk = bk : bk : SKIP

1 � i � l < j � p < k � r

if cmd is TALT j ALT
then content(Wreg� 4) := false j

content(Wreg� 3) := alt run

The Computer Journal, Vol. 36, No. 5, 1993



Correctness of compiling Occam to Transputer code 41

if cmd is ENBC

then if Areg = true

then if content(Breg) = nil

then content(Breg) := Wreg

elsif content(Breg) 6= Wreg

then content(Wreg� 3) := alt ready

Breg := Creg

Creg := random

if cmd is ENBT

then if Areg = true

then if content(Wreg� 4) = false

then content(Wreg� 4) := true

content(Wreg� 5) := Breg

elsif Breg < content(Wreg� 5)

then content(Wreg� 5) := Breg

Breg := Creg

Creg := random

if cmd is ENBS

then if Areg = true

then content(Wreg� 3) := alt ready

if cmd is TALTWTjALTWT
then if content(Wreg� 5) � timer ^ j

content(Wreg� 3) = alt run

then if content(Wreg� 4)

then time-insert

content(Wreg� 3) := alt sleep

dequeue

Areg;Breg;Creg := random

content(Wreg) := nil

compile(alt s(~G;~l); e;m; x) =

: : :

LDLP bind(ci; e; x);

eval(bi; e; x);

LDC li � lhere;

DISC;

: : :

eval(tj ; e; x);

eval(bj ; e; x);

LDC lj � lhere;

DIST;

: : :

eval(bk; e; x);

LDC lk � lhere;

DISS;

: : :

ALTEND;

lhere

where ~l = l1; : : : ; lr
~G = G1; : : : ; Gr

Gi = bi : ci ? vi
Gj = bj : TIME ?AFTER tj
Gk = bk : bk : SKIP

1 � i � p < j � q < k � r

if cmd is DISC

then if Breg

then if content(Creg) = Wreg

then content(Creg) := nil

Areg := false

elsif content(Creg) 6= nil

^ content(Wreg) = nil

then content(Wreg) := Areg

Areg := true

else Areg := false

else Areg := false

Breg;Creg := random

if cmd is DIST

then if Breg

then if Creg < timer ^ content(Wreg) = nil

then content(Wreg) := Areg

Areg := true

else Areg := false

else Areg := false

Breg;Creg := random

if cmd is DISS

then if Breg

then if content(Wreg) = nil

then content(Wreg) := Areg

Areg := true

else Areg := false

else Areg := false

Breg;Creg := random

if cmd is ALTEND

then Ireg := Ireg+ content(Wreg)

time wakeup

if TPtrLoc 6= nil ^ timer > TNextReg

then com mode(TPtrLoc) := alt run

enqueue TPtrLoc

time-delete TPtrLoc

Parallelism

env size : STATEMENT!N

spec size : STATEMENT!N

work size : STATEMENT!N

work size(S) = env size(S) + spec size(S)

env size(SKIP) = 0

env size(STOP) = 0

env size(TIME? v) = 0

env size(c ? v) = 0

The Computer Journal, Vol. 36, No. 5, 1993



42 Egon B�orger & Igor D- urd- anovi�c

env size(c ! t) = eval size(t)

env size(v := t) = eval size(t)

env size(VAR id1; : : : ; idr : S) = r + env size(S)

env size(CHAN id1; : : : ; idr : S) = r + env size(S):

env size(WHILE B S) =

max( eval size(B); env size(S) )

env size(IF B1 S1; : : :Br Sr) =

max
r

i=1 (eval size(Bi); env size(Si))

env size(SEQ S1 : : : Sr) =

max
r

i=1 env size(Si)

env size(ALT G1 S1 : : :Gr Sr) =

max
r

i=1 (eval size(bi); env size(Si))

env size(PAR S1 : : : Sr) =

env size(S1) +
P

r

i=2
work size(Si)

spec size(SKIP) = 2

spec size(STOP) = 2

spec size(v := t) = 2

spec size(TIME ? v) = 2

spec size(c ? v) = 3

spec size(c ! t) = 4

spec size(VAR id1; : : : ; idr : S) = spec size(S)

spec size(CHAN id1; : : : ; idr : S) = spec size(S)

spec size(WHILE B S) = spec size(S)

spec size(IF B1 S1; : : :Br Sr) =

max
r

i=1 (spec size(Si)

spec size(SEQ S1 : : :Sr) =

max
r

i=1 spec size(Si)

spec size(ALT G1 S1 : : :Gr Sr) =�
max

r

i=1 (4; spec size(Si)) case (a)

max
r

i=1 (6; spec size(Si)) case (b)

spec size(PAR S1 : : :Sr) =

max(4; spec size(S1))

compile((PAR S1 : : :Sr); e;m; x) =

AJW � 2

compile(par(x; ~m;~l; lOut); e;m; x� 2);

compile(S1; e;m1; x� 2);

compile(end(x� 2); e;m; x� 2);

l2;

compile(S2; e;m2;m2);

compile(end(m2); e;m2; x� 2);

: : :

lr ;

compile(Sr ; e;mr;mr);

compile(end(mr); e;mr ; x� 2);

lOut; AJW + 2

where ~l = l2; : : : ; lr
~m = m2; : : : ;mr

m1 = m

mi = mi�1 + env size(Si�1)+

spec size(Si)

2 � i � r

compile(par(x; ~x;~l; lOut); e;m; x) =

LDC r;

STL 1;

LDC lOut � lhere
LDPI;

lhere;

STL 0;

: : :

LDC li � l0
i
;

LDLP xi � x

STARTP;

l0
i
;

: : :

where ~l = l1; : : : ; lr
~x = x1; : : : ; xr
1 � i � r

compile(end(xi); e;m; x) = LDLPx� xi; ENDP

if cmd is STARTP

then loc(Wreg+ Areg) := Breg

enqueue Wreg+Areg

if cmd is ENDP

then if content(xf ) > 1

then dequeue

content(xf + 1) := content(xf + 1)� 1

else Ireg := content(xf )

Wreg := xf
where xf = Wreg+ Areg

REFERENCES

[Boerger:95]: E.B�orger: On the use of evolving algebras

in software engineering. in: M.Bartosek, J.Staudek,
J.Wiedermann (Eds), SOFSEM'95 22nd Seminar on
Current Trends in Theory and Practice of Informat-
ics, Springer Lecture Notes In Computer Science, vol.
1012, 1995, pp.30.

The Computer Journal, Vol. 36, No. 5, 1993



Correctness of compiling Occam to Transputer code 43

[BD- R:94]: E.B�orger, I.D- urd-anovi�c & D.Rosenzweig, 1994,
Occam: Speci�cation and Compiler Correctness. Part I:

The Primary Model, E.-R. Olderog (Ed.), Proc. PRO-
COMET'94 (IFIP Working Conference on Program-
ming Concepts, Methods and Calculi), pages 489-508,
North-Holland 1994

[B�oRo:95a]: E.B�orger & D.Rosenzweig, 1995, A mathemat-

ical de�nition of Full Prolog, in: Science of Computer

Programming 24, pages 249-286.
[B�oRo:95b]: E.B�orger & D.Rosenzweig, 1995, The WAM|

De�nition and Compiler Correctness, in: Logic Pro-

gramming: Formal Methods and Practical Applications,
C.Beierle, L.Pl�umer, eds., North-Holland, Series in
Computer Science and Arti�cial Intelligence, pages 20-
90 (chapter 2).

[Bowen:93]: J.P. Bowen,1993, From Programs to Object

Code and back again using Logic Programming: Com-

pilation and Decompilation, in: Journal of Software

Maintenance: Research and Practice 5(4):205-234.
[BowHe:93]: J.P. Bowen, He Jifeng, 1993, Speci�cation, Ver-

i�cation and Prototyping of an Optimized Compiler, in:
Formal Aspects of Computing.

[BowHePand:90]: J.P. Bowen, He Jifeng, P.K. Pandaya,
1990, An Approach to Veri�able Compiling Speci�ca-

tion and Prototyping, Springer Verlag, LNCS 456, pp.
45-59.

[Graham:90]: Ian Graham, 1990, The Transputer Handbook,
Prentice Hall.

[Gur:95]: Y. Gurevich. Evolving Algebras 1993: Lipari
Guide. Speci�cation and Validation Methods, Ed. E.
B�orger, Oxford University Press, 1995.

[Hoare:91]: C.A.R. Hoare, re�nement algebra proves correct-
ness of compiling speci�cations. In C.C. Morgan and
J.C.P. Woodcock, editors, 3rd Re�nement Workshop,
Workshops in Computer Science, pages 33{48. Springer
Verlag, 1991.

[Hoare et al.:87]: C.A.R. Hoare, I.J. Hayes, He Jifeng, C.C.
Morgan, A.W. Roscoe, J.W. Sanders, I.H. Sorenson,
J.M. Spivey, and B.A. Sufrin. Laws of programming.
Communications of the ACM, 30(8):672-687, August
1987.

[Hoare et al.:93]: C.A.R. Hoare, He Jifeng, and A. Sampaio.
Normal form approach to compiler design. Acta Infor-
matica, 30:701-739, 1993.

[Inmos]: INMOS, Transputer Implementation of Occam. In:
Communication Process Architecture, Prentice Hall,
note 21, 1989.

[Inmos:88]: INMOS, 1988, Transputer Instruction Set { A

compiler writer's guide, INMOS document 72 TRN 119
05, Prentice Hall.

[Mitchell:90]: D.A.P. Mitchell et al, 1990, Inside the Trans-
puter, Blackwell Scienti�c Publications.

[MMO:95]: Markus M�uller{Olm, Structuring Code Genera-
tor Correctness Proofs by Stepwise Abstracting the Ma-

chine Language's Semantics, ProCos II Esprit basic Re-
search 7071, [Kiel MMO 12/3] (doctoral dissertation).

[PageLuk:91]: I. Page, W. Luk, 1991, Compiling Occam

into �eld-programmable gate arrays, in FPGAs, Oxford

Workshop on Field Programmable Logic and Applica-

tions, Abingdon EE&CS Books, pp. 271-283.

The Computer Journal, Vol. 36, No. 5, 1993


