

Albert Fleischmann
Werner Schmidt
Christian Stary
Stefan Obermeier
Egon Börger

Subjektorientiertes
Prozessmanagement
Mitarbeiter einbinden, Motivation und
Prozessakzeptanz steigern

Aktualisierter Anhang:

A Subject-Oriented Interpreter Model for S-BPM

In der Buchversion hat sich leider der Fehlerteufel eingeschlichen.
Bitte verwenden Sie diese Version.

A Subject-Oriented Interpreter Model for
S-BPM

We develop in this appendix a high-level subject-oriented interpreter model
for the semantics of the S-BPM constructs presented in this book. To directly
and faithfully reflect the basic constituents of S-BPM, namely communicating
agents which can perform arbitrary actions on arbitrary objects, Abstract State
Machines are used which explicitly contain these three conceptual ingredients.

1 Introduction

Subject-oriented Business Process Modeling (S-BPM) is characterized by the use
of three fundamental natural language concepts to describe distributed processes:
actors (called subjects) which perform arbitrary actions on arbitrary objects and
in particular communicate with other subjects in the process, computationally
speaking agents which perform abstract data type operations and send messages
to and receive messages from other process agents. We provide here a mathe-
matically precise definition for the semantics of S-BPM processes which directly
and faithfully reflects these three constituent S-BPM concepts and supports the
methodological goal pursued in this book to lead the reader through a precise
natural language description to a reliable understanding of S-BPM concepts and
techniques.

The challenge consists in building a scientifically solid S-BPM model which
faithfully captures and links the understanding of S-BPM concepts by the dif-
ferent stakeholders and thus can serve as basis for the communication between
them: analysts and operators on the process design and management side, IT
technologists and programmers on the implementation side, users (suppliers and
customers) on the application side. To make a transparent, sufficiently precise
and easily maintainable documentation of the meaning of S-BPM concepts avail-
able which expresses a common understanding of the different stakeholders we
have to start from scratch, explaining the S-BPM constructs as presented in this
book without dwelling upon any extraneous (read: not business process specific)
technicality of the underlying computational paradigm.

To brake unavoidable business process specific complexity into small units
a human mind can grasp reliably we use a feature-based approach, where the
meaning of the involved concepts is defined itemwise, construct by construct.
For each investigated construct we provide a dedicated set of simple IF-THEN-
descriptions (so-called behavior rules) which abstractly describe the operational
interpretation of the construct.1 The feature-based approach is enhanced by the
systematic use of stepwise refinement of abstract operational descriptions.

1 This rigorous operational character of the descriptions offers the possibility to use
them as a reference model for both simulation (testing) and verification (logical
analysis of properties of interest) of classes of S-BPM processes.

C
op

yr
ig

ht
: 2

01
1

C
ar

l H
an

se
r V

er
la

g
M

ün
ch

en

A
us

zu
g

au
s:

 F
le

is
ch

m
an

n,
 A

.;
S

ch
m

id
t,

W
.;

S
ta

ry
, C

h.
; O

be
rm

ei
er

, S
.;

B
ör

ge
r,

E
.:

S
ub

je
kt

or
ie

nt
ie

rte
s

P
ro

ze
ss

m
an

ag
em

en
t.

H
an

se
r,

M
ün

ch
en

 2
01

1

Cop
yri

gh
t:

20
11

 C
ar

l H
an

se
r V

er
lag

 M
ün

ch
en

Last but not least, to cope with the distributed and heterogeneous character
of the large variety of cooperating S-BPM processes, it is crucial that the model
of computation which underlies the descriptions supports both true concurrency
(most general scheduling schemes) and heterogeneous state (most general data
structures covering the different application domain elements).

For these reasons we use the method of Abstract State Machines (ASMs) [2],
which supports feature and refinement based descriptions2 of heterogeneous dis-
tributed processes and in particular allows one to view interacting subjects as
rule executing communicating agents (in software terms: multiple threads each
executing specific actions), thus matching the fundamental view of the S-BPM
approach to business processes.

Technically speaking the ASM method expects from the reader only some
experience in process-oriented thinking which supports an understanding of so-
called transition rules (also called ASM rules) of form

if Condition then Action

prescribing an Action to be undertaken if some event happens; happening of
events is expressed by corresponding Conditions (also called rule guards) be-
coming true. Using ASMs guarantees the needed generality of the underlying
data structures because the states which are modified by executing ASM rules
are so-called Tarski structures, i.e. sets of arbitrary elements on which arbitrary
updatable functions (operations) and predicates (properties and relations) are
defined. In the case of business process objects the elements are placeholders for
values of arbitrary types and the operations typically the creation, duplication,
deletion, modification of objects. Views are projections (substructures) of Tarski
structures

Using such rules we define a succinct high-level and easily extendable S-
BPM behavior model the business process practitioner can understand directly,
without further training, and use a) to reason about the design and b) to hand
it over to a software engineer as a binding and clear specification for a reliable
and justifiably correct implementation.

For the sake of quick understandability and to avoid having to require from
the reader some formal method expertise we paraphrase the ASM rules by nat-
ural language explanations, adopting Knuth’s literate programming [3] idea for
the development of abstract behavior models. The reader who is interested in the
details of the simple foundation of the semantics of ASM rule systems, which
can also be viewed as a rigorous form of pseudo-code, is refered to the Asm-
Book [2]. Here it should suffice to draw the reader’s attention to the fact that
for a given ASM with rules Ri (1 ≤ i ≤ n) in each state all rules Ri whose guard
is true in this state are executed simultaneously, in one step. This parallelism

2 Since ASM models support an intuitive operational understanding at both high
and lower levels of abstraction, the software developer can use them to introduce
in a rigorously documentable and checkable way the crucial design decisions when
implementing the abstract ASM models. Technically this can be achieved using the
ASM refinement concept see [2, 3.2.1].

2

C
op

yr
ig

ht
: 2

01
1

C
ar

l H
an

se
r V

er
la

g
M

ün
ch

en

A
us

zu
g

au
s:

 F
le

is
ch

m
an

n,
 A

.;
S

ch
m

id
t,

W
.;

S
ta

ry
, C

h.
; O

be
rm

ei
er

, S
.;

B
ör

ge
r,

E
.:

S
ub

je
kt

or
ie

nt
ie

rte
s

P
ro

ze
ss

m
an

ag
em

en
t.

H
an

se
r,

M
ün

ch
en

 2
01

1

Cop
yri

gh
t:

20
11

 C
ar

l H
an

se
r V

er
lag

 M
ün

ch
en

allows one to hide semantically irrelevant details of sequential implementations
of independent actions.

The ASM interpeter model for the semantics of S-BPM we describe in the
following sections is developed by stepwise refinement, following the gradually
proceeding exposition in this book. Thus we start with an abstract interaction
view model of subject behavior diagrams (Sect. 2, based upon Sect.2.2.3 in this
book, which (based upon Sect.5.4.3 in this book) is refined in Sect. 3 by de-
tailed descriptions of the communication actions (send, receive) in their various
forms (canceling or blocking, synchronous or asynchronous and including their
multi-process forms, based upon Sect.5.6.1.3 in this book) and further refined
by stepwise introduced structuring concepts: structured actions—alternative ac-
tions (Sect. 4, based upon Sect.5.6.2.5 in this book)—and structured processes:
macros (Sect. 5.1, based upon Sect.5.6.2.2-4 in this book), interaction view nor-
malization (Sect. 5.2, based upon Sect.5.4.4.2 in this book), process networks
and observer view normalization (Sect. 5.3, based upon Sect.5.6.1.1-2 in this
book). Two concepts for model extension are defined in Sect. 6. They cover in
particular the exception handling model proposed in Sect.5.6.2.6 in this book.

We try to keep this appendix on an S-BPM interpreter technically self-
contained though all relevant definitions are supported by the explanations in
the preceding chapters of the book.

2 Interaction View of Subject Behavior Diagrams

An S-BPM process (shortly called process) is defined by a set of subjects each
equipped with a diagram, called the subject behavior diagram (SBD) and describ-
ing the behavior of its subject in the process. Such a process is of distributed
nature and describes the overall behavior of its subjects which interact with
each other by sending or receiving messages (so-called send/receive actions) and
perform certain activities on their own (so-called internal actions or functions).

2.1 Signature of Core Subject Behavior Diagrams

Mathematically speaking a subject behavior diagram is a directed graph. Each
node represents a state in which the underlying subject3 can be in when exe-
cuting an activity associated to the node in the diagram. We call these states
SID states (Subject Interaction Diagram states) of the subject in the diagram
because they represent the state a subject is in from the point of view of the
other subjects it is interacting with in the underlying process, where it only
matters whether the subject is communicating (sending or receiving a mes-
sage) or busy with performing an internal function (whose details are usu-
ally not interesting for and hidden to the other subjects). The incoming and
the outgoing edges represent (and are labeled by names of) the subject’s SID-
state transitions from source(edge) to target(edge). The target(outEdge) of an

3 Where needed we call an SBD a subject-SBD and write also SBDsubject to indicate
that it is an SBD with this underlying subject .

3

C
op

yr
ig

ht
: 2

01
1

C
ar

l H
an

se
r V

er
la

g
M

ün
ch

en

A
us

zu
g

au
s:

 F
le

is
ch

m
an

n,
 A

.;
S

ch
m

id
t,

W
.;

S
ta

ry
, C

h.
; O

be
rm

ei
er

, S
.;

B
ör

ge
r,

E
.:

S
ub

je
kt

or
ie

nt
ie

rte
s

P
ro

ze
ss

m
an

ag
em

en
t.

H
an

se
r,

M
ün

ch
en

 2
01

1

Cop
yri

gh
t:

20
11

 C
ar

l H
an

se
r V

er
lag

 M
ün

ch
en

outEdge ∈ OutEdge(node) is also called a successor state of node (element of
the set Sucessor(node)), the source(inEdge) of an inEdge ∈ InEdge(node) a
predecessor state (in the diagram an element of the set Predecessor(node)).

As distinguished from SID-states (and usually including them) the overall
states of a subject are called data states or simply states. They are constituted
by a set of interpreted (possibly abstract) data types, i.e. sets with functions and
predicates defined over them, technically speaking Tarski structures, the states
of Abstract State Machines. SID-states of a subject are implicitly parameterized
by the diagram in which the states occur since a subject may have different
diagrams belonging to different processes; if we want to make the parameter D
explicit we write SID stateD(subject) or SID state(subject ,D).

The SID-states of a subject in a diagram can be of three types, correspond-
ing to three fundamental types of activity associated to a node to be performed
there under the control of the subject: function states (also called internal func-
tion or action node states), send states and receive states. The activity (opera-
tion or method) associated to and performed under the control of the subject
at a node (read: when the subject is in the corresponding SID-state) is called
service(node). We explain in Sect. 3 the detailed behavioral meaning of these
services for sending resp. receiving a message (interaction via communication)
and for arbitrary internal activities (e.g. activities of a human or functions in
the sense of programming). In a given function state a subject may go through
many so-called internal (Finite State Machine like) control states to each of
which a complex data structure may be associated, depending on the nature of
the performed function. These internal states are hidden in the SID-level view
of subject behavior in a process, also called normalized behavior view and de-
scribed in Sect. 5.2. The semantics of the interaction view of SBDs is defined in
this section by describing the meaning of the transitions between SID-states in
terms of communication and abstract internal functions.

A transition from a source to a target SID-state is allowed to be taken by the
subject only when the execution of the service associated to the source node has
been Completed under the control of this subject. This completion requirement
is called synchrony condition and reflects the sequential nature of the behavior
of a single subject, which in the given subject behavior diagram performs a
sequence of single steps. Correspondingly each arc exiting a node corresponds to
a termination condition of the associated service, also called ExitCond ition of
the transition represented by the arc and usually labeling the arc; in the wording
used for labeling arcs often the ExitCond ition refers only to a special data state
condition reached upon service completion, but it is assumed to always contain
the completion requirement implicitly. In case more than one edge goes out of a
node we often write ExitCondi for the ExitCond ition of the i -th outgoing arc.

The nodes (states) are graphically represented by rectangles and by a system-
atic notational abuse sometimes identified with (uniquely named) occurrences of
their associated service whose names are written into the rectangle. It is implicit
in the graphical representation that given a SID-state (i.e. a node in the graph),

4

C
op

yr
ig

ht
: 2

01
1

C
ar

l H
an

se
r V

er
la

g
M

ün
ch

en

A
us

zu
g

au
s:

 F
le

is
ch

m
an

n,
 A

.;
S

ch
m

id
t,

W
.;

S
ta

ry
, C

h.
; O

be
rm

ei
er

, S
.;

B
ör

ge
r,

E
.:

S
ub

je
kt

or
ie

nt
ie

rte
s

P
ro

ze
ss

m
an

ag
em

en
t.

H
an

se
r,

M
ün

ch
en

 2
01

1

Cop
yri

gh
t:

20
11

 C
ar

l H
an

se
r V

er
lag

 M
ün

ch
en

the associated service and the incoming and outgoing edges are functions of the
SID-state.

Each SBD is assumed to be finite and to have exactly one initial state and at
least one (maybe more than one) end state. It is assumed that each path leads
to at least one end state. It is permitted that end states have outgoing edges,
which the executing subject may use to proceed from this to a successor state,
but each such path is assumed to lead back to at least one end state. A process
is considered to terminate if each of its subjects is in one of its end states.

2.2 Semantics of Core Subject Behavior Diagram Transitions

The semantics of subject behavior diagrams D can be characterized essentially
by a set of instances of a single SID-transition scheme Behavior(subj , state) de-
fined below for the transition depicted in Fig. 1. It expresses that when a subj ect
in a given SID-state in D has Completed a given action (function, send or receive
operation)—read: Performing the action has been Completed while the subj ect
was in the given SID-state, assuming that the action has been Started by the
subj ect upon entering this state—then the subj ect Proceeds to Start its next
action in its successor SID-state, which is determined by an ExitCond ition whose
value is defined by the just completed action. This simple and natural transition
scheme is instantiated for the three kinds of SID-states with their corresponding
action types, namely by giving the details of the meaning of Starting an action
and Performing it until it is Completed for internal functions and for sending
resp. receiving messages (see Sect. 3).

Fig. 1. SID-transition graph structure

Technically speaking the SID-transition scheme is an Abstract State Machine
rule Behavior(subj , state) describing the transition of a subj ect from an SID-
state with associated service A to a next SID-state with its associated service
after (and only after) Performing A has been Completed under the control of
the subject. The successor state with its associated service to be Started next—
in Fig. 1 one among Bi associated to the target(outEdge(state, i)) of the i -th

5

C
op

yr
ig

ht
: 2

01
1

C
ar

l H
an

se
r V

er
la

g
M

ün
ch

en

A
us

zu
g

au
s:

 F
le

is
ch

m
an

n,
 A

.;
S

ch
m

id
t,

W
.;

S
ta

ry
, C

h.
; O

be
rm

ei
er

, S
.;

B
ör

ge
r,

E
.:

S
ub

je
kt

or
ie

nt
ie

rte
s

P
ro

ze
ss

m
an

ag
em

en
t.

H
an

se
r,

M
ün

ch
en

 2
01

1

Cop
yri

gh
t:

20
11

 C
ar

l H
an

se
r V

er
lag

 M
ün

ch
en

outEdge(state, i) outgoing state for 1 ≤ i ≤ n—is the target of an outgoing edge
outEdge that satisfies its associated exit condition ExitCond(outEdge) when the
subj ect has Completed to Perform its action A in the given SID state. The
outgoing edge to be taken is selected by a function selectEdge which may be
defined by the designer or at runtime by the user. In Behavior(subj , state) the
else-branch expresses that it may take an arbitrary a priori unknown number
of steps until Performing A is Completed by the subj ect.

Behavior(subj , state) =
if SID state(subj) = state then

if Completed(subj , service(state), state) then
let edge =

selectEdge({e ∈ OutEdge(state) | ExitCond(e)(subj , state)})
Proceed(subj , service(target(edge)), target(edge))

else Perform(subj , service(state), state)
where
Proceed(subj ,X ,node) =

SID state(subj) := node
Start(subj ,X ,node)

Remark. Each SID-transition is implicitly parameterized via the SID-states
by the diagram to which the transition parameters belong, given that a (concrete)
subject may be simultaneously in SID-states of subject behavior diagrams of
multiple processes.

We define the Behaviorsubject(D) of a subject behavior diagram D as the set
of all ASM transition rules Behavior(subject ,node) for each node ∈ Node(D).

Behaviorsubj (D) = {Behavior(subj ,node) | node ∈ Node(D)}

When subj ect is known we write Behavior(D) instead of Behaviorsubj (D).
Behavior(D) represents an interpreter of D .

This definition yields the traditional concept of (terminating) standard com-
putations (also called standard runs) of a subject behavior diagram (from the
point of view of subject interaction), namely sequences S0, . . . ,Sn of states of
the subject behavior diagram where in the initial resp. final state S0,Sn the
subject is in the initial resp. a final SID-state and where for each intermediate
Si (with i < n) with SID-state say statei its successor state Si+1 is obtained
by applying Behavior(subject , statei). Usually we only say “computation” or
“run” omitting the “standard” attribute.

Remark. One can also spell out the SBD-Behavior rules as a general SBD-
interpreter InterpreterSBD which given as input any SBD D of any subject walks
through this diagram from the initial state to an end state, interpreting each
diagram node as defined by Behavior(subject ,node).

Remark. Behavior(subj , state) is a scheme which uses as basic constituents
the abstract submachines Perform, Start and the abstract completion predi-
cate Completed to describe the pure interaction view for the three kinds of action
in a subject behavior diagram: that an action is Started and Performed by

6

C
op

yr
ig

ht
: 2

01
1

C
ar

l H
an

se
r V

er
la

g
M

ün
ch

en

A
us

zu
g

au
s:

 F
le

is
ch

m
an

n,
 A

.;
S

ch
m

id
t,

W
.;

S
ta

ry
, C

h.
; O

be
rm

ei
er

, S
.;

B
ör

ge
r,

E
.:

S
ub

je
kt

or
ie

nt
ie

rte
s

P
ro

ze
ss

m
an

ag
em

en
t.

H
an

se
r,

M
ün

ch
en

 2
01

1

Cop
yri

gh
t:

20
11

 C
ar

l H
an

se
r V

er
lag

 M
ün

ch
en

a subject until it is Completed hiding the details of how Start, Perform and
Completed are defined. These constituents can be specialized further by defining
a more detailed meaning for them to capture the semantics of specific internal
functions and of particular send and receive patterns. Technically speaking such
specializations represent ASM-refinements (as defined in [1]). We use examples
of such ASM-refinements to specify the precise meaning of the basic S-BPM
communication constructs (see Sect. 3) and of the additional S-BPM behavior
constructs (see Sect. 4). The background concepts for communication actions
are described in Sect. 3.1, Sect. 3.3-3.4 present refinements defining the details
of send and receive actions.

3 Refinements for the Semantics of Core Actions

Actions in a core subject behavior diagram are either internal functions or com-
munication acts. Internal functions can be arbitrary manual functions performed
by a human subject or functions performed by machines (e.g. represented ab-
stractly or by finite state machine diagrams or by executable code written in
some programming language) and are discussed in Sect. 3.5.

3.1 How to Perform Alternative Communication Actions

For each communication node we refine in this section and Sect. 3.2-3.4 the
abstract machines Start, Perform and the abstract predicate Completed to
the corresponding concepts of Starting and Performing the communication
and the meaning of its being Completed . Since the alternative communication
version naturally subsumes the corresponding 1-message version (i.e. without
alternatives where exactly one message is present to be sent or received), we
give the definitions for the general case with communication action alternatives
and derive from it the special 1-message case as the one where the number of
alternatives is 1. The symmetries shared by the two ComAct ion versions Send
and Receive are made explicit by parameterizing machine components of the
same structure with an index ComAct .

In this section three concepts are described which are common to and sup-
port the detailed definition of both communication actions send and receive in
Sect. 3.2-3.4: subject interaction diagrams describing the process communica-
tion structure, input pool of subjects and the iterative structure of alternative
send/receive actions.

Subject Interaction Diagram The communication structure (signature) of
a process is defined by a Subject Interaction Diagram (SID-diagram). These
diagrams are directed graphs consisting of one node for each subject in the
process (so that without loss of generality nodes of an SID-diagram can be
identified with subjects) and one directed arc from node subject1 to node subject2
for each type of message which may be sent in the process from subject1 to
subject2 (and thereby received by subject2 from subject1). Thus SID-edges define

7

C
op

yr
ig

ht
: 2

01
1

C
ar

l H
an

se
r V

er
la

g
M

ün
ch

en

A
us

zu
g

au
s:

 F
le

is
ch

m
an

n,
 A

.;
S

ch
m

id
t,

W
.;

S
ta

ry
, C

h.
; O

be
rm

ei
er

, S
.;

B
ör

ge
r,

E
.:

S
ub

je
kt

or
ie

nt
ie

rte
s

P
ro

ze
ss

m
an

ag
em

en
t.

H
an

se
r,

M
ün

ch
en

 2
01

1

Cop
yri

gh
t:

20
11

 C
ar

l H
an

se
r V

er
lag

 M
ün

ch
en

the communication connections between their source and target subjects and
are labeled with the message type they represent. There may be multiple edges
from subject1 to subject2, one for each type of possibly exchanged message.

Input Pools To support the asynchronous understanding of communication,
which is typical for distributed computations, each subject is assumed to be
equipped with an inputPool where messages sent to this subject (called receiver)
are placed by any other subject (called sender) and where the receiver looks for
a message when it ‘expects’ it (i.e. is ready to receive it).

An inputPool can be configured by the following size restricions:

restricting the overall capacity of inputPool , i.e. the maximal number of
messages of any type and from any sender which are allowed to be Present
at any moment in inputPool ,
restricting the maximal number of messages coming from an indicated sender
which are allowed to be Present at any moment in the inputPool ,
restricting the maximal number of messages of an indicated type which are
allowed to be Present at any moment in inputPool ,
restricting the maximal number of messages of an indicated type and coming
from an indicated sender which are allowed to be Present at any moment
in the inputPool .

For a uniform description of synchronous communication 0 is admitted as
value for input pool size parameters. It is interpreted as imposing that the
receiver accepts messages from the indicated sender and/or of the indicated
type only via a rendezvous with the sender .

Asynchronous communication is characterized by positive natural numbers
for the input pool size parameters. In the presence of such size limits it may
happen that a sender tries to place a message of some type into an input pool
which has reached the corresponding size limit (i.e. its total capacity or its
capacity for messages of this type and/or from that sender). The following two
strategies are foreseen to handle this situation:

canceling send where either a) a forced message deletion reduces the actual
size of the input pool and frees a slot to insert the arriving message or b)
the incoming message is dropped (i.e. not inserted into the input pool),
blocking send where the sending is blocked and the sender repeats the at-
tempt to send its message until either a) the input pool becomes free for
the message to be inserted or b) a timeout has been reached triggering an
interrupt of this send action or c) the sender manually abrupts its send
action.

Three canceling disciplines are considered, namely to drop the incoming mes-
sage or to delete the oldest resp. the youngest message m in P , determined in
terms of the insertionTime(m,P) of m into P .4

4 We use Hilbert’s ι-operator to express by ι x P(x) the unique element satisfying
property P .

8

C
op

yr
ig

ht
: 2

01
1

C
ar

l H
an

se
r V

er
la

g
M

ün
ch

en

A
us

zu
g

au
s:

 F
le

is
ch

m
an

n,
 A

.;
S

ch
m

id
t,

W
.;

S
ta

ry
, C

h.
; O

be
rm

ei
er

, S
.;

B
ör

ge
r,

E
.:

S
ub

je
kt

or
ie

nt
ie

rte
s

P
ro

ze
ss

m
an

ag
em

en
t.

H
an

se
r,

M
ün

ch
en

 2
01

1

Cop
yri

gh
t:

20
11

 C
ar

l H
an

se
r V

er
lag

 M
ün

ch
en

youngestMsg(P) =
ιm(m ∈ P and forall m ′ ∈ P if m ′ 6= m then

insertionTime(m,P) > insertionTime(m ′,P)) //m came later
oldestMsg(P) =
ιm(m ∈ P and forall m ′ ∈ P if m ′ 6= m then

insertionTime(m,P) < insertionTime(m ′,P)) //m came earlier

Whether a send action is handled by the targeted input pool P as canceling
or blocking depends on whether in the given state the pool satisfies the size
parameter constraints which are formulated in a pool constraintTable. Each row
of constraintTable(P) indicates for a combination of sender and msgType the
allowed maximal size together with an action to be taken in case of a constraint
violation:

constraintTable(inputPool) =
. . .
senderi msgTypei sizei actioni (1 ≤ i ≤ n)
. . .

where
actioni ∈ {Blocking ,DropYoungest ,DropOldest ,DropIncoming}
sizei ∈ {0, 1, 2, . . . ,∞}
senderi ∈ Subject
msgTypei ∈ MsgType

When a sender tries to send a message msg to the owner of an input pool P
the first row = s t n a in the constraintTable(P) is identified whose size
constraint concerns msg and would be violated by inserting msg :

ConstraintViolation(msg , row) iff 5

Match(msg , row) ∧ size({m ∈ P | Match(m, row)}) + 1 6< n
where

Match(m, row) iff
(sender(m) = s or s = any) and (type(m) = t or t = any)

If there is no such row—so that the first such element in constraintTable(P) is
undef—the message can be inserted into the pool; otherwise the action indicated
in the identified row is taken, thus either blocking the sender or accepting the
message (by either dropping it or inserting it into the pool at the price of deleting
another pool element).

It is required that in each row r with size = 0 the action is Blocking and that
in case maxSize(P) <∞ the constraintTable has the following last (the default)
row:

any any maxSize Blocking

5 iff stands for: if and only if.

9

C
op

yr
ig

ht
: 2

01
1

C
ar

l H
an

se
r V

er
la

g
M

ün
ch

en

A
us

zu
g

au
s:

 F
le

is
ch

m
an

n,
 A

.;
S

ch
m

id
t,

W
.;

S
ta

ry
, C

h.
; O

be
rm

ei
er

, S
.;

B
ör

ge
r,

E
.:

S
ub

je
kt

or
ie

nt
ie

rte
s

P
ro

ze
ss

m
an

ag
em

en
t.

H
an

se
r,

M
ün

ch
en

 2
01

1

Cop
yri

gh
t:

20
11

 C
ar

l H
an

se
r V

er
lag

 M
ün

ch
en

Similarly a (possibly blocking) receive action tries to receive a message, ‘ex-
pected’ to be of a given kind (i.e. of a given type and/or from a given sender)
and chosen out of finitely many alternatives (again either nondeterministically or
respecting a given priority scheme), with possible timeout to abort unsuccessful
receives (i.e. when no message of the expected kind is in the input pool) or a
manual abort chosen by the subject.

Since in a distributed computation more than one subject may simultane-
ously try to place a message to the input pool P of a same receiver, a selection
mechanism is needed (which in general will depend on P and therefore is denoted
selectP) to determine among those subjects that are TryingToAccess P the one
which CanAccess it to place the message to be sent.6

CanAccess(sender ,P) if and only if
sender = selectP ({subject | TryingToAccess(subject ,P)})

Alternative Send/Receive Iteration Structure S-BPM forsees so-called al-
ternative send/receive states where to perform a communication action ComAct
(Send or Receive) the subject can do three things in order:

choose an alternative among finitely many Alternatives,7 i.e. message kinds
associated to the send/receive state,
prepare a corresponding msgToBeHandled : for a send action a msgToBeSent
and for a receive action an expectedMsg kind,
TryAlternativeComAct , i.e. try to actually send the msgToBeSent resp.
receive a message Matching the kind of expectedMsg .

The choice and preparation of an alternative is defined below by a component
Choose&PrepareAlternativeComAct of TryAlternativeComAct .

6 One can formally define the TryingToAccess predicate, but the selectP function is
deliberately kept abstract. There are various criteria one could use for its further
specification and various mechanisms for its implementation. A widely used interpre-
tation of such functions in a distributed environment is that of a nondeterministic
choice, which can be implemented using some locking mechanism to guarantee that
at each moment at most one subject can insert a message into the input pool in
question. The negative side of this interpretation is that proofs of properties of sys-
tems exhibiting nondeterministic phenomena are known to be difficult. Attempts to
further specify the selection (e.g. by considering a maximal waiting time) introduce
a form of global control for computing the selection function that contradicts the de-
sired decentralized nature of an asynchronous communication mechanism (and still
does not solve the problem of simultaneity in case different senders have the same
waiting time). One can avoid infinite waiting of a subject (for a moment where it
CanAccess a pool) by governing the waiting through a timeout mechanism.

7 We consider Alternative as dependent on two parameters, subj ect and state, to
prepare the ground for service processes where the choice of Alternatives in a
state may depend on the subject type the client belongs to. Otherwise Alternative
depends only on the state. In the currently implemented diagram notation the
Alternatives appear as pairs of a receiver and a message type, each labeling in the
form (to receiver ,msgType) an arc leaving the alternative send state in question.

10

C
op

yr
ig

ht
: 2

01
1

C
ar

l H
an

se
r V

er
la

g
M

ün
ch

en

A
us

zu
g

au
s:

 F
le

is
ch

m
an

n,
 A

.;
S

ch
m

id
t,

W
.;

S
ta

ry
, C

h.
; O

be
rm

ei
er

, S
.;

B
ör

ge
r,

E
.:

S
ub

je
kt

or
ie

nt
ie

rte
s

P
ro

ze
ss

m
an

ag
em

en
t.

H
an

se
r,

M
ün

ch
en

 2
01

1

Cop
yri

gh
t:

20
11

 C
ar

l H
an

se
r V

er
lag

 M
ün

ch
en

If the selected alternative fails (read: could not be be communicated neither
asynchronously nor in a synchronous manner between sender and receiver), the
subject chooses the next alternative until:

either one of them succeeds, implying that the send/receive action in the
given state can be Completed normally,
or all Alternatives have been tried out but the TryRoundFinished unsuccess-
fully.

After such a first (so-called nonblocking because non interruptable) Try-
Round a second one can be started, this time of blocking character in the sense
that it may be interrupted by a Timeout or UserAbruption.

This implies iterations through a runtime set RoundAlternative of alterna-
tives remaining to be tried out in both the first (nonblocking) and the other
(blocking) TryRounds in which the subject for its present ComAct action has
to TryAlternativeComAct . RoundAlternative is initialized for the first round
in Start, namely to the set Alternative(subj ,node) of all alternatives of the
subj ect at the node, and reinitialized at the beginning of each blocking round.

Since the blocking TryRound can be interrupted by a Timeout-triggered
Interrupt or by a (‘manually’) UserAbruption-triggered Abruption, there are
three outgoing edges to Proceed from a communication node. We use three
predicates NormalExitCond , TimeoutExitCond , AbruptionExitCond to deter-
mine the correct node exit when the ComAct completes normally or due to
the Timeout condition8 or due to a UserAbruption. One of these three cases
will eventually occur so that the corresponding exit condition then determines
the next SID-state where the subject has to Proceed with its run. To guaran-
tee a correct behavior these three exit conditions and the completion predicate
are initialized in Start to false. Since the machines are the same for the two
ComAct ion cases (Send or Receive) we parameterize them in the definition below
by an index ComAct .

Since the actual blocking presents itself only if none of the possible alter-
natives succeeds in a first run, blockingStartTime(subject ,node)—the timeout
clock which depends on the subject and the state node, not on the messages—
is set only after a first round of unsuccessful sending attempts, namely in the
submachine InitializeBlockingTryRounds. As a consequence the Timeout
condition guards TryAlternativeComAct only in the blocking rounds. Time-
outs are considered as of higher priority than user abruptions.

This explains the following refinement of the abstract machine Perform to
Perform(subj ,ComAct, state). The flowchart in Fig. 2 visualizes the structure
of Perform(subj ,ComAct, state).9 The symmetry between non-blocking and

8 TimeoutExitCond is only a name for the timeout condition we define below, namely
Timeout(msg , timeout(state)); in the diagram it is written as edge label of the form
Timeout : timeout .

9 These flowcharts represent so-called control-statel ASMs which come with a precise
semantics, see [2, p.44]. Using the flowchart representation of control-state ASMs
allow one to save some control-state guards and updates. To make this exposition

11

C
op

yr
ig

ht
: 2

01
1

C
ar

l H
an

se
r V

er
la

g
M

ün
ch

en

A
us

zu
g

au
s:

 F
le

is
ch

m
an

n,
 A

.;
S

ch
m

id
t,

W
.;

S
ta

ry
, C

h.
; O

be
rm

ei
er

, S
.;

B
ör

ge
r,

E
.:

S
ub

je
kt

or
ie

nt
ie

rte
s

P
ro

ze
ss

m
an

ag
em

en
t.

H
an

se
r,

M
ün

ch
en

 2
01

1

Cop
yri

gh
t:

20
11

 C
ar

l H
an

se
r V

er
lag

 M
ün

ch
en

blocking TryRounds is illustrated by a similar coloring of the respective compo-
nents, whereas the components for the timeout and user abruption extensions
are colored differently. Outgoing edges without target node denote possible exits
from the flowchart. The equivalent textual definition (where we define also the
components) reads as follows.

Fig. 2. Perform(subj ,ComAct, state)

Perform(subj ,ComAct, state) =
if NonBlockingTryRound(subj , state) then

if TryRoundFinished(subj , state) then
InitializeBlockingTryRounds(subj , state)

else TryAlternativeComAct(subj , state)
if BlockingTryRound(subj , state) then

if TryRoundFinished(subj , state)
then InitializeRoundAlternatives(subj , state)
else

if Timeout(subj , state, timeout(state)) then

self-contained we provide however the full textual definition and as a consequence
allow us to suppress in the flowchart some of the parameters.

12

C
op

yr
ig

ht
: 2

01
1

C
ar

l H
an

se
r V

er
la

g
M

ün
ch

en

A
us

zu
g

au
s:

 F
le

is
ch

m
an

n,
 A

.;
S

ch
m

id
t,

W
.;

S
ta

ry
, C

h.
; O

be
rm

ei
er

, S
.;

B
ör

ge
r,

E
.:

S
ub

je
kt

or
ie

nt
ie

rte
s

P
ro

ze
ss

m
an

ag
em

en
t.

H
an

se
r,

M
ün

ch
en

 2
01

1

Cop
yri

gh
t:

20
11

 C
ar

l H
an

se
r V

er
lag

 M
ün

ch
en

InterruptComAct(subj , state)
elseif UserAbruption(subj , state)

then AbruptComAct(subj , state)
else TryAlternativeComAct(subj , state)

Macros and Components of Perform(subj ,ComAct, state) We define
here also the Start(subj ,ComAct, state) machine. The function now used in
SetTimeoutClock is a monitored function denoting the current system time.

Start(subj ,ComAct, state) =
InitializeRoundAlternatives(subj , state)
InitializeExit&CompletionPredicatesComAct(subj , state)
EnterNonBlockingTryRound(subj , state)

where
InitializeRoundAlternatives(subj , state) =

RoundAlternative(subj , state) := Alternative(subj , state)
InitializeExit&CompletionPredicatesComAct(subj , state) =
InitializeExitPredicatesComAct(subj , state)
InitializeCompletionPredicateComAct(subj , state)

InitializeExitPredicatesComAct(subj , state) =
NormalExitCond(subj ,ComAct, state) := false
TimeoutExitCond(subj ,ComAct, state) := false
AbruptionExitCond(subj ,ComAct, state) := false

InitializeCompletionPredicateComAct(subj , state) =
Completed(subj ,ComAct, state) := false

[Non]BlockingTryRound(subj , state) =
tryMode(subj , state) = [non]blocking

Enter[Non]BlockingTryRound(subj , state) =
tryMode(subj , state) := [non]blocking

TryRoundFinished(subj , state) =
RoundAlternatives(subj , state) = ∅

InitializeBlockingTryRounds(subj , state) =
EnterBlockingTryRound(subj , state)
InitializeRoundAlternatives(subj , state)
SetTimeoutClock(subj , state)

SetTimeoutClock(subj , state) =
blockingStartTime(subj , state) := now

Timeout(subj , state, time) =
now ≥ blockingStartTime(subj , state) + time

InterruptComAct(subj , state) =
SetCompletionPredicateComAct(subj , state)
SetTimeoutExitComAct(subj , state)

13

C
op

yr
ig

ht
: 2

01
1

C
ar

l H
an

se
r V

er
la

g
M

ün
ch

en

A
us

zu
g

au
s:

 F
le

is
ch

m
an

n,
 A

.;
S

ch
m

id
t,

W
.;

S
ta

ry
, C

h.
; O

be
rm

ei
er

, S
.;

B
ör

ge
r,

E
.:

S
ub

je
kt

or
ie

nt
ie

rte
s

P
ro

ze
ss

m
an

ag
em

en
t.

H
an

se
r,

M
ün

ch
en

 2
01

1

Cop
yri

gh
t:

20
11

 C
ar

l H
an

se
r V

er
lag

 M
ün

ch
en

SetCompletionPredicateComAct(subj , state) =
Completed(subj ,ComAct, state) := true

SetTimeoutExitComAct(subj , state) =
TimeoutExitCond(subj ,ComAct, state) := true

AbruptComAct(subj , state) =
SetCompletionPredicateComAct(subj , state)
SetAbruptionExitComAct(subj , state)

To conclude this section: an attempt to TryAlternativeComAct comes in
two phases: the first phase serves to Choose&PrepareAlternative and is
followed by a second phase where the subject as we are going to explain in the
next section will try to actually carry out the communication. If this attempt
succeeds, the ComAct is Completed ; otherwise the subject will try out the next
send/receive alternative.

3.2 How to Try a Specific Communication Action

As explained in Sect. 3.1 subject’s first step to TryAlternativeComAct in
[non]blocking tryMode is to Choose&PrepareAlternativeComAct . Then it
will TryComAct for the prepared message(s).10

TryAlternativeComAct(subj , state) =
Choose&PrepareAlternativeComAct(subj , state)

seq TryComAct(subj , state)

We first explain the Choose&PrepareAlternativeComAct component for
the elaboration of messages and then define the machines TryComAct .

Elaboration of Messages Messages are objects which need to be prepared.
The PrepareMsg component of Choose&PrepareAlternative does this
for each selected communication alternative. To describe the selection, which
can be done either nondeterministically or following a priority scheme, we use
abstract functions selectAlt and priority . They can and will be further specified
once concrete send states are given in a concrete diagram.

Choose&PrepareAlternative also must ManageAlternativeRound,
essentially meaning to MarkSelection—typically by deleting the selected al-
ternative from RoundAlternative, to exclude the chosen candidate from a possible

10 Such a sequential structure is usually described using an FSM-like control state, say
tryMode, as we will do in the flowcharts below. For a succinct textual description
we will use sometimes the ASM seq operator (see the definition in [2]) which
allows one to hide control state guards and updates. For example in the definition of
Choose&PrepareAlternative we could skip an EnterTryAlternativeComAct

update because the machine is used only as composed by seq (with TryComAct in
TryAlternativeComAct).

14

C
op

yr
ig

ht
: 2

01
1

C
ar

l H
an

se
r V

er
la

g
M

ün
ch

en

A
us

zu
g

au
s:

 F
le

is
ch

m
an

n,
 A

.;
S

ch
m

id
t,

W
.;

S
ta

ry
, C

h.
; O

be
rm

ei
er

, S
.;

B
ör

ge
r,

E
.:

S
ub

je
kt

or
ie

nt
ie

rte
s

P
ro

ze
ss

m
an

ag
em

en
t.

H
an

se
r,

M
ün

ch
en

 2
01

1

Cop
yri

gh
t:

20
11

 C
ar

l H
an

se
r V

er
lag

 M
ün

ch
en

next AlternativeRound step which may happen if sending/receiving the selected
message is blocked.

There is one more feature to be prepared for due to the fact that S-BPM
deals also with multi-processes in the form of multiple send/receive actions,
which extend single send/receive actions where only one message is sent resp.
received to complete the communication act instead of mult many messages
belonging to the chosen alternative.

In the S-BPM framework a multi-process is either a multiple send action
(where a subject iterates finitely many times sending a message of some given
kind) or a multiple receive action (where a subject expects to receive finitely
many messages of a given kind). In the diagram notation the (design-time de-
termined) mult itude in question, which adds a new kind of message to com-
municate, appears as number of messages of some kind to be sent or to be
received during a Multi Send or MultiReceive. It is assumed that mult ≥ 2.
The principle of multiple send and receive actions in the presence of commu-
nication alternatives which is adopted for S-BPM is that once in a state a
subject has chosen a MultiSend or MultiReceive alternative, to complete this
multi-action it must send resp. receive the indicated multitude of messages of
the kind defined for the chosen alternative and in between will not pursue any
other communication. Therefore the alternative send/receive TryRound struc-
ture (see Fig. 2) and its Start component are not affected by the multi-process
feature, but only the TryComAct component which has to provide a nested Mul-
tiRound. For MultiSend actions it is also required that first all specimens of a
msgToBeHandled are elaborated by the subject, as to-be-contemplated for the
definition of Choose&PrepareAlternativeSend , and then they are tried to
be sent one after the other.

Thus one needs a MultiRound to guarantee that if a multi-communication
action has been chosen as communication alternative, then:

each of the mult(alt) many specimens belonging to the chosen message
alternative is tried out exactly once,
if for at least one of these specimens the attempt to communicate fails the
chosen alternative is considered to be failed,
no other communication takes place within a MultiRound.

Thus each MultiRound constitutes one iteration step of the current Al-
ternativeRound where the multi-communication action has been selected as
alternative. Since single send/receive steps are the special case of multi steps
where mult(alt) = 1 we treat single/multi communication actions uniformly
instead of introducing them separately.11

11 The price to pay is a small MultiRound overhead (which can later be optimized
away for the single action case mult(alt) = 1). In an alternative model one could
introduce first single communication actions (as they are present in the current
implementation) and then extend them in a purely incremental way by the multi-
process feature. Both ways to specify S-BPM clearly show that the extension of
S-BPM from SingleActions to MultiActions (for both Send and Receive actions) is
a purely incremental (in logic also called conservative) extension, which does only

15

C
op

yr
ig

ht
: 2

01
1

C
ar

l H
an

se
r V

er
la

g
M

ün
ch

en

A
us

zu
g

au
s:

 F
le

is
ch

m
an

n,
 A

.;
S

ch
m

id
t,

W
.;

S
ta

ry
, C

h.
; O

be
rm

ei
er

, S
.;

B
ör

ge
r,

E
.:

S
ub

je
kt

or
ie

nt
ie

rte
s

P
ro

ze
ss

m
an

ag
em

en
t.

H
an

se
r,

M
ün

ch
en

 2
01

1

Cop
yri

gh
t:

20
11

 C
ar

l H
an

se
r V

er
lag

 M
ün

ch
en

In the presence of multi-communication actions for each alternative one has
to InitializeMultiRound, as done in the ManageAlternativeRound com-
ponent of Choose&PrepareAlternative defined below.

This explains the following ComAct ion preparation machine a subj ect will
execute in every communication state as first step of TryAlternativeComAct .
As before the ComAct parameter stands for Send or Receive.

Choose&PrepareAlternativeComAct(subj , state) =
let alt = selectAlt(RoundAlternative(subj , state), priority(state))

PrepareMsgComAct(subj , state, alt)
ManageAlternativeRound(alt , subj , state)
where
ManageAlternativeRound(alt , subj , state) =
MarkSelection(subj , state, alt)
InitializeMultiRoundComAct(subj , state)

MarkSelection(subj , state, alt) =
Delete(alt ,RoundAlternative(subj , state))

A subject to PrepareMsgSend will composeMsgs out of msgData (the val-
ues of the relevant data structure parameters) and make the result available
in MsgToBeHandled .12 Similarly a receiver to PrepareMsgReceive may select
mult(alt) elements from a set of ExpectedMsgKind(alt) using some choice func-
tion selectMsgKind .13

PrepareMsgComAct(subj , state, alt) =
forall 1 ≤ i ≤ mult(alt)
if ComAct = Send then

let mi = composeMsg(subj ,msgData(subj , state, alt), i)
MsgToBeHandled(subj , state) := {m1, . . . ,mmult(alt)}

if ComAct = Receive then
let mi = selectMsgKind(subj ,state,alt,i)(ExpectedMsgKind(subj , state, alt))

MsgToBeHandled(subj , state) := {m1, . . . ,mmult(alt)}

The functions composeMsg and msgData must be left abstract in this high-
level model, playing the role of interfaces to the underlying data structure manip-
ulations, because they can be further refined only once the concrete data struc-

add new behavior without retracting behavior that was possible before. It supports
a modular design discipline and compositional proofs of properties of the system.
Notably all the other extensions defined in S-BPM are of this kind. See Sect. 6 for
further explanations.

12 For a Send(Multi) alternative mult(alt) message specimens of the selected alternative
will be composed, whereas for a Send(Single) action MsgToBeHandled will be a
singleton set containing a unique element which we then denote msgToBeSent .

13 In analogy to msgToBeSent we write also msgKindToBeReceived if there is a unique
chosen kind of MsgToBeHandled by a receive action. This case is currently imple-
mented.

16

C
op

yr
ig

ht
: 2

01
1

C
ar

l H
an

se
r V

er
la

g
M

ün
ch

en

A
us

zu
g

au
s:

 F
le

is
ch

m
an

n,
 A

.;
S

ch
m

id
t,

W
.;

S
ta

ry
, C

h.
; O

be
rm

ei
er

, S
.;

B
ör

ge
r,

E
.:

S
ub

je
kt

or
ie

nt
ie

rte
s

P
ro

ze
ss

m
an

ag
em

en
t.

H
an

se
r,

M
ün

ch
en

 2
01

1

Cop
yri

gh
t:

20
11

 C
ar

l H
an

se
r V

er
lag

 M
ün

ch
en

tures are known which are used by the subject in the send state under consid-
eration. It is however assumed that there are functions sender(msg), type(msg)
and receiver(msg) to extract the corresponding information from a message, so
that composeMsg is required to put this information into a message. Similarly
for the expectedMsgKind and selectMsgKind functions.

TryComAct Components The structure of the machines TryComAct we are
going to explain now is visualized by Fig. 3 and Fig. 4.

Fig. 3. TryAlternativeSend

In TryComAct the subject first chooses from MsgToBeHandled a message m
(to send) or kind m of message (to receive) and—to exclude it from further
choices—will MarkChoice of m.14 Then the subject does the following:

For Send it checks whether it CanAccess the input pool of the receiver(m) to
TryAsync(Send)ing m (otherwise it will ContinueMultiRoundFail , which
includes to RecordFailure of this send attempt).

14 MarkChoice is the MultiRound pendant of MarkSelection defined in Sect. 3.1
for AlternativeRounds. We include into it a record of the current choice because
this information is needed to describe the Rendezvous predicate for synchronous
communication.

17

C
op

yr
ig

ht
: 2

01
1

C
ar

l H
an

se
r V

er
la

g
M

ün
ch

en

A
us

zu
g

au
s:

 F
le

is
ch

m
an

n,
 A

.;
S

ch
m

id
t,

W
.;

S
ta

ry
, C

h.
; O

be
rm

ei
er

, S
.;

B
ör

ge
r,

E
.:

S
ub

je
kt

or
ie

nt
ie

rte
s

P
ro

ze
ss

m
an

ag
em

en
t.

H
an

se
r,

M
ün

ch
en

 2
01

1

Cop
yri

gh
t:

20
11

 C
ar

l H
an

se
r V

er
lag

 M
ün

ch
en

Fig. 4. TryAlternativeReceive

For Receive it goes directly to TryAsync(Receive) or TrySync(Receive) a mes-
sage of kind m depending on whether the commMode(m) is asynchronous
(as expressed by the guard Async(Receive)(m) or synchronous (as expressed
by the guard Sync(Receive)(m)), without the CanAccess condition.15

Another slight asymmetry between send/receive actions derives from the fact
that the sender tries a synchronous action only if the asynchronous one failed.

ContinueMultiRoundFail has a pendant ContinueMultiRoundSuccess

for successful communication. They record success resp. failure of the current
MultiRound communication step and check whether to continue with the Mul-
tiRound or go back to the AlternativeRound.

TryComAct(subj , state) =
choose m ∈ MsgToBeHandled(subj , state)

MarkChoice(m, subj , state)
if ComAct = Send then

let receiver = receiver(m), pool = inputPool(receiver)
if not CanAccess(subj , pool) then
ContinueMultiRoundFail(subj , state,m)

15 Thus the access of a receiver to its input pool (which comes up to read the pool and
to possibly delete an expected message) can happen at the same time as an Insert
of a sender. One Insert and one Delete operation can be assumed to be executed
consistently in parallel by the pool manager. An alternative would be to include the
receiver into the CanAccess mechanism—at the price of complicating the definition
of RendezvousWithSender .

18

C
op

yr
ig

ht
: 2

01
1

C
ar

l H
an

se
r V

er
la

g
M

ün
ch

en

A
us

zu
g

au
s:

 F
le

is
ch

m
an

n,
 A

.;
S

ch
m

id
t,

W
.;

S
ta

ry
, C

h.
; O

be
rm

ei
er

, S
.;

B
ör

ge
r,

E
.:

S
ub

je
kt

or
ie

nt
ie

rte
s

P
ro

ze
ss

m
an

ag
em

en
t.

H
an

se
r,

M
ün

ch
en

 2
01

1

Cop
yri

gh
t:

20
11

 C
ar

l H
an

se
r V

er
lag

 M
ün

ch
en

else TryAsync(Send)(subj , state,m)
if ComAct = Receive then

if Async(Receive)(m) then TryAsync(Receive)(subj , state,m)
if Sync(Receive)(m) then TrySync(Receive)(subj , state,m)

where
MarkChoice(m, subj , state) =

Delete(m,MsgToBeHandled(subj , state))
currMsgKind(subj , state) := m

The components TryAsync(ComAct) and TrySync(ComAct) check whether the
ComAct ion can be done asynchronoysly resp. synchronously and in case of failure
ContinueMultiRoundFail . If a communication turns out to be possible they
use components16 Asynch(ComAct) and Sync(ComAct) which carry out the
actual ComAct ion and ContinueMultiRoundSuccess . They are defined below
together with PossibleAsyncComAct(subj ,m) and PossibleSyncComAct(subj ,m)
by which they are guarded.

TryAsync(ComAct)(subj , state,m) =
if PossibleAsyncComAct(subj ,m) // async communication possible

then Async(ComAct)(subj , state,m)
else

if ComAct = Receive then
ContinueMultiRoundFail(subj , state,m)

if ComAct = Send then TrySync(ComAct)(subj , state,m)
TrySync(ComAct)(subj , state,m) =

if PossibleSyncComAct(subj ,m) // sync communication possible
then Sync(ComAct)(subj , state,m)
else ContinueMultiRoundFail(subj , state,m)

3.3 How to Actually Send a Message

In this section we define the Asynch(Send) and Sync(Send) components which
if the condition PossibleAsyncSend resp. PossibleSyncSend is true asynchronously
or synchronously carry out the actual Send and ContinueMultiRoundSuccess .

PossibleAsyncSend(subj ,m) means that m is not Blocked by the receiver’s
input pool so that in Asynch(Send) subj ect can send m asynchronously:17

PassMsg to the input pool and ContinueMultiRoundSuccess .18

PossibleSyncSend(subj ,m) means that a RendezvousWithReceiver is possible
for the subj ect whereby it can definitely send m synchronously via SyncSend .
For the sender subj ect this comes up to simply ContinueMultiRoundSuccess .

16 The parameter ComAct plays here the role of an index.
17 The reader will notice that for Send actions the PossibleAsync predicate depends

only on messages. We have included the subj ect parameter for reasons of uniformity,
since it is needed for PossibleAsyncReceive .

18 In case of a single send action the subject will directly CompleteNormallySend .

19

C
op

yr
ig

ht
: 2

01
1

C
ar

l H
an

se
r V

er
la

g
M

ün
ch

en

A
us

zu
g

au
s:

 F
le

is
ch

m
an

n,
 A

.;
S

ch
m

id
t,

W
.;

S
ta

ry
, C

h.
; O

be
rm

ei
er

, S
.;

B
ör

ge
r,

E
.:

S
ub

je
kt

or
ie

nt
ie

rte
s

P
ro

ze
ss

m
an

ag
em

en
t.

H
an

se
r,

M
ün

ch
en

 2
01

1

Cop
yri

gh
t:

20
11

 C
ar

l H
an

se
r V

er
lag

 M
ün

ch
en

The prepared message becomes available through the RendezvousWithReceiver
so that the receiver can RecordLocally it (see the definitions in Sect. 3.4).

In Async(Send) the component PassMsg(msg) is called19 if the msg is
not Blocked . Therefore msg insertion must take place in two cases: either msg
violates no constraint row or it violates one and the action of the first row it
violates is not DropIncoming; in the second case also a Drop action has to be
done to create in the input pool a place for the incoming msg .

Async(Send)(subj , state,msg) =
PassMsg(msg)
ContinueMultiRoundSuccess(subj , state,msg)

where
PassMsg(msg) =

let pool = inputPool(receiver(msg))
row = first({r ∈ constraintTable(pool) |

ConstraintViolation(msg , r)})
if row 6= undef and action(row) 6= DropIncoming

then Drop(action)
if row = undef or action(row) 6= DropIncoming then

Insert(msg , pool)
insertionTime(msg , pool) := now

Drop(action) =
if action = DropYoungest then Delete(youngestMsg(pool), pool)
if action = DropOldest then Delete(oldestMsg(pool), pool)

PossibleAsyncSend(subj ,msg) iff not Blocked(msg)
Blocked(msg) iff

let row = first({r ∈ constraintTable(inputPool(receiver(msg))) |
ConstraintViolation(msg , r)})

row 6= undef and action(row) = Blocking

In Sync(Send)(subj , state,msg) the subj ect has nothing else to do than to
ContinueMultiRoundSuccess because through the RendezvousWithReceiver
the elaborated msg becomes available to the receiver which will RecordLocally
it during its RendezvousWithSender (see Sect. 3.4).

Sync(Send)(subj , state,msg) =
ContinueMultiRoundSuccess(subj , state,msg)

PossibleSyncSend(subj ,msg) iff RendezvousWithReceiver(subj ,msg)

Necessarily the following description of RendezvousWithReceiver refers to
some details of the definitions for receive actions described in Sect. 3.4. Upon
the first reading this definition may be skipped to come back to it after having
read Sect. 3.4.

19 Typically an implementation will charge the input pool manager to execute
PassMsg, even if here the machine appears as component of a subj -rule.

20

C
op

yr
ig

ht
: 2

01
1

C
ar

l H
an

se
r V

er
la

g
M

ün
ch

en

A
us

zu
g

au
s:

 F
le

is
ch

m
an

n,
 A

.;
S

ch
m

id
t,

W
.;

S
ta

ry
, C

h.
; O

be
rm

ei
er

, S
.;

B
ör

ge
r,

E
.:

S
ub

je
kt

or
ie

nt
ie

rte
s

P
ro

ze
ss

m
an

ag
em

en
t.

H
an

se
r,

M
ün

ch
en

 2
01

1

Cop
yri

gh
t:

20
11

 C
ar

l H
an

se
r V

er
lag

 M
ün

ch
en

For a RendezvousWithReceiver(subj ,msg) the receiver has to tryToReceive
(see Fig. 4) synchronously (i.e. the receiver has chosen a currMsgKind20 which re-
quests a synchronous message transfer, described in Sync(Receive) (see Sect. 3.4)
as commMode(currMsgKind) = sync and subj ect itself has to try a synchronous
message transfer, i.e. the msg it wants to send has to be Blocked by the first
synchronization requiring row which concerns msg (i.e. where Match(msg , row)
holds) in the constraintTable of the receiver’s input pool. Furthermore the msg
the sender offers to send must Match the currMsgKind the receiver has currently
chosen in its current SID state.

RendezvousWithReceiver(subj ,msg) iff
tryMode(rec) = tryToReceive and Sync(Receive)(currMsgKind)

and SyncSend(msg) and Match(msg , currMsgKind)
where

rec = receiver(msg), recstate = SID state(rec)
currMsgKind = currMsgKind(rec, recstate)
blockingRow =

first({r ∈ constraintTable(rec) | ConstraintViolation(msg , r)})
SyncSend(msg) iff size(blockingRow) = 0

Remark. The definition of RendezvousWithReceiver makes crucial use of the
fact that for each subject its SID state is uniquely determined so that for a sub-
ject in tryMode tryToReceive the selected receive alternative can be determined.

3.4 How to Actually Receive a Message

In this section we define the two Asynch(Receive) and Sync(Receive) compo-
nents which asynchronously or synchronously carry out the actual Receive action
and ContinueMultiRoundSuccess if the conditions PossibleAsyncReceive resp.
PossibleSyncReceive is satisfied.

There are four kinds of basic receive action, depending on whether the re-
ceiver for the currently chosen kind of expected messages in its current alternative
is ready to receive (‘expects’) any message or a message from a particular sender
or a message of a particular type or a message of a particular type from a partic-
ular sender. We describe such receive conditions by the set ExpectedMsgKind of
triples describing the combinations of sender and message type from which the
receiver may choose mult(alt) many for messages it will accept (see the definition
of PrepareMsgReceive in Sect. 3.1).

ExpectedMsgKind(subj , state, alt) yields a set of 3-tuples of form:
s t commMode

where
s ∈ Sender ∪ {any} and t ∈ MsgType ∪ {any}
commMode ∈ {async, sync} // accepted communication mode

20 This MultiRound location is updated in MarkChoice.

21

C
op

yr
ig

ht
: 2

01
1

C
ar

l H
an

se
r V

er
la

g
M

ün
ch

en

A
us

zu
g

au
s:

 F
le

is
ch

m
an

n,
 A

.;
S

ch
m

id
t,

W
.;

S
ta

ry
, C

h.
; O

be
rm

ei
er

, S
.;

B
ör

ge
r,

E
.:

S
ub

je
kt

or
ie

nt
ie

rte
s

P
ro

ze
ss

m
an

ag
em

en
t.

H
an

se
r,

M
ün

ch
en

 2
01

1

Cop
yri

gh
t:

20
11

 C
ar

l H
an

se
r V

er
lag

 M
ün

ch
en

The communication mode decides upon whether the receiver will try to
Async(Receive) or to Sync(Receive) a message of a chosen expected message
kind.

Async(Receive)(m) holds if commMode(m) = async. If a subj ect is called
to Async(Receive)(subj , state,m) it knows that a message satisfying the asyn-
chronous receive condition PossibleAsyncReceive(subj ,m) is Present in its in-
put pool. It can then ContinueMultiRoundSuccess and Accept a message
matching m. Since the input pool may contain at a given moment more than
one message which matches m, to Accept a message one needs another selec-
tion function selectReceiveOfKind(m) to determine the one message which will be
received.

Async(Receive)(subj , state,msg) =

Accept(subj ,msg)

ContinueMultiRoundSuccess(subj , state,msg)

where

Accept(subj ,m) =

let receivedMsg =

selectReceiveOfKind(m)({msg ∈ inputPool(subj) | Match(msg ,m)})
RecordLocally(subj , receivedMsg)

Delete(receivedMsg , inputPool(subj))

Async(Receive)(m) iff commMode(m) = async

PossibleAsyncReceive(subj ,m) iff Present(m, inputPool(subj))

Present(m, pool) iff forsome msg ∈ pool Match(msg ,m)

When Sync(Receive)(subj , state) is called, the receiver knows that there is a
sender for a RendezvousWithSender (a subject which right now via a TrySend

action tries to and CanAccess the receiver’s input pool with a matching message,
see Sect. 3.3) to receive its msgToBeSent . The synchronization then succeeds:
subj ect can RecordLocally the msgToBeSent , bypassing the input pool,21

and ContinueMultiRoundSuccess(subj , state, currMsgKind(subj , state)).

Sync(Receive)(subj , state,msgKind) =

let P = inputPool(subj), sender = ιs(CanAccess(s,P))

RecordLocally(subj ,msgToBeSent(sender ,SID state(sender))

ContinueMultiRoundSuccess(subj , state,msgKind)

Sync(Receive)(msgKind) iff commMode(msgKind) = sync

PossibleSyncReceive(subj ,msgKind) iff

RendezvousWithSender(subj ,msgKind)

21 The input pool is bypassed only concerning the act of passing the message from
sender to receiver during the rendezvous. It is addressed however to determine the
synchronization partner as the unique subject which in the given state can commu-
nicate with the receiver (whether synchronously or asynchronously), as mentioned
in the footnote to the definition of TrySend in Sect. 3.3.

22

C
op

yr
ig

ht
: 2

01
1

C
ar

l H
an

se
r V

er
la

g
M

ün
ch

en

A
us

zu
g

au
s:

 F
le

is
ch

m
an

n,
 A

.;
S

ch
m

id
t,

W
.;

S
ta

ry
, C

h.
; O

be
rm

ei
er

, S
.;

B
ör

ge
r,

E
.:

S
ub

je
kt

or
ie

nt
ie

rte
s

P
ro

ze
ss

m
an

ag
em

en
t.

H
an

se
r,

M
ün

ch
en

 2
01

1

Cop
yri

gh
t:

20
11

 C
ar

l H
an

se
r V

er
lag

 M
ün

ch
en

RendezvousWithSender(subj ,msgKind) iff
Sync(Receive)(msgKind) and

let sender = ιs(CanAccess(s, inputPool(subj))
let msgToBeSent = msgToBeSent(sender ,SID state(sender))

tryMode(sender) = tryToSend and SyncSend(msgToBeSent)
and Match(msgToBeSent ,msgKind)

Remark. The definition of RendezvousWithSender makes crucial use of the
fact that for each subject its SID state is uniquely determined and therefore
for a subject in tryMode tryToSend also the msgToBeSent . Thus through the
rendezvous this message becomes available to the receiver to RecordLocally
it.

The subcomponent structure of Behavior(subj , state for states whose asso-
ciated service is a ComAct (Send or Receive) is illustrated in Fig. 5.

Fig. 5. Subcomponent Structure for Communication Behavior

3.5 Internal Functions

A detailed internal Behavior of a subject in a state with internal function A can
be defined in terms of the submachines Start and Perform together with the

23

C
op

yr
ig

ht
: 2

01
1

C
ar

l H
an

se
r V

er
la

g
M

ün
ch

en

A
us

zu
g

au
s:

 F
le

is
ch

m
an

n,
 A

.;
S

ch
m

id
t,

W
.;

S
ta

ry
, C

h.
; O

be
rm

ei
er

, S
.;

B
ör

ge
r,

E
.:

S
ub

je
kt

or
ie

nt
ie

rte
s

P
ro

ze
ss

m
an

ag
em

en
t.

H
an

se
r,

M
ün

ch
en

 2
01

1

Cop
yri

gh
t:

20
11

 C
ar

l H
an

se
r V

er
lag

 M
ün

ch
en

completion predicate Completed for the parameters (subj ,A, state) in the same
manner as has been done for communication actions in Sect. 3.3-3.4—but only
once it is known how to start, to perform and to complete A. For example, for
Java coded functions A Start(subj ,A, state) could mean to call the (multi-
threaded) Java interpreter execJavaThread defined in terms of ASMs in [4,
p.101], Perform(subj ,A, state) means to execute it step by step and the com-
pletion predicate coincides with the termination condition of execJavaThread . A
still more detailed description, one step closer to executed code, can be obtained
by a refinement which replaces the computation of execJavaThread for A by a
(in [4, Ch.14] proven to be equivalent) computation of the Java Virtual Machine
model (called diligentVMD in [4, p.303]) on compile(A).

For internal states with uninterpreted internal functions A the two subma-
chines of Behavior(state) and the completion predicate remain abstract and the
semantics of the SBD where they occur derives from the semantics of ASMs [2]
for which the only requirement is that in an ASM state every function is in-
terpreted even if the specification does not define the interpretation. The only
requirement is that Performing an internal action is guarded by an interrupt
mechanism. This comes up to further specify the SID-transition scheme for in-
ternal actions by detailing its else-clause as follows:

if Timeout(subj , state, timeout(state)) then

Interruptservice(state)(subj , state)

elseif UserAbruption(subj , state)

then Abruptservice(state)(subj , state)

else Perform(subj , state)

Remark. An internal function is not permitted to represent a nested subject
behavior diagram so that the SID-level normalized behavior view, the one defined
by the subject behavior diagrams of a process (see Sect. 5.2), is clearly separated
from the local subject behavior view for the execution of a single internal function
by a subject. At present the tool permits as internal functions only self-services,
no delegated service.

4 A Structured Behavioral Concept: Alternative Actions

Additional structural constructs can be introduced building upon the definitions
for the core constructs of subject behavior diagrams: internal function, send and
receive. The goal is to permit compact structured representations of processes
which make use of common reuse, abstraction and modularization techniques.
Such constructs can be defined by further refinements of the ASMs defined in
Sect. 3 to accurately capture the semantics of the core SBD-constituents. The
refined machines represent each a conservative (i.e. purely incremental) extension
of the previous machines in the sense that on the core actions the two machines
have the same behavior, whereas the refined version can also interprete additional
constructs.

24

C
op

yr
ig

ht
: 2

01
1

C
ar

l H
an

se
r V

er
la

g
M

ün
ch

en

A
us

zu
g

au
s:

 F
le

is
ch

m
an

n,
 A

.;
S

ch
m

id
t,

W
.;

S
ta

ry
, C

h.
; O

be
rm

ei
er

, S
.;

B
ör

ge
r,

E
.:

S
ub

je
kt

or
ie

nt
ie

rte
s

P
ro

ze
ss

m
an

ag
em

en
t.

H
an

se
r,

M
ün

ch
en

 2
01

1

Cop
yri

gh
t:

20
11

 C
ar

l H
an

se
r V

er
lag

 M
ün

ch
en

In this section we deal with a structural extension concerning the general
behavior of subjects, namely alternative actions. In Sect. 5 extensions concerning
the communication constructs will be explained.

The concept of alternative actions allows the designer to express the order
independence of certain actions of a subject. This abstraction from the sequential
execution order for specific segments in a subject behavior diagram run is realized
by introducing so-called alternative action (also called alternative path) states,
a structured version of SID-states which is added to communication and internal
action states.

At an alternative action state the computation of a subject splits into finitely
many interleaved subcomputations of that subject, each following a (so-called
alternative) subject behavior diagram altBehDgm(state, i) of that subject (1 ≤
i ≤ m for some natural number m determined by the state). For this reason
such SID-states are also called altSplit states.

AltBehDgm(altSplit) = {altBehDgm(altSplit , i) | 1 ≤ i ≤ m}

Stated more precisely, to Perform AltAction—the service associated to
an alternative action state—means to perform for some subset of these alterna-
tive SBDs the behavior of each subdiagram in this set, executed step by step
in an arbitrarily interleaved manner.22 Some of these subdiagram computations
may be declared to be compulsory with respect to their being started respectively
terminated before the AltAction can be Completed .

To guarantee for computations of alternative action states a conceptually
clear termination criterion in the presence of compulsory and optional interleaved
subcomputations each altSplit state comes in pair with a unique alternative
action join state altJoin(state). The split and join states are decorated for each
subdiagram D in AltBehDgm(state) with an entryBox (D) and an exitBox (D)
where in the pictorial representation (see Fig. 6) an x is put to denote the
compulsory nature of entering resp. exiting the D-subcomputation via its unique
altEntry(D) resp. altExit(D) state linked to the corresponding box. Declaring
altEntry(D) and/or altExit(D) as Compulsory expresses the following constraint
on the run associated to the AltAction split state:

A compulsory altEntry(D) state must be entered during the run so that the
D-subcomputation must have been started before the run can be Completed .
It is required that every alternative action split state has at least one sub-
diagram with compulsory altEntry state.
A compulsory altExit(D) state must be reached in the run, for the run to
be Completed , if during the run a D-subcomputation has been entered at
altEntry(D) (whether the altEntry(D) state is compulsory or not). It is
required that every alternative action join state has at least one subdiagram
with compulsory altExit state.23

22 It is natural to apply the interleaving policy to alternative steps of one subject. The
model needs no interleaving assumption on steps of different subjects.

23 This condition implies that if an alternative action node is entered where no sub-
diagram with compulsory altExit has a compulsory altEntry , the subcomputation

25

C
op

yr
ig

ht
: 2

01
1

C
ar

l H
an

se
r V

er
la

g
M

ün
ch

en

A
us

zu
g

au
s:

 F
le

is
ch

m
an

n,
 A

.;
S

ch
m

id
t,

W
.;

S
ta

ry
, C

h.
; O

be
rm

ei
er

, S
.;

B
ör

ge
r,

E
.:

S
ub

je
kt

or
ie

nt
ie

rte
s

P
ro

ze
ss

m
an

ag
em

en
t.

H
an

se
r,

M
ün

ch
en

 2
01

1

Cop
yri

gh
t:

20
11

 C
ar

l H
an

se
r V

er
lag

 M
ün

ch
en

Fig. 6. Structure of Alternative Action Nodes

When Proceed takes the edge which leads out of altExit(D) to its suc-
cessor state exitBox (D) (see Fig. 6), the computation of the service associated
to altExit(D) and therefore the entire D-subcomputation is completed. This
does not mean yet that the entire computation of the AltAction state is
Completed : exitBox (D) is a wait state to wait for all other to-be-exited subcom-
putations of the AltAction state to be completed too. Formally the service
AltActionWait associated to a wait state is empty and there is no isolated
exit from a wait state (read: no wait action is ever Completed in isolation) but
only a common ExitAltAction from all relevant wait states once AltAction
is Completed (see below). This is formalized by the following definition.

Start(subj ,AltActionWait, exitBox) =
InitializeCompletionPredicateAltActionWait(subj , exitBox)

Perform(subj ,AltActionWait, exitBox) = skip

It is then stipulated that an AltAction—read: the run Started when en-
tering an alternative action SID-state—is Completed if and only if for each sub-
diagram D with compulsory altExit(D) state the subject during the run has

of this alternative action is immediately Completed . Therefore it seems reasonable
to require for alternative action nodes to have at least one subdiagram where both
states altEntry and altExit are compulsory.

26

C
op

yr
ig

ht
: 2

01
1

C
ar

l H
an

se
r V

er
la

g
M

ün
ch

en

A
us

zu
g

au
s:

 F
le

is
ch

m
an

n,
 A

.;
S

ch
m

id
t,

W
.;

S
ta

ry
, C

h.
; O

be
rm

ei
er

, S
.;

B
ör

ge
r,

E
.:

S
ub

je
kt

or
ie

nt
ie

rte
s

P
ro

ze
ss

m
an

ag
em

en
t.

H
an

se
r,

M
ün

ch
en

 2
01

1

Cop
yri

gh
t:

20
11

 C
ar

l H
an

se
r V

er
lag

 M
ün

ch
en

reached the exitBox (D) state—by construction of the diagram this can happen
only through the altExit(D) after having Completed the service associated to this
state and therefore the entire D-subcomputation—if in the run a subdiagram
computation has been started at all at altEntry(D) of D

Therefore from the SID-level point-of-view the Behavior(subj ,node) for an
alternative action node is defined exactly as for standard nodes (with or without
multiple (condition) exits); what is specific is the definition of Starting and
Performing the steps of (read: the run defined by) an AltAction and the
definition of when it is Completed . In other words we treat AltAction as the
service associated to an alternative action state.

For the formal definition of what it means to Start and to Perform the
AltAction associated to an altSplit state the fact is used that SID-states of a
subject are (implicitly) parameterized by the diagram in which the states occur.
As a result one can keep track of whether the subject is active in a subcomputa-
tion of one of the alternative subject behavior diagrams in AltBehDgm(altSplit)
by checking whether the SID state(subj ,D) has been entered by the subject
(formally: whether it is defined) for any of these subdiagrams D . Therefore
Start(subj ,AltAction, altSplit) sets SID state(subj ,D) to altEntry(D) for
each subdiagram D whose altEntry(D) state is Compulsory and guarantees
that the associated service(altEntry(D)) is Started. For the other subdiagrams
SID state(subj ,D) is initialized to undef .24

Start(subj ,AltAction, altSplit) =
forall D ∈ AltBehDgm(altSplit)

if Compulsory(altEntry(D)) then
SID state(subj ,D) := altEntry(D)
Start(subj , service(altEntry(D)), altEntry(D))

else SID state(subj ,D) :=undef

As a consequence the computation of subj ect in a subdiagram D becomes
active by defining the SID state(subj ,D) so that the formal definition of the
completion condition for alternative actions nodes described above reads as fol-
lows:25

Completed(subj ,AltAction, altSplit) iff
forall D ∈ AltBehDgm(altSplit)

if Compulsory(altExit(D)) and Active(subj ,D)
then SID state(subj ,D) = exitBox (D)

where
Active(subj ,D) iff SID state(subj ,D) 6= undef

24 This definition of Start implies that entryBox (D) is only a placeholder for the
Compulsory attribute of D , whereas exitBox (D) is treated as a diagram state for
AltActionWaiting that the entire AltAction action is Completed .

25 The completion predicate for alternative action nodes is a derived predicate, in
contrast to its controlled nature for communication actions.

27

C
op

yr
ig

ht
: 2

01
1

C
ar

l H
an

se
r V

er
la

g
M

ün
ch

en

A
us

zu
g

au
s:

 F
le

is
ch

m
an

n,
 A

.;
S

ch
m

id
t,

W
.;

S
ta

ry
, C

h.
; O

be
rm

ei
er

, S
.;

B
ör

ge
r,

E
.:

S
ub

je
kt

or
ie

nt
ie

rte
s

P
ro

ze
ss

m
an

ag
em

en
t.

H
an

se
r,

M
ün

ch
en

 2
01

1

Cop
yri

gh
t:

20
11

 C
ar

l H
an

se
r V

er
lag

 M
ün

ch
en

Thus from the altSplit state the subj ect reaches its unique SID-successor
state altJoin(altSplit),26 where subj ect performs as ExitAltAction action
(with empyt Start) to reset SID state(subj ,D) for each alternative diagram
D ∈ AltBehDgm(altSplit) and to SetCompletionPredicateExitAltAction , so
that subj ect in the next step from here will Proceed to a successor SID-state
of the altJoin(altSplit) state.

Start(subj ,ExitAltAction, altJoin(altSplit)) = skip
Perform(subj ,ExitAltAction, altJoin) =

forall D ∈ AltBehDgm(altSplit) SID state(subj ,D) := undef
SetCompletionPredicateExitAltAction(subj , altJoin(altSplit))

To Perform a step of AltAction—a step in the subrun of an alternative
action node—the subject either will PerformSubDgmStep, i.e. will execute
the Behavior as defined for its current state in any of the subdiagrams where it
is active, or it will StartNewSubDgm in one of the not yet active alternative
behavior diagrams.

Perform(subj ,AltAction, state) =
PerformSubDgmStep(subj , state)

or StartNewSubDgm(subj , state)}
where
PerformSubDgmStep(s,n) =

choose D ∈ ActiveSubDgm(s,n) in Behavior(s,SID state(s,D))
StartNewSubDgm(s,n) =

choose D ∈ AltBehDgm(n) \ActiveSubDgm(s,n)
SID state(s,D) := altEntry(D)
Start(s, service(altEntry(D)), altEntry(D))

ActiveSubDgm(s,n) = {D ∈ AltBehDgm(n) | Active(s,D)}
R or S = choose X ∈ {R,S} in X

Remark. In each step of AltAction the underlying SID state is uniquely
determined by the interleaving scheme: it is either the alternative action state
itself (when StartNewSubDgm is chosen) or the SID state in the diagram cho-
sen to PerformSubDgmStep, so that it can be computed recursively. There-
fore its use in defining RendezvousWith... is correct also in the presence of alter-
native actions.

Remark. The understanding of alternative state computations is that once
the alternative clause is Completed none of its possibly still non completed sub-
computations will be continued. This is guaranteed by the fact that the sub-
machine PerformSubDgmStep is executed (and thus performs a subdiagram
step of subj ect) only when triggered by Perform in the subj ect’s altSplit state,
which however (by definition of Behavior(subj , state)) is not executed when
Completed is true.

26 In the diagram no direct edge connecting the two nodes is drawn, but it is implicit
in the parenthesis structure formed by altSplit and altJoin(altSplit).

28

C
op

yr
ig

ht
: 2

01
1

C
ar

l H
an

se
r V

er
la

g
M

ün
ch

en

A
us

zu
g

au
s:

 F
le

is
ch

m
an

n,
 A

.;
S

ch
m

id
t,

W
.;

S
ta

ry
, C

h.
; O

be
rm

ei
er

, S
.;

B
ör

ge
r,

E
.:

S
ub

je
kt

or
ie

nt
ie

rte
s

P
ro

ze
ss

m
an

ag
em

en
t.

H
an

se
r,

M
ün

ch
en

 2
01

1

Cop
yri

gh
t:

20
11

 C
ar

l H
an

se
r V

er
lag

 M
ün

ch
en

Remark. The tool at present does not allow nested alternative clauses, al-
though the specification defined above also works for nested alternative clauses
via the SID state(s,D) notation for subdiagrams D which guarantees that for
each diagram D each subj ect at any moment is in at most one SID state(subj ,D).
If the subdiagrams are properly nested (a condition that is required for alterna-
tive behavior diagrams), it is guaranteed by the definition of Perform for an
AltAction that altSplit controls the walk of subj through the subdiagrams un-
til AltAction is Completed at altSplit so that subj can Proceed to its unique
successor state altJoin(altSplit); if one of the behavior subdiagrams of altSplit
contains an alternative split state state1 with further alternative behavior sub-
diagrams, both altSplit and state1 together control the walk of subj through the
subsubdiagrams until AltAction is Completed at state1, etc.27

Remark. The specification above makes no assumption neither on the nature
or number of the states from where an alternative action node is entered nor on
the number of edges leaving an alternative action node or the nature of their
target states. For this reason Fig. 6 shows no edge entering altSplit and no edge
leaving altJoin(altSplit).

Remark. Alternative action nodes can be instantiated by natural constraints
on which entry/exit states are compulsory to capture two common business
process constructs, namely and (where each entry- and exitBox has an x) and
or (where no entry- but every exitBox has an x). A case of interest for testing
purposes is skip (where not exitBox has an x).

5 Notational Structuring Concepts

This section deals with notational concepts to structure processes. Some of them
can be described by further ASM refinements of the basic constituents of SBDs.

5.1 Macros

The idea underlying the use of macros is to describe once and for all a behavior
that can be replicated by insertion of the macro into multiple places. Macros
represent a notational device supporting to define processes where instead of
rewriting in various places copies of some same subprocess a short (possibly pa-
rameterized) name for this subprocess is used in the enclosing process description

27 Let SBDs D ,D1,D2,D11,D12 be given where D is the main diagram with subdi-
agrams D1,D2 at an alternative action state altSplit and where D1 contains an-
other alternative action state1 with subdiagrams D11,D12. Then the SID state of
subj first walks through states in D (read: assumes as values of SID state(subj) =
SID state(subj ,D) nodes in D) until it reaches the D-node altSplit ; altSplit con-
trols the walks through SID state(subj ,Di) states (for i = 1, 2), in D1 until
SID state(subj ,D1) reaches state1. Then altSplit and state1 together control the walk
through SID state(subj ,D1j) (for j = 1, 2) until the AltAction at node state1 is
Completed . Then altSplit continues to control the walk through SID state(subj ,Di)
states (for i = 1, 2) until the AltAction at altSplit is Completed .

29

C
op

yr
ig

ht
: 2

01
1

C
ar

l H
an

se
r V

er
la

g
M

ün
ch

en

A
us

zu
g

au
s:

 F
le

is
ch

m
an

n,
 A

.;
S

ch
m

id
t,

W
.;

S
ta

ry
, C

h.
; O

be
rm

ei
er

, S
.;

B
ör

ge
r,

E
.:

S
ub

je
kt

or
ie

nt
ie

rte
s

P
ro

ze
ss

m
an

ag
em

en
t.

H
an

se
r,

M
ün

ch
en

 2
01

1

Cop
yri

gh
t:

20
11

 C
ar

l H
an

se
r V

er
lag

 M
ün

ch
en

and the subprocess is separately defined once and for all. In the S-BPM context
it means to define SBD-macros which can be inserted into given SBDs of possi-
bly different (types of) subjects (participating in one process or even in different
processes). The insertion must be supported by a substitution mechanism to
replace (some of) the parameters of the macro-SBD by subject types or by con-
crete subjects that can be assumed to be known in the context of the SBD where
the macro-SBD is inserted.

An SBD-macro (which for brevity will be called simply a macro) is defined
to be an SBD which is parameterized by finitely many subject types.28 Usually
the first parameter is used to specify the type of a subject into whose SBDs the
macro can be inserted. The remaining parameters specify the type of possible
communication partners of (subjects of the type of) the first parameter. Through
these parameters what is called macro really is a scheme for various macro
instances which are obtained by parameter substitution.

To increase the flexibility in the use of macros it is permitted to enter and
exit an SBD-macro via finitely many entryStates resp. exitEdges which can be
specified at design time and are pictorially represented by so-called macro tables
decorating so-called macro states (see Fig. 7). They are required to satisfy some
natural conditions (called Macro Insertion Constraints) to guarantee that if a
subject during its walk through D reaches the macro state it will:

walk via one of the entryStates into the macro,
then walk through the diagram of the macro until it reaches one of the
exitEdges,
through the exitEdge Proceed to a state in the enclosing diagram D .

Fig. 7. Macro Table associated to a Macro State

The macro insertion constraints are therefore about how the entryStates and
exitEdges are connected to states of the surrounding subject behavior diagram D

28 This macro definition deliberately privileges the role of subjects, hiding the under-
lying data structure parameters of an SBD-macro.

30

C
op

yr
ig

ht
: 2

01
1

C
ar

l H
an

se
r V

er
la

g
M

ün
ch

en

A
us

zu
g

au
s:

 F
le

is
ch

m
an

n,
 A

.;
S

ch
m

id
t,

W
.;

S
ta

ry
, C

h.
; O

be
rm

ei
er

, S
.;

B
ör

ge
r,

E
.:

S
ub

je
kt

or
ie

nt
ie

rte
s

P
ro

ze
ss

m
an

ag
em

en
t.

H
an

se
r,

M
ün

ch
en

 2
01

1

Cop
yri

gh
t:

20
11

 C
ar

l H
an

se
r V

er
lag

 M
ün

ch
en

if the macro name is inserted there. We formulate them as constraints for (im-
plicitly) transforming an SBD D where a macro state appears by insertion of
the macro SBD at the place of the macro state.

Macro Insertion Constraints When a macroState node with SBD-macro M
occurs in a subject behavior diagram D , D is (implicitly) transformed into a
diagram D [macroState/M] by inserting M for the macroState and redirecting
the edges entering and exiting macroState such that the following conditions are
satisfied:

1. Each D-edge targeting the macroState must point to exactly one entryState
in the macro table and is redirected to target in D [macroState/M] this
entryState, i.e. the state in the subject behavior diagram M where the sub-
ject has to Proceed to upon entering the macroState at this entryState.

There is no other way to enter M than via its entryStates, i.e. in the
diagram D [macroState/M] each edge leading into M is one of those
redirected by constraint 1.

2. Each exitEdge in the macro table must be connected in D [macroState/M]
to exactly one D-successor state succ of the macroState, i.e. the state in the
enclosing diagram D where to Proceed to upon exiting the macro SBD M
through the exitEdge.

There is no other way to exit M than via its exitEdges, i.e. in the diagram
D [macroState/M] each edge leaving the macroState node is one of those
redirected to satisfy constraint 2.

3. Each macro exit state and no other state29 appears in the macro table as
source of one of the exitEdges. A state in a macro diagram M is called macro
exit state if in M there is no edge leaving that state.

As a consequence of the macro insertion constraints the behavior of an SBD-
macro at the place of a macroState in an SBD is defined, namely as behavior of
the inserted macro diagram.30 This definition provides a well-defined semantics
also to SBDs with well nested macros.

Remark. For defining the abstract meaning of macro behavior it is not
necessary to also consider the substitution of some macro parameters by names
which are assumed to be known in the enclosing diagram where the macro is
inserted. These substitutions, which often are simply renamings, only instantiate
the abstract behavior to something (often still abstract but somehow) closer to
the to-be-modeled reality.

29 The second conjunct permits to avoid a global control of when a macro subrun
terminates.

30 Different occurences of the same SBD-macro M at different macroStates in an SBD
may lead to different executions, due to the possibly different macro tables in those
states.

31

C
op

yr
ig

ht
: 2

01
1

C
ar

l H
an

se
r V

er
la

g
M

ün
ch

en

A
us

zu
g

au
s:

 F
le

is
ch

m
an

n,
 A

.;
S

ch
m

id
t,

W
.;

S
ta

ry
, C

h.
; O

be
rm

ei
er

, S
.;

B
ör

ge
r,

E
.:

S
ub

je
kt

or
ie

nt
ie

rte
s

P
ro

ze
ss

m
an

ag
em

en
t.

H
an

se
r,

M
ün

ch
en

 2
01

1

Cop
yri

gh
t:

20
11

 C
ar

l H
an

se
r V

er
lag

 M
ün

ch
en

5.2 Interaction View Normalization of Subject Behavior Diagrams

Focus on communication behavior with maximal hiding of internal actions is
obtained by the interaction view of SBDs (also called normalized behavior view)
where not only every detail of a function state is hidden (read: its internal
Perform steps), but also subpaths constituted by sequences of consecutive
internal function nodes are compressed into one abstract internal function step.
In the resulting InteractionView(D) of an SBD D (also called normalized SBD or
function compression FctCompression(D)) every communication step together
with each entry into and exit out of any alternative action state is kept,31 but
every sequence of consecutive function steps appears as compressed into one
abstract function step. Thus an interaction view SBD shows only the following
items:

the initial state,
transitions from internal function states to communication and/or alterna-
tive action states,
transitions from communication or alternative action states,
the end states.

Since interaction view SBDs are SBDs, their semantics is well-defined by the
ASM-interpreter described in the preceding sections. The resulting interaction
view runs, i.e. runs of a normalized SBD, are distinguished from the standard
runs of an SBD by the fact that each time the subject Performs an internal
action in a state, in the next state it Performs a communication or alternative
action (unless the run terminates).

For later use we outline here a normalization algorithm which transforms any
SBD D by function compression into a normalized SBD InteractionView(D).
The idea is to walk through the diagram, beginning at the start node, along
any path leading to an end node until all possible paths have been covered and
to compress along the way every sequence of consecutive internal function com-
putation steps into one internal function step. Roughly speaking in each step,
say m, whenever from a given non-internal state through a sequence of internal
function nodes a non-internal action or end state state ′ is reached, an edge from
state to one internal function node—with an appropriately compressed semanti-
cally equivalent associated service(node)—and from there an edge to state ′ are
added to InteractionView(D) and the algorithm proceeds in step m + 1 starting
from every node in the set Frontierm of all such non-internal action or end nodes
state ′ which have not been encountered before—until Frontierm becomes empty.
Some special cases have to be considered due to the presence of alternative ac-
tion nodes and to the fact that it is permitted that end nodes may have outgoing

31 Alternative action nodes must remain visible in the interaction view of an SBD
because some of their alternative behavior subdiagrams may contain communica-
tion states and others not. The other structured states need no special treatment
here: multi-process communication states remain untouched by the normalization
and macros are considered to have their defining SBD to be inserted when the nor-
malization process starts.

32

C
op

yr
ig

ht
: 2

01
1

C
ar

l H
an

se
r V

er
la

g
M

ün
ch

en

A
us

zu
g

au
s:

 F
le

is
ch

m
an

n,
 A

.;
S

ch
m

id
t,

W
.;

S
ta

ry
, C

h.
; O

be
rm

ei
er

, S
.;

B
ör

ge
r,

E
.:

S
ub

je
kt

or
ie

nt
ie

rte
s

P
ro

ze
ss

m
an

ag
em

en
t.

H
an

se
r,

M
ün

ch
en

 2
01

1

Cop
yri

gh
t:

20
11

 C
ar

l H
an

se
r V

er
lag

 M
ün

ch
en

edges, so that the procedure will have to consider also paths starting from end
nodes or altEntry or altJoin states of alternative action subdiagrams.

Start Step. This step starts at the initial start state of D . start goes as
initial state into InteractionView(D). There are two cases to consider.

Case 1. start is not an internal function node (read: a communication or
alternative action altSplit state32) or it is an end node of D . Then start will
not be compressed with other states and therefore will be a starting point for
compression rounds in the iteration step. We set Frontier1 := {start} for the
iteration steps. If an edge from start to start is present in D , it is put into
InteractionView(D) leaving the service associated to the start node in the nor-
malized diagram unchanged.

Case 2. start is an internal function node. Then its function may have to be
compressed with functions of successive function states. Let Path1 be the set of
all paths state1, . . . , staten+1 in D such that state1 = start and the following
MaximalFunctionSequence property holds for the path state1, . . . , staten+1:

for all 1 ≤ i ≤ n statei is an internal function node with associated service fi
and not an end state of D
staten+1 is an end state of D or not an internal action state.33

Then each subpath state1, . . . , staten of a path in Path1 (if there are any) is
compressed into the start node34 with associated service (f1 ◦ . . . ◦ fn) and put
into InteractionView(D) with one edge leading from start (which is then also
denoted state(1,...,n)) to staten+1. All final nodes staten+1 of Path1 elements are
put into Frontier1 and thus will be a starting point for iteration steps.

Iteration Step. If Frontierm is empty, the normalization procedure termi-
nates and the obtained set InteractionView(D) is what is called the interaction
view or normalized behavior diagram of D and denoted InteractionView(D).

If Frontierm is not empty, let state0, . . . , staten+1 be any element in the set
Pathm+1 of all paths in D such that state0 ∈ Frontierm and for the subsequence
state1, . . . , staten+1 the MaximalFunctionSequence property holds. In case of an
alternative action altSplit state in Frontierm , as state0 the altEntryi state of any
alternative behavior subdiagram is taken, so that upon entering an alternative
action node the normalization proceeds within the subdiagrams. The auxiliary
wait action states exitBoxi are considered as candidates for final nodes staten+1

of to-be-compressed subsequences (read: not internal action nodes) so that they
survive the compression and can play their role for determining the comple-
tion predicate for the alternative action node also in InteractionView(D). The
altJoin(altSplit) state is considered like a diagram start node so that it too
survives the compression. This realizes that alternative action nodes remain

32 A start state cannot be an altJoin(altSplit) state because otherwise the diagram
would not be well-formed.

33 The end node clauses in these two conditions guarantee that end nodes survive the
normalization.

34 This guarantees that initial internal function states survive the compression proce-
dure.

33

C
op

yr
ig

ht
: 2

01
1

C
ar

l H
an

se
r V

er
la

g
M

ün
ch

en

A
us

zu
g

au
s:

 F
le

is
ch

m
an

n,
 A

.;
S

ch
m

id
t,

W
.;

S
ta

ry
, C

h.
; O

be
rm

ei
er

, S
.;

B
ör

ge
r,

E
.:

S
ub

je
kt

or
ie

nt
ie

rte
s

P
ro

ze
ss

m
an

ag
em

en
t.

H
an

se
r,

M
ün

ch
en

 2
01

1

Cop
yri

gh
t:

20
11

 C
ar

l H
an

se
r V

er
lag

 M
ün

ch
en

untouched by the normalization procedure, though their subdiagrams are nor-
malized.35

If the to-be-compressed internal functions subsequence contains cycles, these
cycles are eliminated by replacing recursively every subcycle-free subcycle from
statei to statei by one node statei and associated service (fi ◦ . . . ◦ fi). Then
each cycle-free subsequence state1, . . . , staten obtained in this way from a path
in Pathm+1 is further compressed into one node, say state(1,...,n) with associated
service (f1 ◦ . . .◦ fn) and is put into InteractionView(D) together with two edges,
one leading from state0 to state(1,...,n) and one from there to staten+1.

All final nodes staten+1 of such compressed Pathm+1 elements which are not
in Frontierk for some k ≤ m (so that they have not been visited before by
the algorithm) are put into Frontierm+1 and thus may become a starting point
for another iteration step. In the special case of an alternative action node: if
staten+1 is an exitBoxi state, exitBoxi is not placed into Frontierm+1 because the
subdiagram compression stops here. The normalization continues in the enclosing
diagram by putting instead altJoin(altSplit) into Frontierm+1.

5.3 Process Networks

This section explains a concept which permits to structure processes into hier-
archies via communication structure and visibility and access right criteria for
processes and/or subprocesses.

Process Networks and their Interaction Diagrams An S-BPM process
network (shortly called process network) is defined as a set of S-BPM pro-
cesses. Usually the constituent processes of a process network are focussed on
the communication between partner processes and are what we call S-BPM
component processes. An S-BPM component process (or shortly component) is
defined as a pair of an S-BPM process P and a set ExternalPartnerProc of ex-
ternal partner processes which can be addressed from within P . More precisely
ExternalPartnerProc consists of pairs (caller , (P ′, externalSubj)) of a caller—a
distinguished P -subject—and an S-BPM process P ′ with a distinguished P ′-
subject externalSubj , the communication partner in P ′ which is addressed from
within P by the caller and thus for the caller appears as external subject whose
process typically is not known to the caller .

We define that two process network components (P , (caller , (P ′, extSubj ′)))
and (P1, (caller1, (P

′
1, extSubj ′1))) (or the corresponding subjects caller , extSubj ′)

are communication partners or simply partners (in the network) if the external
subject which can be called by the caller in the first process is the one which
can call back this caller, formally:

P ′ = P1 and extSubj ′ = caller1 and P ′1 = P and extSubj ′1 = caller

35 The compression algorithm can be further sharpened for alternative action nodes by
compressing into one node certain groups of subdiagrams without communication
or alternative action nodes.

34

C
op

yr
ig

ht
: 2

01
1

C
ar

l H
an

se
r V

er
la

g
M

ün
ch

en

A
us

zu
g

au
s:

 F
le

is
ch

m
an

n,
 A

.;
S

ch
m

id
t,

W
.;

S
ta

ry
, C

h.
; O

be
rm

ei
er

, S
.;

B
ör

ge
r,

E
.:

S
ub

je
kt

or
ie

nt
ie

rte
s

P
ro

ze
ss

m
an

ag
em

en
t.

H
an

se
r,

M
ün

ch
en

 2
01

1

Cop
yri

gh
t:

20
11

 C
ar

l H
an

se
r V

er
lag

 M
ün

ch
en

A service process in a process network is a component process which is com-
munication partner of multiple components in the network, i.e. which can be
called from and call back to multiple other component processes in the network.
Thus the ExternalSubj ect referenced in and representing a service process S for
its clients represents a set of external subjects36, namely the (usually disjoint)
union of sets ExternalSubj (P ,S), namely the extSubj ects of the partner subjects
in caller(P ,S) which from within their process P call the partner process S by
referencing extSubj , formally:

ExternalSubj (S) =
⋃

P∈Partner(S)

ExternalSubj (P ,S)

Each communication between a client process P and a service process S
implies a substitution (usually a renaming) at the service process side of its
ExternalSubj (S) by a dedicated element extSubj of ExternalSubj (S ,P) which is
the extSubj of an element of the set caller(P ,S) of concrete subjects calling S
from the client process P .

A special class of S-BPM process networks is obtained by the decomposition
of processes into a set of subprocesses. As usual various decomposition layers can
be defined, leading to the concepts of horizontal subjects (those which commu-
nicate on the same layer) and vertical subjects (those which communicate with
subjects in other layers) and to the application of various data sharing disciplines
along a layer hierarchy.

An S-BPM process network comes with a graphical representation of its
communication partner signature by the so-called process interaction diagram
(PID), which is an analogue of a SID-diagram lifted from subjects to processes
to which the communicating subjects belong. A PID for a process network is
defined as a directed graph whose nodes are (names of) network components and
whose arcs connect communication partners. The arcs may be labeled with the
name of the message type through which the partner is addressed by the caller.
A further abstraction of PIDs results if the indication of the communicating
subjects is omitted and only the process names are shown.

Observer View Normalization of Subject Behavior Diagrams The inter-
action view normalization of SBDs defined in Sect. 5.2 can be pushed further by
defining an observer ’s ObserverView of the SBD of an observed subj ect, where
not only internal functions are compressed, but also communication actions of
the observed subj ect with other partners than the observer subject. In defining
the normalization of an SBD D into the ObserverView(observer ,Dsubj) some
attention has to be paid to structured states, namely those with communication
alternatives or multiple communication actions and states with alternative ac-
tions. To further explain the concept we outline in the following a normalization
algorithm which defines this ObserverView(observer ,Dsubj).

36 For this reason it is called a general external subject.

35

C
op

yr
ig

ht
: 2

01
1

C
ar

l H
an

se
r V

er
la

g
M

ün
ch

en

A
us

zu
g

au
s:

 F
le

is
ch

m
an

n,
 A

.;
S

ch
m

id
t,

W
.;

S
ta

ry
, C

h.
; O

be
rm

ei
er

, S
.;

B
ör

ge
r,

E
.:

S
ub

je
kt

or
ie

nt
ie

rte
s

P
ro

ze
ss

m
an

ag
em

en
t.

H
an

se
r,

M
ün

ch
en

 2
01

1

Cop
yri

gh
t:

20
11

 C
ar

l H
an

se
r V

er
lag

 M
ün

ch
en

In a first step we construct a CommunicationHiding(observer ,Dsubj) dia-
gram, also written Dsubj ↓ observer . It is semantically equivalent to but appears
to be more abstract than D . Roughly speaking each communication action in D
between the subj ect and other partners than the observer is hidden as an ab-
stract pseudo-internal function, whose specification hides the original content
of the communication action. Then to the resulting SBD the interaction view
normalization defined in Sect. 5.2 is applied (where pseudo-internal functions
are treated as internal functions). The final result is the ObserverView of the
original SBD:

ObserverView(observer ,Dsubj) =
InteractionView(Dsubj ↓ observer)

The idea for the construction of Dsubj ↓ observer is to visit every node in
the SBD of subj ect once, beginning at the start node and following all possible
paths in D , and to hide every encountered not observer -related communication
action of subj ect as a (semantically equivalent) pseudo-internal function step.
Since internal function states are not affected by this, it suffices to explain what
the algorithm does at (single or multi-) communication nodes or at alternative
action nodes. The symmetry in the model between send and receive actions
permits to treat communication nodes uniformly as one case.

Case 1. The visited state has a send or receive action.
If the observer is not a possible communication partner of the subj ect in any

communication Alternative(subj , state) (Case 1.1), then the entire action in state
is declared as pseuo-internal function (with its original but hidden semantical
effect). If observer is a possible communication partner in every communica-
tion Alternative(subj , state) (Case 1.2), then the communication action in state
remains untouched with all its communication alternatives. In both cases the
algorithm visits the next state.

We explain below how to compute the property of being a possible communi-
cation partner via the type structure of the elements of Alternative(subj , state).

Otherwise (Case 1.3.) split Alternative(subj , state) following the priority or-
der into alternating successive segments alti(observer) of communication alter-
natives with observer as possible partner and alti+1(other) of communication
alternatives with only other possible partners than observer . Keep in a priority
preserving way37 the observer relevant elements of any alti(observer) untouched
and declare each segment alti+1(other) as one pseudo-internal function (with the

37 In case different elements are allowed to have the same priority there is a further tech-
nical complication. For the priority preservation one has then to split each altj (other)
further into three segments of alternatives which have a) the same priority as the
last element in the preceding segment altj−1(observer) (if there is any) resp. b) a
higher priority than the last element in the preceding segment altj−1(observer) and
a lower one than the first element in the successor segment altj+1(observer) (if there
is any) resp. c) the same priority as the first element in altj+1(observer) (if it exists).
Each of these three segments must be declared as a pseudo-internal function with
corresponding priority.

36

C
op

yr
ig

ht
: 2

01
1

C
ar

l H
an

se
r V

er
la

g
M

ün
ch

en

A
us

zu
g

au
s:

 F
le

is
ch

m
an

n,
 A

.;
S

ch
m

id
t,

W
.;

S
ta

ry
, C

h.
; O

be
rm

ei
er

, S
.;

B
ör

ge
r,

E
.:

S
ub

je
kt

or
ie

nt
ie

rte
s

P
ro

ze
ss

m
an

ag
em

en
t.

H
an

se
r,

M
ün

ch
en

 2
01

1

Cop
yri

gh
t:

20
11

 C
ar

l H
an

se
r V

er
lag

 M
ün

ch
en

original but hidden semantical effect of its elements) which constitutes one alter-
native of the subj ect in this state as observable by the observer (read: alternative
in CommunicationHiding(observer ,Dsubj)). If an alti+1(other) segment contains
a multi-communication action, the iteration due to the MultiAction character of
this action remains hidden to the observer (read: the pseudo-internal function it
will belong to is defined not to be a MultiAction in Dsubj ↓ observer). The func-
tion selectAlt (and in the MultiAction case also the respective constraints) used
in this state have to be redefined correspondingly to maintain the semantical
equivalence of the transformation.

Case 2. The visited state is an alternative action state altSplit .
Split AltBehDgm(altSplit) into two subsets Alt1 of those alternative subdi-

agrams which contain a communication state with observer as possible com-
munication partner and Alt2 of the other alternative subdiagrams. If Alt1 is
empty (Case 2.1), then the entire alternative action structure between altSplit
and altJoin(altSplit) (comprising the alternative subdiagrams corresponding to
this state) is collapsed into one state with a pseudo-internal function, which is
specified to have its original semantical effect. All edges into any entryBox or
out of any exitBox become an edge into resp. out of state and the algorithm
visits the next state. If Alt2 is empty (Case 2.2), then the alternative action
state remains untouched with all its alternative subdiagrams and the algorithm
visits each altEntry state. Once the algorithm has visited each node in each
subdiagram, it proceeds from the altJoin(altSplit) state to any of its successor
states.

Otherwise (Case 1.3.) the alternative action node structure formed by altSplit
and the corresponding altJoin(altSplit) state remains, but the entire set Alt2 of
subdiagrams without communication with the observer is compressed into one
new state: it is entered from an entryBox and exited from an exitBox (where
all edges into resp. out of the boxes of Alt2 elements are redirected) and has
as associated service a pseudo-internal function, which is specified to have its
original semantical effect. Then the algorithm visits each altEntry state of each
Alt1 element. Once the algorithm has visited each node in the subdiagram of each
Alt1 element, it proceeds from the altJoin(altSplit) state to any of its successor
states.

It remains to explain how to compute whether observer is a possible com-
munication partner in a communication state of the observed subj ect behavior
diagram Dsubj .

Case 1: state is a send state (whether canceling or blocking, synchronous
or asynchronous, Send(Single) or Send(Multi)). Then observer is a possible
communication partner of subj in this state if and only if observer = receiver(alt)
for some alt ∈ alternative(subj , state).

Case 2: state is a receive state. Then observer is a possible communication
partner of subj in this state if and only if the following property holds, where
Do denotes the SBD of the observer :

forsome alt ∈ alternative(subj , state)
forsome send state state ′ ∈ Do

37

C
op

yr
ig

ht
: 2

01
1

C
ar

l H
an

se
r V

er
la

g
M

ün
ch

en

A
us

zu
g

au
s:

 F
le

is
ch

m
an

n,
 A

.;
S

ch
m

id
t,

W
.;

S
ta

ry
, C

h.
; O

be
rm

ei
er

, S
.;

B
ör

ge
r,

E
.:

S
ub

je
kt

or
ie

nt
ie

rte
s

P
ro

ze
ss

m
an

ag
em

en
t.

H
an

se
r,

M
ün

ch
en

 2
01

1

Cop
yri

gh
t:

20
11

 C
ar

l H
an

se
r V

er
lag

 M
ün

ch
en

forsome alt ′ ∈ alternative(observer , state ′)

alt ∈ {any , observer} and subj ∈ PossibleReceiver(alt ′)38

or forsome type alt = type = alt ′ and subj ∈ PossibleReceiver(alt ′)

or forsome type alt = (type, observer) and

alt ′ ∈ {type, (type, subj)} and subj ∈ PossibleReceiver(alt ′)

where

subj ∈ PossibleReceiver(alt ′) if and only if

alt ′ = any or receiver(alt ′) = subj

Remark. The above algorithm makes clear that different observers may have
a different view of a same diagram.

6 Two model extension disciplines

In this section we define two composition schemes for S-BPM processes which
build upon the simple logical foundation of the semantics of S-BPM exposed in
the preceding sections. They support the S-BPM discipline for controlled step-
wise development of complex processes out of basic modular components and
offer in particular a clean methodological separation of normal and exceptional
behavior. More precisely they come as rigorous methods to enrich a given S-BPM
process by new features in a purely incremental manner, typically by extending
a given SBD D by an SBD D ′ with some desired additional process behavior
without withdrawing or otherwise contradicting the original Behaviorsubj (D).
This conservative model extension approach permits a separate analysis of the
original and the extended system behavior and thus contributes to split a com-
plex system into a manageable composition of manageable components. The
separation of given and added (possibly exception) behavior allows one also to
change the implementation of the two independently of each other.

The difference between the two model extension methods is of pragmatic
nature. The so-called Interrupt Extension has its roots in and is used like the
interrupt handling mechanism known from operating systems and the exception
handling pendant in high-level programmming languages. The so-called Behav-
ior Extension is used to stepwise extend (what is considered as) ‘normal’ be-
havior by additional features. Correspondingly the two extension methods act
at different levels of the S-BPM interpreter; the Interrupt Extension conditions
at the SID-level the ‘normal’ execution of Behavior(subj , state) by the ab-
sence of interrupting events and calls an interrupt handler if an interruption
is triggered whereas the Behavior Extension enriches the ‘normal’ execution of
Behaviorsubj (D) by new ways to Proceed from Behavior(subj , state) to the
next state.

38 The second conjunct implies that observer is not considered to be a possible com-
munication partner of subj in state if subj in this state is ready to receive a message
from the observer but the observer ’s SBD has no send state with a send alternative
where the subj ect could be the receiver of the msgToBeSent .

38

C
op

yr
ig

ht
: 2

01
1

C
ar

l H
an

se
r V

er
la

g
M

ün
ch

en

A
us

zu
g

au
s:

 F
le

is
ch

m
an

n,
 A

.;
S

ch
m

id
t,

W
.;

S
ta

ry
, C

h.
; O

be
rm

ei
er

, S
.;

B
ör

ge
r,

E
.:

S
ub

je
kt

or
ie

nt
ie

rte
s

P
ro

ze
ss

m
an

ag
em

en
t.

H
an

se
r,

M
ün

ch
en

 2
01

1

Cop
yri

gh
t:

20
11

 C
ar

l H
an

se
r V

er
lag

 M
ün

ch
en

6.1 Interrupt Extension

The Interrupt Extension method introduces a conservative form of exception
handling in the sense that it transforms any given SBD D in such a way that
the behavior of the transformed diagram remains unchanged as long as no excep-
tions occur (read: as long as there are no interrupts), adding exception handling
in case an exception event happens. To specify how exceptions are thrown (read:
how interrupts are triggered) it suffices to consider here externally triggered in-
terrupts because internal interrupt triggers concerning actions to-be-executed
by a subject are explicitly modeled for communication actions Send/Receive in
blocking Alternative Rounds (see Fig. 2 in Sect. 3.1) and are treated for inter-
nal functions through the specification of their Perform component. External
interrupt triggers concerning the action currently Performed by a subj ect are
naturally integrated into the S-BPM model via a set InterruptKind of kinds
(pairs of sender and message type) of InterruptMsgs arriving in inputPool(subj)
independently of whether subj ect currently is ready to receive a message. It
suffices to

guarantee that elements of InterruptMsg are never Blocked in any input pool,
so that at each moment every potential interruptOriginator—the sender of
an interruptMsg—can Pass(interruptMsg) to the input pool of the receiving
subject,39

give priority to the execution of the interrupt handling procedure by the
receiver subj ect, interrupting the Performance of its current action when
an interruptMsg arrives in the inputPool(subj). This is achieved through the
InterruptBehavior(subj , state) rule defined below which is a conservative
extension of the Behavior(subj , state) rule defined in Sect. 2.2. This means
that we can locally confine the extension, namely to an incremental modifi-
cation of the interpreter rule for the new kind of interruptable SBD-states.

Thus the SBD-transformation InterruptExtension defined below has the fol-
lowing three arguments:

A to be transformed SBD D with a set InterruptState of D-states si (1 ≤
i ≤ n) where an interrupt may happen so that for such states a new rule
InterruptBehavior(subj , state) must be defined which incrementally ex-
tends the rule Behavior(subj , state).
A set InterruptKind(si) of indexed pairs interruptj (1 ≤ j ≤ m) of sender
and message type of interrupt messages to which subj ect has to react when
in state si .
An interrupt handling SBD D ′ the subj ect is required to execute immedi-
ately when an interruptMsg appears in its input pool, together with a set

39 In the presence of the input pool default row any any maxSize Blocking it suffices
to require that every input pool constraint table has a penultimate default interrupt
msg row of form interruptOriginator type(interruptMsg) maxSize Drop with
associated Drop action DropYoungest or DropOldest .

39

C
op

yr
ig

ht
: 2

01
1

C
ar

l H
an

se
r V

er
la

g
M

ün
ch

en

A
us

zu
g

au
s:

 F
le

is
ch

m
an

n,
 A

.;
S

ch
m

id
t,

W
.;

S
ta

ry
, C

h.
; O

be
rm

ei
er

, S
.;

B
ör

ge
r,

E
.:

S
ub

je
kt

or
ie

nt
ie

rte
s

P
ro

ze
ss

m
an

ag
em

en
t.

H
an

se
r,

M
ün

ch
en

 2
01

1

Cop
yri

gh
t:

20
11

 C
ar

l H
an

se
r V

er
lag

 M
ün

ch
en

InterruptProcEntry of edges arci,j without source node, with target node
in D ′ and with associated ExitCondi,j .

40

InterruptExtension when applied to (D , InterruptState), InterruptKind and
the exception procedure (D ′, InterruptProcEntry) joins the two SBDs into one
graph D∗:

D∗ = D ∪D ′ ∪ EdgesD,D′

where EdgesD,D′ is defined as set of edges (called again) arci,j connecting in
D∗ the source node si in D with the target(arci,j) node in D ′ where j =
indexOf (e, InterruptKind(si)) for any e ∈ InterruptKind . Behavior(D∗) is de-
fined as in Sect. 2.2 from BehaviorD(subj , state) with the following extension
InterruptBehaviorD∗ of BehaviorD(subj , si) for InterruptStates si of D ,
whereas Behavior(subj , state) remains unchanged for the other D states and
for states of D ′—which are assumed to be disjoint from those of D :41

BehaviorD∗(subj , state) = // Case of InterruptExtension(D ,D ′)BehaviorD(subj , state) if state ∈ D \ InterruptState
BehaviorD′(subj , state) if state ∈ D ′

InterruptBehavior(subj , state) if state ∈ InterruptState

InterruptBehavior(subj , si) = // at InterruptState si
if SID state(subj) = si then

if InterruptEvent(subj , si) then
choose msg ∈ InterruptMsg(si) ∩ inputPool(subj)42

let j = indexOf (interruptKind(msg), InterruptKind(si))
handleState = target(arci,j)

Proceed(subj , service(handleState), handleState)
Delete(msg , inputPool(subj))

else BehaviorD(subj , si)
where

InterruptEvent(subj , si) iff
forsome m ∈ InterruptMsg(si) m ∈ inputPool(subj)

40 This includes the special case m = 1 where the (entry into the) interrupt handling
procedure depends only on the happening of an interrupt regardless of its kind.
The general case with multiple entries (or equivalently multiple exception handling
procedures each with one entry) prepare the ground for an easy integration of com-
pensation procedures as part of exception handling, which typically depend on the
state where the exception happens and on the kind of interrupt (pair of originator
and type of the interrupt message).

41 This does not exclude the possibility that some edges in D ′ have as target a node
in D , as is the case when the exception handling procedure upon termination leads
back to normal execution.

42 Note that in each step subj can react only to one out of possibly multiple interrupt
messages present in its inputPool(subj). If one wants to establish a hierarchy among
those a priority function is needed to regulate the selection procedure.

40

C
op

yr
ig

ht
: 2

01
1

C
ar

l H
an

se
r V

er
la

g
M

ün
ch

en

A
us

zu
g

au
s:

 F
le

is
ch

m
an

n,
 A

.;
S

ch
m

id
t,

W
.;

S
ta

ry
, C

h.
; O

be
rm

ei
er

, S
.;

B
ör

ge
r,

E
.:

S
ub

je
kt

or
ie

nt
ie

rte
s

P
ro

ze
ss

m
an

ag
em

en
t.

H
an

se
r,

M
ün

ch
en

 2
01

1

Cop
yri

gh
t:

20
11

 C
ar

l H
an

se
r V

er
lag

 M
ün

ch
en

When no confusion is to be feared we write again Behavior(subj , si) also
for InterruptBehavior(subj , si).

Remark. The definition of InterruptBehavior implies that if during the
execution of the exception handling procedure described by D ′ subj ect encoun-
ters an interrupt event inD ′, it will start to execute the handling procedure D ′′

for the new exception, similar to the exception handling mechanism in Java [4,
Fig.6.2].

6.2 Behavior Extension

The SBD-transformation method BehaviorExtension has the following two ar-
guments:

A to be transformed SBD D with a set ExtensionState of D-states si (1 ≤
i ≤ n) where a new behavior is added to be possibly executed if selected
by selectEdge in Behavior(subj , si) when exiting si upon completion of its
associated service.
An SBD D ′ (assumed to be disjoint from D) which describes the new be-
havior the subj ect will execute when the new behavior is selected to be
executed next. To enter D ′ from extension states in D we use (in analogy
to InterruptProcEntry) a set AddedDgmEntry of edges arci without source
node and with target node in D ′ and associated ExitCondi .

BehaviorExtension applied to (D ,ExtensionState) and (D ′,AddedDgmEntry)
joins the two SBDs into one graph D+:

D+ = D ∪D ′ ∪ EdgesD,D′

where EdgesD,D′ is defined as set of edges (called again) arci connecting in D+

the source node si in D with the target(arci) node in D ′.
Behavior(D+) can be defined as in Sect. 2.2 from Behavior(subj , state)

for states in D resp. D ′ but with the selection function selectEdge extended
for ExtensionState nodes si to include in its domain arci with the associated
ExitCondi . In this way new D ′-behavior becomes possible which can be analyzed
separately from the original D-behavior.

41

C
op

yr
ig

ht
: 2

01
1

C
ar

l H
an

se
r V

er
la

g
M

ün
ch

en

A
us

zu
g

au
s:

 F
le

is
ch

m
an

n,
 A

.;
S

ch
m

id
t,

W
.;

S
ta

ry
, C

h.
; O

be
rm

ei
er

, S
.;

B
ör

ge
r,

E
.:

S
ub

je
kt

or
ie

nt
ie

rte
s

P
ro

ze
ss

m
an

ag
em

en
t.

H
an

se
r,

M
ün

ch
en

 2
01

1

Cop
yri

gh
t:

20
11

 C
ar

l H
an

se
r V

er
lag

 M
ün

ch
en

7 S-BPM Interpreter in a Nutshell

Collection of the ASM rules for the high-level subject-oriented interpreter model
for the semantics of the S-BPM constructs.

7.1 Subject Behavior Diagram Interpretation

Behaviorsubj (D) = {Behavior(subj ,node) | node ∈ Node(D)}

Behavior(subj , state) =
if SID state(subj) = state then

if Completed(subj , service(state), state) then
let edge =

selectEdge({e ∈ OutEdge(state) | ExitCond(e)(subj , state)})
Proceed(subj , service(target(edge)), target(edge))

else Perform(subj , service(state), state)
where
Proceed(subj ,X ,node) =

SID state(subj) := node
Start(subj ,X ,node)

7.2 Alternative Send/Receive Round Interpretation

Perform(subj ,ComAct, state) =
if NonBlockingTryRound(subj , state) then

if TryRoundFinished(subj , state) then
InitializeBlockingTryRounds(subj , state)

else TryAlternativeComAct(subj , state)
if BlockingTryRound(subj , state) then

if TryRoundFinished(subj , state)
then InitializeRoundAlternatives(subj , state)
else

if Timeout(subj , state, timeout(state)) then
InterruptComAct(subj , state)

elseif UserAbruption(subj , state)
then AbruptComAct(subj , state)
else TryAlternativeComAct(subj , state)

42

C
op

yr
ig

ht
: 2

01
1

C
ar

l H
an

se
r V

er
la

g
M

ün
ch

en

A
us

zu
g

au
s:

 F
le

is
ch

m
an

n,
 A

.;
S

ch
m

id
t,

W
.;

S
ta

ry
, C

h.
; O

be
rm

ei
er

, S
.;

B
ör

ge
r,

E
.:

S
ub

je
kt

or
ie

nt
ie

rte
s

P
ro

ze
ss

m
an

ag
em

en
t.

H
an

se
r,

M
ün

ch
en

 2
01

1

Cop
yri

gh
t:

20
11

 C
ar

l H
an

se
r V

er
lag

 M
ün

ch
en

Interpretation of Auxiliary Macros

Start(subj ,ComAct, state) =
InitializeRoundAlternatives(subj , state)
InitializeExit&CompletionPredicatesComAct(subj , state)
EnterNonBlockingTryRound(subj , state)

where
InitializeRoundAlternatives(subj , state) =

RoundAlternative(subj , state) := Alternative(subj , state)
InitializeExit&CompletionPredicatesComAct(subj , state) =
InitializeExitPredicatesComAct(subj , state)
InitializeCompletionPredicateComAct(subj , state)

InitializeExitPredicatesComAct(subj , state) =
NormalExitCond(subj ,ComAct, state) := false
TimeoutExitCond(subj ,ComAct, state) := false
AbruptionExitCond(subj ,ComAct, state) := false

InitializeCompletionPredicateComAct(subj , state) =
Completed(subj ,ComAct, state) := false

[Non]BlockingTryRound(subj , state) =
tryMode(subj , state) = [non]blocking

Enter[Non]BlockingTryRound(subj , state) =
tryMode(subj , state) := [non]blocking

TryRoundFinished(subj , state) =
RoundAlternatives(subj , state) = ∅

InitializeBlockingTryRounds(subj , state) =
EnterBlockingTryRound(subj , state)

43

C
op

yr
ig

ht
: 2

01
1

C
ar

l H
an

se
r V

er
la

g
M

ün
ch

en

A
us

zu
g

au
s:

 F
le

is
ch

m
an

n,
 A

.;
S

ch
m

id
t,

W
.;

S
ta

ry
, C

h.
; O

be
rm

ei
er

, S
.;

B
ör

ge
r,

E
.:

S
ub

je
kt

or
ie

nt
ie

rte
s

P
ro

ze
ss

m
an

ag
em

en
t.

H
an

se
r,

M
ün

ch
en

 2
01

1

Cop
yri

gh
t:

20
11

 C
ar

l H
an

se
r V

er
lag

 M
ün

ch
en

InitializeRoundAlternatives(subj , state)
SetTimeoutClock(subj , state)

SetTimeoutClock(subj , state) =
blockingStartTime(subj , state) := now

Timeout(subj , state, time) =
now ≥ blockingStartTime(subj , state) + time

InterruptComAct(subj , state) =
SetCompletionPredicateComAct(subj , state)
SetTimeoutExitComAct(subj , state)

SetCompletionPredicateComAct(subj , state) =
Completed(subj ,ComAct, state) := true

SetTimeoutExitComAct(subj , state) =
TimeoutExitCond(subj ,ComAct, state) := true

AbruptComAct(subj , state) =
SetCompletionPredicateComAct(subj , state)
SetAbruptionExitComAct(subj , state)

7.3 MsgElaboration Interpretation for Multi Send/Receive

TryAlternativeComAct(subj , state) =
Choose&PrepareAlternativeComAct(subj , state)

seq TryComAct(subj , state)

Choose&PrepareAlternativeComAct(subj , state) =
let alt = selectAlt(RoundAlternative(subj , state), priority(state))

PrepareMsgComAct(subj , state, alt)
ManageAlternativeRound(alt , subj , state)
where
ManageAlternativeRound(alt , subj , state) =
MarkSelection(subj , state, alt)
InitializeMultiRoundComAct(subj , state)

MarkSelection(subj , state, alt) =
Delete(alt ,RoundAlternative(subj , state))

PrepareMsgComAct(subj , state, alt) =
forall 1 ≤ i ≤ mult(alt)
if ComAct = Send then

let mi = composeMsg(subj ,msgData(subj , state, alt), i)
MsgToBeHandled(subj , state) := {m1, . . . ,mmult(alt)}

if ComAct = Receive then
let mi = selectMsgKind(subj ,state,alt,i)(ExpectedMsgKind(subj , state, alt))

MsgToBeHandled(subj , state) := {m1, . . . ,mmult(alt)}

44

C
op

yr
ig

ht
: 2

01
1

C
ar

l H
an

se
r V

er
la

g
M

ün
ch

en

A
us

zu
g

au
s:

 F
le

is
ch

m
an

n,
 A

.;
S

ch
m

id
t,

W
.;

S
ta

ry
, C

h.
; O

be
rm

ei
er

, S
.;

B
ör

ge
r,

E
.:

S
ub

je
kt

or
ie

nt
ie

rte
s

P
ro

ze
ss

m
an

ag
em

en
t.

H
an

se
r,

M
ün

ch
en

 2
01

1

Cop
yri

gh
t:

20
11

 C
ar

l H
an

se
r V

er
lag

 M
ün

ch
en

7.4 Multi Send/Receive Round Interpretation

45

C
op

yr
ig

ht
: 2

01
1

C
ar

l H
an

se
r V

er
la

g
M

ün
ch

en

A
us

zu
g

au
s:

 F
le

is
ch

m
an

n,
 A

.;
S

ch
m

id
t,

W
.;

S
ta

ry
, C

h.
; O

be
rm

ei
er

, S
.;

B
ör

ge
r,

E
.:

S
ub

je
kt

or
ie

nt
ie

rte
s

P
ro

ze
ss

m
an

ag
em

en
t.

H
an

se
r,

M
ün

ch
en

 2
01

1

Cop
yri

gh
t:

20
11

 C
ar

l H
an

se
r V

er
lag

 M
ün

ch
en

TryComAct(subj , state) =
choose m ∈ MsgToBeHandled(subj , state)
MarkChoice(m, subj , state)
if ComAct = Send then

let receiver = receiver(m), pool = inputPool(receiver)
if not CanAccess(subj , pool) then
ContinueMultiRoundFail(subj , state,m)

else TryAsync(Send)(subj , state,m)
if ComAct = Receive then

if Async(Receive)(m) then TryAsync(Receive)(subj , state,m)
if Sync(Receive)(m) then TrySync(Receive)(subj , state,m)

where
MarkChoice(m, subj , state) =

Delete(m,MsgToBeHandled(subj , state))
currMsgKind(subj , state) := m

TryAsync(ComAct)(subj , state,m) =
if PossibleAsyncComAct(subj ,m) // async communication possible

then Async(ComAct)(subj , state,m)
else

if ComAct = Receive then
ContinueMultiRoundFail(subj , state,m)

if ComAct = Send then TrySync(ComAct)(subj , state,m)
TrySync(ComAct)(subj , state,m) =

if PossibleSyncComAct(subj ,m) // sync communication possible
then Sync(ComAct)(subj , state,m)
else ContinueMultiRoundFail(subj , state,m)

46

C
op

yr
ig

ht
: 2

01
1

C
ar

l H
an

se
r V

er
la

g
M

ün
ch

en

A
us

zu
g

au
s:

 F
le

is
ch

m
an

n,
 A

.;
S

ch
m

id
t,

W
.;

S
ta

ry
, C

h.
; O

be
rm

ei
er

, S
.;

B
ör

ge
r,

E
.:

S
ub

je
kt

or
ie

nt
ie

rte
s

P
ro

ze
ss

m
an

ag
em

en
t.

H
an

se
r,

M
ün

ch
en

 2
01

1

Cop
yri

gh
t:

20
11

 C
ar

l H
an

se
r V

er
lag

 M
ün

ch
en

7.5 Actual Send Interpretation

Async(Send)(subj , state,msg) =
PassMsg(msg)
ContinueMultiRoundSuccess(subj , state,msg)

where
PassMsg(msg) =

let pool = inputPool(receiver(msg))
row = first({r ∈ constraintTable(pool) |

ConstraintViolation(msg , r)})
if row 6= undef and action(row) 6= DropIncoming

then Drop(action)
if row = undef or action(row) 6= DropIncoming then
Insert(msg , pool)
insertionTime(msg , pool) := now

Drop(action) =
if action = DropYoungest then Delete(youngestMsg(pool), pool)
if action = DropOldest then Delete(oldestMsg(pool), pool)

PossibleAsyncSend(subj ,msg) iff not Blocked(msg)
Blocked(msg) iff

let row = first({r ∈ constraintTable(inputPool(receiver(msg))) |
ConstraintViolation(msg , r)})

row 6= undef and action(row) = Blocking

Sync(Send)(subj , state,msg) =
ContinueMultiRoundSuccess(subj , state,msg)

PossibleSyncSend(subj ,msg) iff RendezvousWithReceiver(subj ,msg)

RendezvousWithReceiver(subj ,msg) iff
tryMode(rec) = tryToReceive and Sync(Receive)(currMsgKind)

and SyncSend(msg) and Match(msg , currMsgKind)
where

rec = receiver(msg), recstate = SID state(rec)
currMsgKind = currMsgKind(rec, recstate)
blockingRow =

first({r ∈ constraintTable(rec) | ConstraintViolation(msg , r)})
SyncSend(msg) iff size(blockingRow) = 0

47

C
op

yr
ig

ht
: 2

01
1

C
ar

l H
an

se
r V

er
la

g
M

ün
ch

en

A
us

zu
g

au
s:

 F
le

is
ch

m
an

n,
 A

.;
S

ch
m

id
t,

W
.;

S
ta

ry
, C

h.
; O

be
rm

ei
er

, S
.;

B
ör

ge
r,

E
.:

S
ub

je
kt

or
ie

nt
ie

rte
s

P
ro

ze
ss

m
an

ag
em

en
t.

H
an

se
r,

M
ün

ch
en

 2
01

1

Cop
yri

gh
t:

20
11

 C
ar

l H
an

se
r V

er
lag

 M
ün

ch
en

7.6 Actual Receive Interpreation

Async(Receive)(subj , state,msg) =
Accept(subj ,msg)
ContinueMultiRoundSuccess(subj , state,msg)

where
Accept(subj ,m) =

let receivedMsg =
selectReceiveOfKind(m)({msg ∈ inputPool(subj) | Match(msg ,m)})
RecordLocally(subj , receivedMsg)
Delete(receivedMsg , inputPool(subj))

Async(Receive)(m) iff commMode(m) = async
PossibleAsyncReceive(subj ,m) iff Present(m, inputPool(subj))
Present(m, pool) iff forsome msg ∈ pool Match(msg ,m)

Sync(Receive)(subj , state,msgKind) =
let P = inputPool(subj), sender = ιs(CanAccess(s,P))
RecordLocally(subj ,msgToBeSent(sender ,SID state(sender))
ContinueMultiRoundSuccess(subj , state,msgKind)

Sync(Receive)(msgKind) iff commMode(msgKind) = sync
PossibleSyncReceive(subj ,msgKind) iff

RendezvousWithSender(subj ,msgKind)

RendezvousWithSender(subj ,msgKind) iff
Sync(Receive)(msgKind) and

let sender = ιs(CanAccess(s, inputPool(subj))
let msgToBeSent = msgToBeSent(sender ,SID state(sender))

tryMode(sender) = tryToSend and SyncSend(msgToBeSent)
and Match(msgToBeSent ,msgKind)

48

C
op

yr
ig

ht
: 2

01
1

C
ar

l H
an

se
r V

er
la

g
M

ün
ch

en

A
us

zu
g

au
s:

 F
le

is
ch

m
an

n,
 A

.;
S

ch
m

id
t,

W
.;

S
ta

ry
, C

h.
; O

be
rm

ei
er

, S
.;

B
ör

ge
r,

E
.:

S
ub

je
kt

or
ie

nt
ie

rte
s

P
ro

ze
ss

m
an

ag
em

en
t.

H
an

se
r,

M
ün

ch
en

 2
01

1

Cop
yri

gh
t:

20
11

 C
ar

l H
an

se
r V

er
lag

 M
ün

ch
en

7.7 Alternative Action Interpretation

Start(subj ,AltAction, altSplit) =
forall D ∈ AltBehDgm(altSplit)

if Compulsory(altEntry(D)) then
SID state(subj ,D) := altEntry(D)
Start(subj , service(altEntry(D)), altEntry(D))

else SID state(subj ,D) :=undef

Perform(subj ,AltAction, state) =
PerformSubDgmStep(subj , state)

or StartNewSubDgm(subj , state)}
where
PerformSubDgmStep(s,n) =

choose D ∈ ActiveSubDgm(s,n) in Behavior(s,SID state(s,D))
StartNewSubDgm(s,n) =

choose D ∈ AltBehDgm(n) \ActiveSubDgm(s,n)
SID state(s,D) := altEntry(D)
Start(s, service(altEntry(D)), altEntry(D))

ActiveSubDgm(s,n) = {D ∈ AltBehDgm(n) | Active(s,D)}
R or S = choose X ∈ {R,S} in X

Completed(subj ,AltAction, altSplit) iff
forall D ∈ AltBehDgm(altSplit)

if Compulsory(altExit(D)) and Active(subj ,D)
then SID state(subj ,D) = exitBox (D)

where
Active(subj ,D) iff SID state(subj ,D) 6= undef

49

C
op

yr
ig

ht
: 2

01
1

C
ar

l H
an

se
r V

er
la

g
M

ün
ch

en

A
us

zu
g

au
s:

 F
le

is
ch

m
an

n,
 A

.;
S

ch
m

id
t,

W
.;

S
ta

ry
, C

h.
; O

be
rm

ei
er

, S
.;

B
ör

ge
r,

E
.:

S
ub

je
kt

or
ie

nt
ie

rte
s

P
ro

ze
ss

m
an

ag
em

en
t.

H
an

se
r,

M
ün

ch
en

 2
01

1

Cop
yri

gh
t:

20
11

 C
ar

l H
an

se
r V

er
lag

 M
ün

ch
en

Auxiliary Wait/Exit Rule Interpretation

Start(subj ,AltActionWait, exitBox) =
InitializeCompletionPredicateAltActionWait(subj , exitBox)

Perform(subj ,AltActionWait, exitBox) = skip

Start(subj ,ExitAltAction, altJoin(altSplit)) = skip
Perform(subj ,ExitAltAction, altJoin) =

forall D ∈ AltBehDgm(altSplit) SID state(subj ,D) := undef
SetCompletionPredicateExitAltAction(subj , altJoin(altSplit))

7.8 Interrupt Behavior

BehaviorD∗(subj , state) = // Case of InterruptExtension(D ,D ′)BehaviorD(subj , state) if state ∈ D \ InterruptState
BehaviorD′(subj , state) if state ∈ D ′

InterruptBehavior(subj , state) if state ∈ InterruptState

InterruptBehavior(subj , si) = // at InterruptState si
if SID state(subj) = si then

if InterruptEvent(subj , si) then
choose msg ∈ InterruptMsg(si) ∩ inputPool(subj)43

let j = indexOf (interruptKind(msg), InterruptKind(si))
handleState = target(arci,j)

Proceed(subj , service(handleState), handleState)
Delete(msg , inputPool(subj))

else BehaviorD(subj , si)
where

InterruptEvent(subj , si) iff
forsome m ∈ InterruptMsg(si) m ∈ inputPool(subj)

References

1. E. Börger. The ASM refinement method. Formal Aspects of Computing, 15:237–257,
2003.

2. E. Börger and R. F. Stärk. Abstract State Machines. A Method for High-Level
System Design and Analysis. Springer, 2003.

3. D. E. Knuth. Literate Programming. Number 27 in CSLI Lecture Notes. Center for
the Study of Language and Information at Stanford/ California, 1992.

4. R. F. Stärk, J. Schmid, and E. Börger. Java and the Java Virtual Machine: Defini-
tion, Verification, Validation. Springer-Verlag, 2001.

Appeared as appendix in:
A. Fleischmann, W. Schmidt, C. Stary, S. Obermeier, E. Börger:
Subjektorientiertes Prozessmanagement. Hanser-Verlag, München, 2011.

43 Note that in each step subj can react only to one out of possibly multiple interrupt
messages present in its inputPool(subj). If one wants to establish a hierarchy among
those a priority function is needed to regulate the selection procedure.

50

C
op

yr
ig

ht
: 2

01
1

C
ar

l H
an

se
r V

er
la

g
M

ün
ch

en

A
us

zu
g

au
s:

 F
le

is
ch

m
an

n,
 A

.;
S

ch
m

id
t,

W
.;

S
ta

ry
, C

h.
; O

be
rm

ei
er

, S
.;

B
ör

ge
r,

E
.:

S
ub

je
kt

or
ie

nt
ie

rte
s

P
ro

ze
ss

m
an

ag
em

en
t.

H
an

se
r,

M
ün

ch
en

 2
01

1

Cop
yri

gh
t:

20
11

 C
ar

l H
an

se
r V

er
lag

 M
ün

ch
en

