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Abstract

When discussing properties such as type safety for the Java language, it is necessary
to have formal semantics. The complex type system involving parameterized types
with wildcards, combined with the fact that some constructs are underspecified in
the current version of the language specification, is making a complete formalization
difficult.
In order to specify the semantics, we make use of an existing solution: an Abstract

State Machine model for Java. We describe the existing model, which does not
include support for generics, and extend it with the generic type system. For this
purpose, we look at existing type theoretic approaches to Java wildcards. Moreover,
we redefine the semantics of method invocations to handle both generic methods with
type inference and other language changes such as auto-boxing.
We also present an executable version of this model which allows interactively

exploring the Java semantics. Finally, we discuss the possibility of using the model
to prove type safety for Java in the future.

Keywords Type Theory, Type Safety, Java Generics, Java Wildcards, Abstract State

Machines





Zusammenfassung

Beim Betrachten von Eigenschaften wie Typsicherheit für die Sprache Java ist es
nötig, eine formale Semantik zu haben. Das komplexe Typsystem, welches parame-
trisierte Typen mit Wildcards enthält, sowie die Tatsache, dass einige Konstrukte
in der aktuellen Sprachversion unterspezifiziert sind, erschwert eine vollständige For-
malisierung.
Um die Semantik anzugeben, bauen wir auf eine vorhandene Lösung auf: ein

Abstract State Machine-Modell für Java. Wir beschreiben das bestehende Modell,
welches keine Unterstützung für Generics enthält, und erweitern es um das generische
Typsystem. Dazu betrachten wir vorhandene typtheoretische Ansätze zu Java Wild-
cards. Außerdem definieren wir die Semantik von Methodenaufrufen neu, um gener-
ische Methoden mit Typinferenz sowie anderen Sprachänderungen wie Auto-Boxing
zu modellieren. Wir präsentieren auch eine ausführbare Version dieses Modells, die
es erlaubt, die Java-Semantik interaktiv zu erkunden. Schließlich diskutieren wir die
Möglichkeit, mit Hilfe des Modells einen Typsicherheitsbeweis für Java zu erstellen.

Schlüsselwörter Typtheorie, Typsicherheit, Java Generics, Java Wildcards, Abstract Sta-

te Machines





Foreword

The contents of this Technical Report were initially published in Daniel Grunwald’s
Bachelor’s Thesis prepared at the Institute for Programming and Reactive Systems
(IPS), TU Braunschweig. The Thesis was completed in August, 2010.
The idea for the subject of this Thesis originates from preceding cooperative discus-

sions of Egon Börger (Dipartimento di Informatica, Università di Pisa), and Ursula
Goltz and Malte Lochau (IPS) during a meeting at the ETH Zurich in January, 2010.
The intention was to investigate which major adjustments are required for updating
the first edition of the JBook [SSB01], authored by Robert Stärk, Joachim Schmid,
and Egon Börger in 2001, concerning the new features of the Java language intro-
duced since version 5.0. Namely, the ASM models for the Java Interpreter, the Java
Virtual Machine, and the corresponding Java Compiler, as well as the main proofs
of the book concerning type safety and compiler correctness statements were un-
der consideration. Apparently, the memory model and the new generic type system
constitute the major innovations of Java 5.0, where the former mainly deals with
compiler correctness issues in the context of multi threading capabilities, against
what the latter (being subject of this work) seriously affects type safety properties of
Java. One major goal when enhancing the JBook definitions was to, as far as possi-
ble, conservatively refine existing ASM models, and to give reconcilable redefinitions,
otherwise. The main concept followed by Mr. Grunwald in his work was elaborated
in a very fruitful and intensive further meeting with Egon Börger, Ursula Goltz, and
Malte Lochau in Zurich in May, 2010. We further thank Daniel Smith for helpful
hints concerning subtle details of Java’s type inference as described in his Master’s
Thesis from November, 2007. As a result, we obtained, to the best of our knowledge,
one of the first comprehensive, integrated models based on the well-defined ASM
formalism, that captures all essential mechanisms of the Java type system, especially
including the subtleties of the wildcard construct. During the preparation of this
work, we received rich insights into technical details, difficult corner cases, as well as
bugs and open problems of the new Java type system.
In addition to the theoretical definitions contained in this Report, Mr. Grunwald

developed as a further part of his Thesis a prototypical implementation of the model
by enhancing the original model of the JBook using the ASMGofer Framework.
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1 Introduction

1.1 Motivation

In version 1.5, the Java programming language [GJSB05] underwent major changes.
Generic types and methods were introduced, allowing the use of parameterized poly-
morphism.
To talk about properties such as type safety, we need a formalism for describing

the language semantics. The book „Java and the Java Virtual Machine: Definition,
Verification, Validation“ [SSB01] uses Abstract State Machines to develop a formal
model of the semantics of the Java language. This model is then used to prove
the type safety of the Java language. Moreover, the book presents a formal model
for JVM byte code, again using Abstract State Machines, and shows a compilation
schema from Java to byte code to be correct.
However, the book is referring to the second edition of the Java specification, which

did not include generics. The addition of generics is a pervasive change to the type
system, requiring changes to the semantics of several other language features. The
majority of these changes affect the static semantics, such as the subtyping relation
or overload resolution for method calls.
The goal of this Bachelor’s Thesis is to introduce a formal model for the semantics

of Java with generics and wildcards. In the future, this could be used to prove (or
disprove) the type safety of Java with generics.

1.2 Contribution

This thesis defines a type system for Java with generics, and modifies the ASM
model given in [SSB01] for use with this type system. In particular the logic related
to resolution of method calls had to be revised in order to support the new language
features.
We take a look at various approaches to formalize the Java 1.5 type system, and

decide on using the join-based type system from [Smi07]. This type system handles
problematic aspects of the Java language like infinite types, whose properties are left
unspecified by the JLS.
Finally, we provide an implementation of our model. It is based on the ASM im-

plementation included with the Jbook and is written in the AsmGofer programming
language.
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1 Introduction

1.3 Structure

In the next chapter, we describe Abstract State Machines and their relation to the
Java programming language. We also take a look at the Generics feature introduced
in Java 1.5 and point out a few problems with it.
Chapter 3 describe the generic type system in detail, and define operations and

relations (such as subtyping) on the type system.
In chapter 4, we discuss the extensions to the Abstract State Machine Model for

Java that are necessary to support both the compile-time and run-time semantics of
generics.
Then, in chapter 5, we give an overview of our implementation of Java Generics

in the AsmGofer programming language. This is an executable version of the model
described before.
In the last chapter, we conclude.
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2 Fundamentals

This chapter describes the previous work on which this Bachelor’s Thesis builds upon:
Abstract State Machines, the „Jbook“, and the additions to the type system of the
Java programming language in its version 1.5.

2.1 Abstract State Machines

Abstract State Machines are described in [BS03]:

The notion of ASMs captures some fundamental operational concepts of
computing in a notation which is familiar from programming practice
and mathematical standards. In fact it is correct to view basic ASMs as
„pseudo-code over abstract data“, since their (simple) semantics supports
this intuitive understanding by a precise notion of a tunable abstract state
and state transitions [. . .].

Abstract State Machines consist of a finite number of transition rules of the form

if Condition then Updates

[BS03, §2.2.2]. The condition can be any Boolean predicate, which can access the
current state. The updates are rules for transforming the current state into a new
state.
The state in Abstract State Machines is modeled using so-called dynamic functions.

Updates can define or change the values of these functions by assigning to locations
within the function:

f (t1, . . . , tn) := t

If several updates are executed in a single computation step, the changes take effect
simultaneously: all changes take effect only with the beginning of the next step.
However, such update sets need to be consistent – in a single step, all assignments
to a location must assign the same value.
This synchronous parallelism can also be used to operate on several elements in a

set at the same time:

forall x with ϕ do R

This executes the rule R in parallel on each x that satisfies the Boolean condition ϕ.
Abstract State Machines have different kinds of functions: [BS03, §2.2.3]

3



2 Fundamentals

• static functions depend only on their parameters and are given as part of the
initial state. They can be specified in different ways depending on how the
ASM is intended to be used.

• dynamic functions can be updated by the ASM. Dynamic 0-ary functions can
be used to model variables, whereas dynamic functions with parameter can be
thought of as arrays or hash tables.

• derived functions can depend on the current state, but cannot be directly up-
dated by the ASM. They are intended to be used as auxiliary function.

Please refer to [BS03] for a detailed definition of the semantics of ASMs.
ASMs can be composed to form a new machine that executes both machines in

parallel. This allows adding conservative extensions to an existing machine [B0̈3].
As the next section will show, this approach can be used to split up the semantics

of a programming language into manageable chunks. Starting from the language
core, other language constructs can be modeled as conservative extensions to the
previous ASMs.

2.2 Java and the Java Virtual Machine

The book „Java and the Java Virtual Machine: Definition, Verification, Validation“
[SSB01] describes the Java language, by specifying its semantics in terms of an Ab-
stract State Machine. The Jbook refers to the second edition of the Java specification,
but does not include the new languages features such as inner classes. So the language
being modeled
This ASM model of Java is then used to prove type safety by showing that, for

all runs of the machine, every value calculated by an expression is a subtype of the
static type of the expression. Moreover, the type safety proof shows several other
properties, such as the impossibility to read a variable before it is assigned a value.
In the second part, the Jbook deals with the semantics of JVM byte code execution

and verification. It then specifies a compilation function that transforms a Java parse
tree into byte code. Finally, a proof of compiler correctness shows that all runs of
the compiled byte code on the JVM Abstract State Machine are equivalent to runs
of the Java code on the Java interpreter abstract state machine.
For the description of the Java semantics, the language is decomposed into five

sublanguages. Each sublanguage is a conservative extension of the preceding sublan-
guage, adding additional rules and state informations to the Abstract State Machine
and refining some functions [BB08].

• JavaI : Imperative core
• JavaC : Procedural (static methods)
• JavaO : Object-oriented constructs.
• JavaE : Exception Handling
• JavaT : Concurrency

For each sublanguage, the book first introduces the relevant Java syntax, then

4



2.2 Java and the Java Virtual Machine

discusses the constraints on valid programs. For example, the inheritance relation
must be acyclic. Finally it defines the dynamic semantics using ASM rules.

2.2.1 Imperative Core

JavaI defines the semantics of the imperative core of the Java language. This is a
while-language with eight primitive Java types (boolean, byte, short, int, long,
float, double, char). The JavaI sublanguage does not contain classes or methods.
The interpretation of expressions and statements is defined using ASM rules.
The interpreter works by replacing nodes of the parse tree by values. An instruction

pointer stored in the nullary ASM function pos specifies the node that should be
processed next. To determine the next step, the machine either considers the node
at pos , or, if pos points to an already evaluated value, its parent node at up(pos).
As an example, here is the semantics of the conditional ternary operator (a?b:c):

αexp0 ? βexp1 : γexp2 → pos := α

In this notation, α, β, and γ are position markers, each referring to one node of
the parse tree. This rule says that the conditional operator evaluates the condition
(exp0) first.
Once the condition has been evaluated, the machine has replaced it with the eval-

uated value:

◮val ? βexp1 : γexp2 → if val then pos := β else pos := γ

As pos now points to a value, the machine now considers the parent expression
up(pos). In this notation, ◮ represents the active position pos . Depending on the
evaluated value val , the machine will evaluate exp1 or exp2:

αTrue ? ◮val : γexp2 → yieldUp(val)
αFalse ? βexp1 : ◮val → yieldUp(val)

These two rules use the yieldUp helper rule to pass up the value returned by the
expression. This is done by setting pos one level up (to up(pos)) and then replacing
that node with val .
A statement that has been successfully executed is replaced with the special value

Norm, indicating normal completion.
Both statements and expressions can also be replaced with special values called

abruptions, which indicate executions that end abnormally. These are used to model
the control flow. In JavaI , abruptions are used for the break and continue state-
ments. Abruptions are propagated upwards in the parse tree until they are handled.
In case of break and continue abruptions, this happens when the abruptions reaches
a loop with the matching label.
The following sublanguages will extend the use of abruptions to model the return

statement and exception handling.
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2 Fundamentals

2.2.2 Procedural Extensions

The JavaC sublanguage introduces classes, interfaces, and methods. However, classes
and interfaces are used only as modules containing static methods and variables (or
in the case of interfaces: only for constants).
Method calls are implemented in the Abstract State Machine by pushing the ASM

variables used by JavaI onto a stack. Likewise, when execution of a method has
finished and the parse tree of the body of the method has been replaced by a return
value, the stack frame is removed from the stack and the execution context of the
caller is restored, except that the invocation of the method is replaced by the return
value (the value associated with the return abruption).
The Jbook does not formally specify how the overload of a method being called is

chosen by means of ASM rules. Instead, overload resolution is assumed to occur in an
elaboration phase that annotates the parse tree before the Abstract State Machine
starts to execute. This allows the rules of the ASM to assume that each method call
is already annotated with the correct overload.

2.2.3 Object Orientation

In the JavaO sublanguage, the book introduces objects. For this purpose, the set of
types, which only contained primitive types in the previous sublanguages, is extended
with classes, interfaces and arrays. The subtyping relation is extended to include the
relations between these new types.
The semantics of object creation, instance field access and instance method calls

are introduced.
To model the heap, the Jbook uses the following definition:

type Val = ...|Ref |null

data Heap = Object(Class ,Map(Class/Field ,Val))

heap : Ref → Heap

This definition uses heap as a dynamic function which contains all objects created
on the Java heap. Every object stores a mapping from the instance fields to the
current values. Values can be either primitive values, references to heap objects, or
the special null reference.
On instance method calls, the method being called is searched in the following

way: First, the compile-time behavior of Java is modeled by assuming that overload
resolution has already happened and that the syntax tree is annotated with the
virtual method being called. The overload resolution algorithm is given in pseudo-
code.
At runtime, when evaluating a virtual method call, the ASM uses the Class stored

with the heap object to find the actual method being called. For this purpose,
runtime method search is defined using the auxiliary lookup function, again, defined
using pseudo-code.

6



2.3 Java Generics

2.2.4 Exception Handling

JavaE adds exception handling by adding the throw and try-catch-finally con-
structs.
For this purpose, the abruptions from JavaI are extended to include exceptions.

Similar to the abruptions for return or break, the special value exc is used to
represent an exception being passed up the source tree.
The addition of generics to the language does not affect JavaE , because the Java

language does not allow generic exceptions.

2.2.5 Concurrency

JavaT adds concurrency support to the Java language. The submachine execJavaT
of execJava is used to extend the language with the synchronized construct, and to
support the wait() and notify() built-in functions.
Moreover, a new machine execJavaThread is introduced which uses the ASM

choose function to pick one of the running threads (without specifying the actual
scheduling algorithm), and then uses the execJava machine to run one computation
step of that thread.
This model does not handle all cases allowed by the JVM memory model because

it does not account for the effects caused by memory local to a processor and in-
stead simply assumes an interleaving of instructions using shared memory. However,
for correctly synchronized programs (as defined in the Java memory model), the
simplified model agrees with the Java specification.

2.3 Java Generics

Up to Java 1.4, Java did not have any support for generic types. Instead, Java
programmers used the type Object when writing generic code. However, this made
it hard to use generic classes (especially the Java collection library), as any objects
read from generic classes had to be manually casted to the appropriate type before
they could be used.
In version 1.5, the Java type system was extended with parameterized types. This

allows declaring classes or interfaces using type parameters, for example:

interface List<T> {
void add (T element ) ;
T get ( int index ) ;
. . .

}

Formally, this is the universal type ∀T .List<T> with type parameter T .
Such an interface can be used by specifying the type parameter, i.e. by choosing

the type Dog for T :

7



2 Fundamentals

List<Dog> l i s t = new ArrayList<Dog>() ;
l i s t . add (new Dog ( ) ) ;
Dog d = l i s t . get ( 0 ) ;

An important consideration in the original design of Java Generics was the ability
to retrofit existing class libraries with generic type signatures while keeping com-
patibility with existing source code and binary class files [LY99] at the same time
[BOSW98].
To achieve this compatibility, type information is removed as part of the compila-

tion process. So the code above results in:

L i s t l i s t = new ArrayList ( ) ;
l i s t . add (new Dog ( ) ) ;
Dog d = (Dog) l i s t . get ( 0 ) ;

The compiler removes all type arguments and uses the erased types instead. More-
over, the compiler inserts the appropriate casts when calling methods or reading the
value of a public field.
The lack of type information at runtime leads to a number of limitations in the

language. The most obvious one is the inability to create arrays of generic types.
This restriction is necessary because arrays need type information for the runtime
checks when storing an element in an array (see Section 3.9 for details).

2.3.1 Wildcards

The types List<Dog> and List<Animal> are unrelated and there is no conversion
from one to the other. Adding such a conversion directly would be unsafe: it is
possible to add a Giraffe to a List<Animal>, so it would be unsafe if a variable
of type List<Animal> could contain a value of type List<Dog> at runtime. For
this reason, the original proposal for Java Generics (GJ [BOSW98]) did not include
support for such a conversion.
However, it is desirable to allow the use of polymorphism for generic types as well.

In 2002, Igaraschi and Viroli suggested an extension to GJ that adds variance-based
subtyping [IV02]. This formed the basis for the wildcard feature in Java 5.
Wildcards with upper bounds are a form of use-site covariance. They allow passing

generic types to other methods without requiring the type arguments to match:

L i s t <? extends Animal> l i s t = new ArrayList<Dog > ( . . . ) ;
Animal a = l i s t . get ( 0 ) ;

In this example, the variable list can be only used to read from the list. It is not
possible to add elements (except null) because they would have to be subtypes of
the type hidden by the wildcard.
The Java language also allows contravariance by using wildcards with lower bounds.

These use the following syntax:

8
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Figure 2.1: Subtyping Graph of Wildcard Types
Arrows point from subtype to supertype.

L i s t <? super Animal> l i s t = new ArrayList<Object > ( . . . ) ;
l i s t . add (new Dog ( ) ) ;

In this case, it is also possible to read from the list, but the return type of the get

method will be the upper bound of the type parameter of the List class, i.e. Object.
The Java language disallows wildcards with both upper and lower bounds; but

this restriction is unnecessary and does not simplify the language semantics, as type
variables with both bounds can occur anyway due to upper bounds declared on the
type parameter [TEH05].
Figure 2.1 demonstrates the interaction between subtyping using inheritance

(List ° Collection) and subtyping using wildcard parameterized types.

2.3.2 Wildcard Capture

A unique feature of the Java type system is wildcard capture. Wildcard capture
allows using wildcards where an actual type is expected, for example when calling a
generic method. When capture conversion is used, the wildcard gets replaced by a
fresh, global type variable. Unlike wildcards where a different type might hide behind
every ?, the fresh type variables introduced by the compiler allow the type system
to tell which unknown types refer to the same type.
The following example from [CDE08] illustrates this language feature:

<X> Pair<X, X> make( Lis t<X> x) {}
<X> Boolean compare ( Pair<X, X> x) {}
void m( Pair <?, ?> p , Lis t <?> b)
{

9
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this . compare (p ) ; //1, type incorrect

this . compare ( this . make(b ) ) ; //2, OK

}

The first invocation of compare is invalid because the two items might have dif-
ferent types: capture conversion converts the type of p into Pair<Z1,Z2>, where Z1

and Z2 denote the fresh type variables.
The second invocation of compare is valid because capture conversion occurs when

calling make, producing the type List<Z3>. The type parameter X of the method
call is inferred to be Z3, so return type of the make call (and type of the argument
being passed to compare) is a Pair<Z3,Z3>.
There is no direct way for Java programmers to name such a type so that the

result of make could be stored in a variable before being passed to compare. In-
stead, programmers have to write a helper method to capture the wildcard in a type
parameter, giving the type a name that can be denoted in the language.
Parameterized types involving wildcards correspond to existential types. The type

List<? extends Animal> corresponds to ∃T ° Animal . List<T> The open opera-
tion on existential types corresponds to wildcard capture and is invoked automatically
whenever a wildcard type is used. This means make(b) roughly corresponds to open

b as [Z,z] in make(z). The open operation creates a new type variable Z and
converts the value from b (of type List<?>) to type List<Z>, storing the converted
result in the new variable z [IV02].
However, there is a major difference between wildcard types and existential types:

the fresh type variables introduced by wildcard capture are created in global scope,
removing the need for the close operation used with existential types.

2.3.3 Generic Methods

Java 1.5 does not only allow parameterized types, but also parameterized methods –
these were already used in the examples above.
Generic methods can be declared and called using the following syntax:

// declaration

<T extends Comparable<T>> void min(T a , T b) {
return a . compareTo (b) <= 0 ? a : b ;

}
void t e s t ( ) {

// call with explicit type arguments

this .< Integer>min (1 , 2 ) ;
}

When calling generic methods, the programmer may leave out the explicit type
arguments, and Java will attempt to infer them automatically.
This allows calling the min functions as follows:
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min (1 , 2 ) ; // T = Integer

min ( 1 . 0 , 2 . 0 ) ; // T = Double

min (1 , 2 . 0 ) ; // T = Number

2.3.4 Limitations of Java Generics

In this section, we will describe some of the limitations in the design of Java generics.

Type Erasure

When compiling Java code with generics, the compiler uses type erasure to translate
the code into equivalent code that does not use generics. This is done to allow
adding generics to existing libraries (for example in the collections library) while
keeping binary compatibility with old class files referencing those libraries [GJSB05,
§4.7].
Type erasure works by replacing all occurrences of parameterized types with the

simple class type, and all occurrences of type parameters with their upper bound.
Additionally, casts are inserted for the return value of method calls where necessary.
While this was necessary for compatibility, the absence of type information at

runtime imposes a few major restrictions on the use of generic types. For example, it
is impossible for the Java runtime to check whether an object is of type List<String>

– the runtime can only verify that the object has the class List. As a result of this
limitation, the following code compiles successfully (although with an unchecked

warning):

void f i l l L i s t ( Object o ) {
Lis t<Integer> b = ( List<Integer >)o ; // unchecked warning

b . add ( 1 ) ;
}
void m() {

ArrayList<Str ing> a = new ArrayList<Str ing >() ;
f i l l L i s t ( a ) ;
S t r ing i = a . get ( 0 ) ; // InvalidCastException

}

At the cast in fillList an unchecked warning occurs, telling the programmer that
the cast will not be checked at runtime. As a result, when executing this code, an
integer will be stored in a list of strings. The JLS calls this situation heap pollution

[GJSB05, §4.12.2.1]. Only later, when reading from the list, this error is detected at
runtime by the cast that the compiler inserted after the get call.
Unchecked warnings occur whenever one of the constructs that could potentially

create a hole in the type system is used. Unfortunately, this also includes ar-
ray types: Java arrays are covariant and need a runtime type check to throw an
ArrayStoreException when any reference type is stored in the array. Due to type
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erasure, such runtime checks cannot be done for generic types, so creating arrays of
parameterized types always causes an unchecked warning.

Wildcard with Lower and Upper Bounds

Here is an example that demonstrates a problem with Java type inference, caused by
the lack of wildcards bounded in both directions:

interface Animal {}
interface Herbivore extends Animal {}
interface Carnivore extends Animal {}
class Pig implements Herbivore , Carnivore {}
class Test {

stat ic <T> T pick (T a , T b) { . . . }
public void t e s t ( L i s t<Herbivore> h , Lis t<Carnivore> c ) {

Animal a = pick (h , c ) . get ( 0 ) ; // 1

pick (h , c ) . add (new Pig ( ) ) ; // 2

}
}

Using Java 1.5 type inference, the result type of the pick calls is:

List<? extends Animal>

This makes line 1 (reading Animal) valid, but line 2 (writing Pig) causes a compile-
time error.
It is reasonable to expect that we can add pigs to this list. Pigs are omnivores, so

they fit into both lists h and c. The Java 1.5 type system does not allow expressing a
type that can both read animals and write omnivores, but the extension of the type
system with wildcards that have both lower and upper bounds allows us to express
such a type:

List<? extends Animal super Herbivore&Carnivore>

2.3.5 Infinite Types

A major problem in the Java type system is the inferred type of the following method
call:

class I n t eg e r implements Comparable<Integer> {}
class St r ing implements Comparable<Str ing> {}

<T> T pick (T a , T b) {}
<T extends Comparable<? extends T>> void use (T a ) {}

void t e s t ( I n t eg e r n , S t r ing s ) {

12
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use ( p ick (n , s ) ) ; // what is the inferred type argument?

}

According to the Java Language Specification, the pick call returns the least upper
bound of Integer and String. Following the definition of lub in the JLS [GJSB05,
§15.12.2.7], we get:

T = lub(Integer, String) = Comparable<? extends lub(Integer, String)>

This is an infinite type. Thus, the call to use is legal: the type returned by pick
can indeed be compared to itself.
Note that official Java compiler (version 1.6.0.20), does not implement this cor-

rectly. Instead, it infers the following type for the call to pick:

T = Comparable<? extends Comparable<?>>

So the infinite recursion is aborted at the second level, and the compiler uses an
unbounded wildcard instead. This makes the call to use fail with a type error.
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This chapter describes the type system used by our implementation of Java Generics
for the execJava ASM.
There were quite a few possible choices for type systems: [TEH05] and [CDE08]

provide formal models for the Java type system, but both ignore some aspects of the
language such as type inference or intersection types.
The Java language specification itself is incomplete and does not define some im-

portant properties such as the subtyping relationship for infinite types [SC08].
In his Master’s thesis [Smi07], Daniel Smith presents two alternatives which im-

prove upon the Java type system by removing some unnecessary restrictions, and
allow for an improved type inference algorithm.

3.1 Union-based Type System

The first approach proposed in [Smi07] is to extend the type system to include union

types. These were first considered as extension to Java by Igarashi and Nagira in
[IN06].
In the context of Java generics, union types remove the need for infinite types.

Comparing with infinite types in Section 2.3.5, this approach allow representing the
result type of the pick(n, s) call with the union type Integer|String. This is also
a valid choice for the type parameter T in the call to use. Figure 3.1 shows that this
union type satisfies the F-bound:

Integer|String ° Comparable<? extends Integer|String>

In the figure, the derivation for S ° C<? ext I|S> has been left out; it is analogous
to the derivation for I ° C<? ext I|S>.
However, it is not clear how these union types would interact with other parts

of the language. Igarashi and Nagira define the methods of a union type to be the

Union-Sup

Class-Sup
I ° C<I>

Class-Contain

Union-Sub
I ° I

I ° I|S

C<I> ° C<? ext I|S>

I ° C<? ext I|S>
S ° C<? ext I|S>

I|S ° C<? ext I|S>

Figure 3.1: Union Type Satisfies F-bound
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methods that are common in all types of the union, where methods just need the
same name and compatible parameter types. This allows using unions as ad-hoc
interfaces, but would complicate the compilation to byte code because runtime type
tests would be necessary for each possible type in the union. A nominal approach to
define the members of a union type would fit the Java compilation model better.
We found another, related problem when considering the following Java code:

interface Animal {}
interface Herbivore extends Animal {}
interface Carnivore extends Animal {}
class Test {

stat ic <T> T pick (T a , T b) { . . . }
stat ic <T> void pr in t ( L is t<T> l i s t ) { . . . }
public void t e s t ( L i s t<Herbivore> h , Lis t<Carnivore> c ) {

p r i n t ( p ick (h , c ) ) ;
}

}

This example is similar to the code in Section 2.3.4. It is valid code accepted by the
Java 1.6 compiler, which infers the result of pick to be List<? extends Animal>.
However, in the union-based system, the type List<Herbivore>|List<Carnivore>,
while being more specific than the Java 1.6 choice, causes a problem for type inference
in the print invocation.
To allow this case to work, the union type must be converted into a type that does

not involve a top-level union, so that the T in print can be inferred to be one specific
type. In this case, the type

List<? extends Herbivore|Carnivore super Herbivore&Carnivore>

comes to mind as a possible replacement for the union type.
This wildcard type is not equivalent to the original union type: while the original

union type guarantees that the lists are homogenouos, the wildcard type also allows
instances of the inhomogeneous list new ArrayList<Herbivore|Carnivore>.
This approach to replace union types (possibly as part of wildcard capture) would

also help defining the members of a union type: the replacement wildcard type is
sufficiently specific to fulfill the expectations (read animals, write omnivores).
Due to these open issues and the major differences compared with the type sys-

tem of the Java language, we decided not to use union types as basis for our ASM
implementation.

3.2 Join-based Type System

The second possibility mentioned by Daniel Smith in [Smi07] is to handle infinite
types explicitly by using wildcard references. Essentially, this approach allows rep-
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resenting infinite types by allowing the bound of the wildcard to refer back to any
enclosing wildcard.
Wildcard references consist of a single integer, which specifies the index in the list

of enclosing wildcards. For example, ?0 refers to the innermost wildcard:

A<? extends B<? extends ?0>>

= A<? extends B<? extends B<? extends B<? ...>>>>

?1 refers to the wildcard containing the innermost wildcard:

A<? extends B<? extends ?1>>

= A<? extends B<? extends A<? extends B<? ...>>>>

The join-based type system stays close to the official Java Specification by making
use of infinite types. The type system used in this thesis is closely based on the
join-based type system.

3.3 Syntax of Type Declarations

Here we reproduce the syntax for Java class declarations:
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ClassDeclaration :

[ClassModifiers ] class Identifier [TypeParameters ] [Super ] [Interfaces ] ClassBody

TypeParameters :

< TypeParameter { , TypeParameter } >

TypeParameter :

Identifier [TypeBound ]

TypeBound :

extends ClassOrInterfaceType { & ClassOrInterfaceType }

Super :

extends ClassType

Interfaces :

implements InterfaceType { , InterfaceType }

Figure 3.2: Syntax for Java Class Declarations

The syntax in Figure 3.2 describes class declarations. Each class declares a list
of type parameters. Each type parameter in turn declares a set of upper bounds
separated by „&“. If multiple upper bounds are present, the combined upper bound
is represented using an intersection type.
A class also declares its base class and the set of interfaces it implements. Wildcards

cannot be used as type arguments passed to the base class – see Section 3.6 for more
details.

3.4 Syntax of Type Expressions

This section shows the syntax of type expressions – references to types as used in
variable declarations and method signatures.
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Type :

ClassOrInterfaceType {[]}

BasicType {[]}

ClassOrInterfaceType :

Identifier [TypeArguments ] { . Identifier [TypeArguments ] }

TypeArguments :

< TypeArgument {, TypeArgument } >

TypeArgument :

Type

? [(extends|super) Type]

BasicType :

byte

short

char

int

long

float

double

boolean

Figure 3.3: Syntax for Java Type Expressions

The grammar in Figure 3.3 is based on the grammar in the JLS [GJSB05, §18.1] and
is simplified a bit by allowing arbitrary types as type arguments. We will use static
constraints on types to ensure that only reference types are used as type arguments.

3.5 Types in the Java Type System

The Java type syntax shown above allows primitive types, types named by identifiers,
type arguments, and arrays.
However, the Java type system knows additional types that cannot directly be

represented in its syntax. For example, type parameters with multiple bounds make
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use of intersection types, which are not denotable in Java type expression syntax:

<T extends Comparable<T> & Cloneable> T method();

To represents all types that occur during calls to generic methods, we need to
generalize the definition of types:

1. Primitive types are types.
2. Classes and interfaces are types. If the class/interface is generic, this type is
called the „raw type“.

3. Null and void are types.
4. If A is a type other than void, then A[] is a type.
5. If C is generic class with N type parameters, and Ai (i=1..N) are type argu-
ments that satisfy the bounds of the respective type parameters in C, then
C < A1, ...,An > is a type. Such a type is called a parameterized type.

6. If all of A1, ...,An (n > 0) are reference types, then A1&...&An is a type. Such
a type is called an intersection type.

7. Type variables are types. Type variable always refer to a type parameter of an
enclosing class or method, and have an upper bound.

8. Captured wildcards are types. These types are introduced by the compiler
when calling generic methods or accessing members of generic classes using
wildcards as type arguments. Captured wildcards have both an upper and a
lower bound.

This definition replaces [SSB01, §5.1.1].
In this definition, „reference types“ is used to refer to all types except for primitive

types and void.
A type argument is one of the following:

1. a reference type
2. a wildcard with both an upper and lower bound: ? extends U super L

3. a wildcard reference: ?i

For wildcards without upper bound, U is assumed to be Object. For wildcards
without lower bound, L is assumed to be the Nulltype.

3.6 Well-Formed Types

Wildcard references can be used in the place of wildcards to represent infinite types,
but are well-formed only if there is an enclosing wildcard to be referenced. Thus,
C<?0> is not well-formed, but so is C<? extends C<?0>>.
For a parameterized type to be well-formed, the number of type arguments must

match the number of type parameters declared on the generic class. Moreover, the
following conditions must be satisfied for each type argument Ai being applied to the
corresponding type parameter Xi :

• If the type argument is a type, it must be within the declared bounds of the
type parameter:

Ai ° ⌈Xi⌉ [X1 := A1, . . .Xn := An ]
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As every type parameter has an implicit upper bound of Object, this implies
that type arguments must be reference types.

• If the type argument is a wildcard with upper bound, the bound must not
conflict with the declared upper bound of the type parameter:

⌈Ai⌉ & ⌈Xi⌉ [X1 := A1, . . .Xn := An ] is well-formed

This rule disallows wildcards when no type (except Null) exists that matches
the wildcard bounds. For example, if both bounds refer to unrelated class
types (e. g. ⌈Ai⌉ = String, ⌈Xi⌉ = Number), no type can fulfill these bounds
as Java does not allow multiple inheritance for classes. Also, types involving
multiple incompatible instanciations of parameterized types are disallowed (e. g.
⌈Ai⌉ = Collection<Number>, ⌈Xi⌉ = List<Integer>).

• If the type argument is a wildcard with both lower and upper bounds, the lower
bound must be a subtype of the upper bound:

⌊Ai⌋ ° ⌈Ai⌉

This rule is necessary to prevent types such as

C<? extends String super Object>,

which would lead to an unsound type system as described in [CDE08].
• If the type argument is a wildcard with lower bound, the lower bound must be
a subtype of the declared upper bound of the type parameter:

⌊Ai⌋ ° ⌈Xi⌉ [X1 := A1, . . .Xn := An ]

For an intersection type A1 & . . . & An to be well-formed, it must fulfill these
conditions:

• For any two class types Ai and Aj :

Ai ° Aj ∨ Aj ° Ai

Intersections of two unrelated class types are disallowed as null would be the
only valid element of this type.

• For any two occurrences of a generic interface in the types of the intersection or
their supertypes, the type arguments must be the same. This is because Java
does not allow inheriting from multiple different instanciantions of a generic
interface.

In the class inheritance declaration, when declaring a base class or interfaces,
there are additional restrictions on types. In these cases, only class or interface
types are allowed. These can be parameterized, but wildcards cannot be used. This
restriction is necessary to ensure that the direct supertype operation (T↑, defined
in Section 3.10) does not return wildcard parameterized types. Thus, the following
type declarations are invalid:
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abstract class A implements List <?> {}
class B extends A[ ] {}
class C<T> extends T {}

However, within the arguments to parameterized types, all types may be used, so
the following declarations are valid:

abstract class D implements List<List <?>> {}
class E implements ArrayList<D[] > {}
class C<T> extends ArrayList<T> {}

3.7 Parameterized Types

A parameterized type is constructed by passing type arguments to a generic class.
The members of the parameterized type are the members of the class, where every
occurrence of a type parameter is replaced with the appropriate type argument.
Bounds used in wildcards passed to a parameterized type may refer to the type

itself. Such infinite types cannot be written by the programmer using Java syntax,
but they can be introduced by type inference. For example, the least upper bound
of Comparable<Integer> and Comparable<String> is Comparable<? extends ?0>

[Smi07].
Only wildcard references can be used to build types that refer to themselves; pa-

rameterized types cannot be directly infinite. That is, there is no type such as:

Comparable<Comparable<Comparable<...>>>

Inside parameterized types using wildcards, these references are represented using
an index referring to an enclosing wildcard (see Section 3.2). However, taken on their
own, such wildcard references do not constitute well-formed types.
Thus, when accessing the bounds of the wildcard, any wildcard references pointing

to this outermost wildcard must be replaced with the wildcard itself.
Given the wildcard

W = ? extends U super L,

the bounds of the wildcard are defined to be:

⌈W ⌉ = unroll(U )|[W ]

⌊W ⌋ = unroll(L)|[W ]

The unroll operation, defined in [Smi07, §5.1.3], replaces any occurrence of a wild-
card reference to W within U with the full definition of W .
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3.8 Type Erasure

When compiling Java to byte code, parameterized types and type variables get re-
placed with a simple class type by type erasure.
However, type erasure is not only used as part of the compiler implementation,

but also in the definition of some type system operations, especially where raw types
are involved. It is also necessary to model the runtime restrictions caused by type
erasure, for example that type tests caused by casts only check for the erased type.
Here we define |T | to be the erasure of the type T .

• If T is a parameterized type, then |C< . . . >| = C .
• If T is an array type, then |E[]| = |E | [].
• If T is an intersection type, then the erasure is the first type in the intersection:

|T1 & T2| = |T1|.
• If T is a type variable or captured wildcard, then the erasure is the upper
bound of that variable: |X | = |⌈X ⌉|.

• If T is any other type (class or interface type, or primitive type), then |T | = T .

3.9 Reifiable Types

A type is said to be reifiable if type erasure does not remove important type in-
formation. Some language constructs like casts and stores to arrays require type
information at runtime. For example, due to type erasure, there is no way for the
Java runtime to verify the store to the array in the following program:

Object [ ] a r r = new C<A>[1 ] ;
a r r [ 0 ] = new C<B>();

For this reason, the Java allows creating arrays (without unchecked warning) only
if the element type is reifiable. Similarly, the instanceof operator can only be used
with reifiable types, and casts produce an unchecked warning if the target type is
not reifiable.
The definition of reifiable is given in the JLS [GJSB05, §4.7] by listing the reifiable

types. However, we give the definition in terms of type erasure and subtyping, making
the requirement for the safety of runtime type checks more clearly visible:

T is reifiable ⇐⇒ |T | ° T

This means any type unchanged by erasure if reifiable; and additionally, parame-
terized types with unbounded wildcards (C<?>) are also reifiable.

3.10 Direct Supertype

Subtyping and some other algorithms like member lookup need to be able to deter-
mine the inheritance hierarchy of a parameterized type, including any type param-
eters. Because type declarations may change the usage of type parameters in every
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level of the inheritance hierarchy, determining the direct supertype requires replacing
type parameters with arguments on each level.
For example, given the class declaration:

abstract class Test<A,B> implements List<Pair<B,A>> {}

the direct supertype of Test<String,Integer> is List<Pair<Integer,String>>.
We will write T↑ to denote the direct supertype of type T . The definition is similar

to that in [SC08]:

• If T = Object, then T↑ is undefined.
• If T is a parameterized type C<T1 . . .Tn>, then the direct supertype is the
intersection of the supertypes of class C<X1...Xn> extends S1...Sm :
let σ be the replacement [X1 := T1 . . .Xn := Tn ]; then T↑ = σS1 & . . . & σSm

• If T is a reference to a class without type parameters, then the direct super-
type is the intersection of the supertypes of the declared supertypes: T↑ =
S1 & . . . & Sm

• If T is a raw type, then the direct supertype is the intersection of the erasures
of the declared supertypes: T↑ = |S1| & . . . & |Sm |

This definition requires that T is either a class or interface type different from
Object, or that it is a parameterized type which does not have wildcards as argu-
ments. For all other types T , we consider T↑ to be undefined.
The supertype of types parameterized with wildcards is left undefined because

the definition would involve wildcard capture (the replacement needs to produce a
type for the wildcard). Wildcard capture produces a new type variable every time
it is invoked, but we do not want two invocations of T↑ to produce different results.
Instead, we will assume that wildcard capture is invoked before the direct supertype
needs to be determined.
Because class declarations are restricted to not use wildcards, direct supertypes

cannot be wildcard parameterized types.

3.11 Wildcard Capture

Wildcard capture, called capture conversion in [GJSB05, §5.1.10], corresponds to
the open operation on existential types. Wildcard capture must be invoked before
a member of a parameterized type is accessed because occurrences of the type pa-
rameter in method signatures must be replaced with another type, but wildcards on
their own are not valid as types.
Wildcard capture transforms a parameterized type with wildcards into a parame-

terized type without wildcards. For all other types, it acts as an identity conversion.
We will use ‖T‖ to refer to type resulting from wildcard capture of type T .
Given a parameterized type C<A1, ...An>, where the class C declares the type

parameters X1 . . .Xn , wildcard capture replaces every wildcard Ai by a fresh type
variable Si :
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‖C<A1, ...An>‖ = C<S1, ...Sn>

The following bounds are used for the new type variables Si :

• ⌈Si⌉ = ⌈Ai⌉ & ⌈Xi⌉ [X1 := S1, . . .Xn := Sn ]
• ⌊Si⌋ = ⌊Ai⌋

This means the upper bounds of the new type variable is the intersection type of
the wildcard’s upper bound and the type parameter’s upper bound. The type Object

is used instead of ⌈Ai⌉ or ⌈Xi⌉ if the wildcard or the type parameter does not declare
an upper bound.
The replacement [X1 := S1, . . .Xn := Sn ] is used to deal with F-bounded type

parameters: when a type parameter is bounded by itself, the newly introduced type
variable cannot simply copy that bound, but needs to replace the type parameter
with the fresh type variable that we just created.

3.12 The Subtype Relation

The subtype relation ° is defined using the following rules:

T ° T (Reflex)

S ° S ′

S ′ ° T

S ° T
(Trans)

null ° T (Null)

∀i ≤ n, Si
∼= Ti

C<S1 . . . Sn> ° C<T1 . . .Tn>
(Class-Equiv)

∀i ≤ n, Si ∈ Wi

C<S1 . . . Sn> ° C<W1 . . .Wn>
(Class-Contain)

‖C<W1 . . .Wn>‖ ° T

C<W1 . . .Wn> ° T
(Class-Capt)

C<T1 . . .Tn> ° C (Class-Erase)

C ° C<?, . . .?> (Class-Erase-Unbounded)

T ° ‖T‖ ↑ (Class-Sup)

T[] ° Cloneable & Serializable (Arr-Class)
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S ° T

S[] ° T[]
(Arr-Covar)

X ° ⌈X ⌉ (Var-Sup)

⌊X ⌋ ° X (Var-Sub)

T1 & . . . & Tn ° Ti (Inter-Sup)

∀i ≤ n, S ° Ti

S ° T1 & . . . & Tn

(Inter-Sub)

These rules correspond to the ones found in [SC08], except that the rules related
to union types were removed and the rule Class-Erase-Unbounded was added.
The latter allows implicit conversions from a raw type to a parameterized type with
unbounded wildcards and is important for the definition of reifiable types (Section
3.9).
In the subtyping rules, ∼= is used to refer to type equivalence:

S ∼= T ⇐⇒ S ° T ∧ T ° S

The symbol ∈ is used to mean that a type is contained within the bounds of a
wildcard:

T ∈ W ⇐⇒ ⌊W ⌋ ° T ∧ T ° ⌈W ⌉

An algorithmic implementation of subtyping based on these rules is problematic
in the presence of infinite types. In fact, Kennedy and Pierce have shown that a
generalized version of the problem is undecidable [KP06]. It is currently still unclear
whether subtyping in the Java language with its restriction on multiple implementa-
tion inheritance is decidable.
We refer to [Smi07, §5.1.4] for a description of the subtyping algorithm.

3.13 Join Function

The join function calculates the most specific common supertype of two types. It is
used in the definition of the conditional operator (a?b:c) and in type inference for
generic method calls.
The JLS calls this the least upper bound (lub) [GJSB05, §15.12.2.7]. It is defined

by finding the common erasures of all supertypes of the two input types, and then
reconstructing the type arguments for them. To reconstruct the type arguments,
the algorithm creates wildcard parameterized types whenever two input types pro-
vide different type arguments to the same class. To determine the upper bound of
this wildcard, the join function is invoked recursively on the type arguments. This
recursion can be infinite, producing an infinite type.
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The definition of the join function in the JLS has major limitations: due to the
definition based on erasure, it can work only with class or interface types, and will
produce too imprecise bounds when invoked on type variables [SC08].

<T> T pick (T a , T b) { . . . }

<C, A extends C, B extends C>
C t e s t (A a , B b) {

return pick (a , b ) ; // inferred type: Object

}

Here, Java infers the type Object even though C would have been a better choice.
Moreover, in some cases it is not clear whether join should produce a wildcard with
lower or upper bounds - in this case, the extension of the type system to wildcards
with both bounds helps avoiding the ambiguity (see Section 2.3.4).
The inability to represent wildcards with both bounds also causes another problem:

Type inference expects that the lub function is commutative and associative. How-
ever, the information loss due to discarding the lower bound causes the lub function
to lose the associativity.

lub(lub(C<? super T>, C<T>), C<S>))
= lub(C<? super T>, C<S>)
= C<? super T&S>

lub(C<? super T>, lub(C<T>, C<S>))
= lub(C<? super T>, C<? extends Object>)
= C<?>

Because the function is applied repeatedly on an unordered set (in the lci helper
function), this causes type inference to non-deterministically choose one of the op-
tions.
As part of the join-based type system, Smith defines the join function based on

the subtyping relation, allowing it to handle all cases including type variables and
array types [Smi07]. Because it uses wildcards with both upper and lower bounds,
the join function is not affected by the shortcomings of the JLS definition.
Similar to the JLS algorithm, it is possible that infinite types are created (compare

with Section 2.3.5). In this case, the algorithm detects when a join invocation matches
another invocation that is active, and produces the appropriate wildcard reference
to refer to the result of the outer invocation of the join function.
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The Jbook uses the term elaboration phase to refer to transformations done on the
syntax tree before the Java program can be executed.
The elaboration phase corresponds to algorithms executed at compile-time in an

actual Java implementation. The most significant part of the elaboration phase
is the processing of method invocations to determine the target method (overload
resolution) and the type of the call (static, virtual, etc.).
The Jbook uses a simple pseudo-code algorithm to describe the compile-time han-

dling of methods [SSB01, §4.1.6]. The introduction of generics and type inference
significantly increases the complexity of these operations. This makes it desirable
to use the expressive power of Abstract State Machines not only for the dynamic
semantics, but also to model the compile-time overload resolution.

4.1 Assigning Types to Expressions

The Jbook uses the static function T to assign a type to each expression. In the
book, T is defined in the form of tables that specify the static type for the various
expressions.
With generics and type inference, determining the type of an expression is sig-

nificantly more complicated. Determining types is necessary during the elaboration
phase: the chosen overload for method calls depends on the type of the target ex-
pression and argument expressions. Likewise, the type of a field depends on the type
of the reference to the class, as type parameters in the declared type of the field need
to be replaced. Of course, to choose an overload or determine the target class of an
instance field access, it is necessary to infer the type of sub-expressions (the target
object reference, and the method arguments). This means that overload resolution
and type inference cannot be performed independently, but need to be performed in
a single pass over the syntax tree.

4.2 The Elaboration Machine

To model type inference in the ASM, we change T to be a dynamic function, which
will be calculated by the elabJava machine. This new machine is not part of the
machines representing the dynamic semantics, but instead is used to model the static
semantics. Similar to execJava in [SSB01, §3.2], we use the pos variable to point to
the node of syntax tree that needs to be processed next, or to the node that just was
processed.
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Because T is initially undef everywhere, we can check its value to test whether
a node was already processed. If the current node was already assigned a type, we
let the machine go one level up in the syntax tree. We also apply wildcard capture
to the type of the expression to implement the implicit capture conversion that Java
applies to every expression.

if pos Ó= firstpos ∧ T (pos) Ó= undef then

T (pos) := ‖T (pos)‖
pos := up(body/pos)

When an expression consists of sub-expressions, those sub-expressions are given
types first:

case body/pos of
αexp0 bop βexp1 →

if T (α) = undef then pos := α
elseif T (β) = undef then pos := β
else T (pos) := table3.3(bop, T (α), T (β))

Here, table3.3 refers to table 3.3 (binary operators on primitive types) in [SSB01].
In the following, we will assume that sub-expressions are implicitly given types

first, allowing us to only write the interesting last case which actually assigns the
type.
Figure 4.1 shows the machine elabJavaI , which assigns types to JavaI programs.
This corresponds to table 3.4 in the Jbook, except that the rules of the conditional

operator were changed in Java 1.5 to support auto-boxing and determining the most
specific common supertype of generics. For the list of special cases related to auto-
boxing, see [GJSB05, §15.25]. In general, the conditional operator uses the join
function to calculate the most specific common supertype of both expressions.
For elabJavaC , the elaboration machine gets more complex: to access a static

field, the field must be searched in the target class and its base classes. Because Java
disallows using type parameters in the type of static fields, we do not need to deal
with generics at this point. On the other hand, when calling methods, we cannot

elabJavaI = case body/pos of

lit → T (pos) := T (lit)
loc → T (pos) := declaredType(loc)
uop αe → T (pos) := table3.2(uop, T (α))
αe0 bop βe1 → T (pos) := table3.3(bop, T (α), T (β))
αe0 = βe1 → T (pos) := T (α)
αe0 ? βe1 : γe2 → T (pos) := T (JLS15.25(T (β), T (γ)))

Figure 4.1: Elaboration ASM for Imperative Java
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elabJavaC = case body/pos of

C .Field →
T (pos) := declaredType(findField(C ,Field))

C .Method(exps) →
letmsig = findOverloadWithTypeInference(C ,Method , T (exps), expectedType(pos))
letTA = inferredTypeArguments(msig)
body := body [C . < TA > msig(exps)/pos ]
T (pos) := declaredReturnType(method)[TP/TA]

C . < TA > Method(exps) →
letmsig = findOverload(C ,Method ,TA, T (exps))
body := body [C . < TA > msig(exps)/pos ]
T (pos) := declaredReturnType(method)[TP/TA]

Figure 4.2: Elaboration ASM for Procedural Java

simply use the declared return type of the method, but need to replace the type
parameters with the type arguments. At the same time, we modify the body and
replace the method calls with another version that includes the type arguments and
full method signature (msig). Figure 4.2 shows the definition of elabJavaC .

4.3 Method Invocation

Method invocation expressions can have any of the following forms:

1. Identifier ( ArgumentList )

2. Expression . [TypeArguments] Identifier ( ArgumentList )

3. TypeName . [TypeArguments] Identifier ( ArgumentList )

4. super . [TypeArguments] Identifier ( ArgumentList )

To determine the method being called, both overloading and overriding needs to
be resolved. The former is being resolved at compile-time, while the latter is resolved
at run-time because it depends on the run-time type of the target object.
As a first step when resolving overloading, the type to search is determined:

• In the first form (Identifier ( ArgumentList )), the target type is the cur-
rent class (the class containing the method call).

• In the second form, the target type is T (Expression).
• In the third form, the target type is the class named by the TypeName.
• In the last form, the target type is the base class of the current class.

Then, a set of candidate methods is formed by searching for all accessible methods
with the name Identifier within the target type. Overload resolution is used to
identify a single method out of this candidate set.
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4.4 Candidate Methods

The set of candidate methods is determined by searching for all methods on the target
type, and filtering the resulting list for those which have the requested name and
are accessible. For accessibility, the definition [SSB01, §4.1.5] can be used without
changes.
When determining the methods on a generic type, all occurrences of the type

parameter in the method signature need to be replaced with the type arguments.
In order for this replacement to be possible, all type arguments must be types, not
wildcards. Because the target type of method resolution is either a raw type or the
type of a sub-expression, and because T↑ never produces wildcard types, it is safe
to assume that wildcard capture has already occurred:

allMethods(C<T1, . . . ,Tn>) =
methods(C )[X1 := T1, . . . ,Xn := Tn ] ∪ allMethods(C<T1, . . . ,Tn>↑ )

In the case of raw types, all type parameters are replaced with the type Object:

allMethods(C ) =
methods(C )[X1 := Object, . . . ,Xn := Object] ∪ allMethods(C↑ )

Note that overridden methods are considered only once in the candidate set.

4.5 Overload Resolution

The input to the overload resolution is a set of candidate methods and the method call
that needs to be resolved. More precisely, the method call can be represented by the
types of the arguments expressions, the type arguments provided by the programmer,
if any, the expected type (only in some contexts, see section on type inference for
details).
The output is a single method among the candidate methods, or a compile-time

error.
Overload resolution in the Java language works in three steps:

1. Type Inference
2. Applicability Testing
3. Choosing the most specific method

In the first step, types are inferred for calls to generic methods if the programmer
did not provide explicit type arguments. This is done separately for each candidate
method. Type inference never fails, but may infer incorrect types. In the second step,
the method is tested for applicability. This removes all inapplicable methods from
the candidate set and keeps only those where the given arguments and given/inferred
type arguments are valid for the method definition. In the third step, the most
specific method is chosen from the applicable methods. If no such method exists, a
compile-time error occurs.
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Figure 4.3: Overload Resolution
Boxes indicate single items, circles indicate sets.

The algorithm is further complicated by the addition of auto-boxing and variable
arity methods in Java 5. To keep backward compatibility for existing Java source
code, the addition of the new features must not cause the compiler to use a different
overload or report a call as being ambiguous when the previous Java versions accepted
the same source code. To ensure this, the applicability test is executed up to three
times: first, it uses a backward-compatible version which does not support auto-
boxing or variable arity methods. Only if that test ends up with no applicable
methods, the relaxed conversion rules of auto-boxing are used instead. If that second
test still ends up with no applicable methods, the applicability rules are relaxed
further to allow variable arity methods.
Figure 4.3 shows an overview of the algorithm.

4.5.1 Type Inference

The input to the JLS type inference algorithm is described by a set of constraints
that the inferred type should fulfill. For every argument with type Ai passed to a
formal parameter of type Fi , a constraint of the form Ai <:? Fi is created.
Moreover, if the context of the method call expects a specific type, a constraint of

the form E :>? R is created, here E is the expected type and R is the return type of
the method. The expected type is only used in cases where it is explicitly specified by
the programmer and thus can be determined independently of the overload chosen
for the method call. For example, the expected type is inferred in an return or
assignment statement.
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The notation A <:? F is used to describe the constraint that, after the type
parameters in F are replaced with the inferred types, the type A should be a subtype
of F . Based on the subtyping relation, the constaint formula is decomposed into other
constraint formulas until the right-hand side is a single type parameter. For example,
List<String> <:? List<T> results in String <:? T ∧ String :>? T . The definition
of <:? and :>? in [Smi07] also allows for disjunctions, which are used when there
are several potentially valid choices for a type parameter. In that case, the whole
constraint formula is converted into disjunctive normal form. For each conjunction
in the constraint formula, type inference tries to fulfill these bounds by choosing the
type arguments to be the lower bounds. If this fails, inference proceeds with the next
conjunction.
A full definition of the algorithm is given in [Smi07].

4.5.2 Applicability Testing

Applicability testing is the process of checking whether the specified arguments are
valid for an overload. There are multiple versions of the algorithm: support for auto-
boxing can be enabled or disabled; and variable arity method support is optional in
the same way. Java makes use of all four possible combinations – three combinations
are used for the three attempts to find an applicable set; and the last is used in the
definition of the most specific method.
For an overload to be applicable, all of the following conditions must hold:

• If the method is generic, the number of type parameters must match the number
of type arguments.

• If method has variable arity and variable arity is enabled, then the number of
arguments must be at least n −1, where n is the number of formal parameters.
Otherwise, if the method does not have variable arity or if variable arity is
disabled, then the number of arguments must be equal to the number of formal
parameters.

• If the method is generic, the type arguments must fulfill the bounds of the type
parameter:

Ti ° ⌈Xi⌉ [X1 := T1, . . . ,Xp := Tp ]

Here, X1, . . . ,Xp denotes the type parameters and T1, . . . ,Tp refers to the type
arguments. To handle F-bounded type parameters, we substitute the type
arguments for the type parameters.

We will call the types of the formal parameter types Fi (1 ≤ i ≤ n, after substi-
tuting Xi with Ti) and the types of the argument Ai (1 ≤ i ≤ m).
If method has variable arity and variable arity is enabled, then, in addition to the

conditions above, the following must hold:

• ∀1≤i≤n−1Ai ⊳ Fi

• If n = m, then An ⊳ Fn ∨ An ⊳ element(Fn)
• If n Ó= m, then ∀n≤i≤mAi ⊳ element(Fn)
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4.5 Overload Resolution

Here, element(Fn) refers to the element type of the last formal parameter, which
always is an array type for variable arity methods. If the method does not have
variable arity or variable arity is disabled, then we simply require

∀1≤i≤n−1Ai ⊳ Fi

If auto-boxing is disabled, ⊳ is the subtype relation °. If auto-boxing enabled,
then ⊳ includes boxing/unboxing conversions:
A ⊳ B = if B is reference type then box (A) ° B

else unbox (A) ° B
The function box and unbox return the wrapper class for the corresponding prim-

itive type and vice versa. All other types are returned unchanged.
Note that having an applicable overload is a necessary but not sufficient condition

for a method invocation to be valid. There are additional constraints which are
checked after overload resolution.

4.5.3 Most Specific Method

A method is the most specific method if it is more specific than all other applicable
methods.
A method is said to be more specific than another method if every call to the first

method is also a valid call to the second method. Even though choosing the most
specific method occurs as part of overload resolution, the definition of ‘more specific’
is independent of the call being looked up: being ‘more specific’ is a relation among
method definitions.
MA is more specific than MB iff MB is (after type inference) applicable for the call

M(FA1, . . ., FAn), where FAi are the types of the formal parameters of MA.
The applicability test for this purpose allows variable arity methods, but not auto-

boxing. This means that even though a call m(1); prefers void m(int a) over void

m(Object a) due to the backwards compatibility rule, neither method definition is
more specific than the other. This leads to the surprising result that adding the
unrelated variable-arity parameter String... b to both overloads causes the call
to become ambiguous.
This definition for the most specific methods makes type inference necessary even

if the input program uses explicit type arguments for every method call.

4.5.4 Static Constraints on Method Calls

When overload resolution succeeds and a single applicable method is chosen, a num-
ber of additional constraints must be fulfilled in order for the method call to be valid.
The constraints depend on the form of the invocation expression:

• Identifier ( ArgumentList )

In this form, it is an error if the target method is an instance method but the
call appears in a static context (static method or field initializer).
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• Expression . [TypeArguments] Identifier ( ArgumentList )

In this form, the target method must be an instance method.
• TypeName . [TypeArguments] Identifier ( ArgumentList )

In this form, the target method must be a static method.
• super . [TypeArguments] Identifier ( ArgumentList )

In this form, the target method must be a non-abstract instance method, and
the call must not appear in a static context.

4.6 Dynamic Semantics

Storing generic type information in the model for execJava is not strictly necessary.
Java compilers use type erasure, so generic type information is not available at run-
time on most Java implementations. However, for the purpose of modeling the Java
semantics, we store the complete type (with type arguments) in each object instance
and generic method calls. This allows using the model to show the type safety of
Java, and that the casts inserted by the compilation schema will always succeed at
runtime (provided that no unchecked constructs were used).

4.6.1 Instances of Generic Classes

To model objects with generic types in the ASM, we change the definition of the
heap [SSB01, §5.1.8] to store a type instead of the class.

data Heap = Object(Class , [Type],Map(Class/Field ,Val))

The list of types represents the type arguments that are passed to the class. In
addition to the classOf function defined in the Jbook (which simply returns the class
of an object), we define a typeOfRef function to return the complete type:

typeOfRef : Ref → Type

typeOfRef (ref ) = case heap(ref ) of

Object(C ,X , fields) → C<X >

When a new object instance is being created, the type arguments are being specified
as part of the source tree. The Java syntax disallows wildcards in this context, so
to retrieve the actual type from the type declared in the source code, we only need
to replace any type parameters by their current type arguments. For this purpose,
both type parameters in the current class and in the current method need to be
considered:

newObjectTypeArguments = [ lookupTypeInClass(lookupTypeInMethod(T ))
|T ∈ declaredTypeArguments ]

lookupTypeInMethod is defined in Section 4.6.2.
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lookupTypeInClass(T ) =
if isStatic(meth) then T

else let A = typeArgumentsForClass(typeOfRef (locals(this)), currentClass),
X = typeParameters(currentClass)

T [X1 := A1, . . . ,Xn := An ]

This replaces all occurrences of the type parameters of the current class with the
type arguments that were used to create the current object instance.
The function typeArgumentsForClass here determines the type parameters as they

are passed to the current class, if the type of the this reference is a subclass of the
current class.

typeArgumentsForClass(T ,C ) = if |T | = C then typeArguments(T )
else typeArgumentsForClass(T↑ ,C )

Note that this replacement of type parameters with arguments is not sufficient to
ensure that object instances only use class or interface types: it is still possible for
type variables to occur as actual type arguments. For example, it is possible to create
an instance of ArrayList<Z> where Z is a captured wildcard:

void main ( ) {
ArrayList<?> l i s t = c r e a t eL i s t ( ) ;

}
<T> ArrayList<T> c r e a t eL i s t ( ) {

return new ArrayList<T>() ;
}

4.6.2 Generic Method Calls

To represent the type arguments passed to generic methods at runtime, the stack
frames used by the execJavaC machine need to be adjusted. Similar to the ex-
isting variables (meth, restBody , nextPos , locals), we define a new global variable
methTypeArgs representing the type arguments passed to the current method. In
the JavaC invokeMethod rule, the old type arguments are saved to the stack frame,
and methTypeArgs is set to the type arguments passed to the new method being
invoked. In the exitMethod rule, the type arguments are restored from the stack
frame.
The type arguments being passed to the method being called are those specified

by the programmer or those produced by type inference as part of the elaboration
step. In both cases, type parameters are replaced with the actual values passed to
those parameters.

callTypeArguments = [ lookupTypeInClass(lookupTypeInMethod(T ))
|T ∈ declaredTypeArguments ]
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The definition of lookupTypeInMethod is straight-forward: all occurrences of the
type parameters of the current method are replaced with the values stored in the
methTypeArgs variable.

lookupTypeInMethod(T ) =
let X = typeParameters(meth)
T [X1 := methTypeArgs1, . . . ,Xn := methTypeArgsn ]

Together, these changes represent a form of reified generics, which could be used
to fix some of the problems associated with type erasure. However, the implementa-
tion used in our ASM model is constructing types at runtime (when replacing type
parameters with their arguments), creating a performance penalty for generics. This
makes this implementation unattractive for use in an actual Java virtual machine.

4.6.3 Simulating Type Erasure

The ASM model simulates the effects of type erasure by ignoring the reified type
arguments and instead using the erasure of the compile-time types for runtime oper-
ations such as casts and array creations.
For example, the ASM rule for the cast instruction is almost unchanged compared

to the original in the Jbook, comparing the class (not the type) of the reference with
the erasure of the type specified by the programmer:

(T )◮ref → if ref = null ∨ classOf (ref ) ° |T | then yieldUp(ref )

Similarly, the result of the compilation process is simulated by inserting such a
cast at the end of each method invocation. This ensures our model produces In-
validCastExceptions at the same place as the actual Java code. This is achieved by
modifying the definition of exitMethod (in Figure 4.4) to perform a test whether the
returned value matches the expected static type at the call site.

4.7 Type Safety

Obviously, Java in its current form with raw types and unchecked warnings is not
type-safe. But even in the absense of unchecked warnings, specification bugs and
compiler bugs can cause issues with type-safety.
The Java specification declares that type inference is not required to produce exact

results, as these are verified later as part of the applicability check. However, a part
of the type inference algorithm, the join function (least upper bound in JLS), is also
used in the definition of the conditional operator without any such safety checks.
For example, the JLS definition of join incorrectly defines:

join(List<? extends Number>, List<? super Number>) = List<Number>

Using the conditional operator, this can be used to construct a hole in the type
system:
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exitMethod(result) =
let (oldMeth, oldPgm, oldPos , oldLocals , oldMethTypeArgs) = top(frames)

meth := oldMeth

pos := oldPos

locals := oldLocals

methTypeArgs := oldMethTypeArgs

frames := pop(frames)

if methNm(meth) = <clinit> ∧ result = Norm then
...

elseif (result ∈ {Norm, null} ∪ abruptions) ∨ classOf (result) ° |T (oldPos)| then

restbody := oldPgm[result/oldPos ];
else

restbody := oldPgm[throw new InvalidCastException();/oldPos ];

Figure 4.4: ASM Rule for Leaving a Method Invocation

Lis t<Number> ho le ( L is t <? super Number> input ) {
Lis t <? extends Number> tmp = null ;
return input != null ? input : tmp ;

}
void t e s t ( ) {

Lis t<Object> l i s t = new ArrayList<Object >() ;
l i s t . add ( " Text " ) ;
L i s t<Number> l i s t 2 = ho le ( l i s t ) ;
// now a List<Number > contains a string

}

Fortunately, the Java compiler does not implement this specification bug.
Ignoring such specifications bugs, generic Java (without unchecked warnings) ap-

pears to be type-safe. In [CDE08], type soundness is demonstrated for a subset of
Java which includes wildcards. However, for a full proof of type safety, it is necessary
to solve the problem of reification first in order to make the type system aware of
generic runtime types.
The model used in this thesis is a first step in this direction, as it assigns generic

types to runtime objects. However, the model as presented here does not handle
wildcard capture correctly.
The following example from the EGO reification model [CV08] demonstrates this

deficiency:

stat ic <T> List<T> c lone ( Lis t<T> l ) {
Lis t<T> newList = new List<T>() ;
newList . head = l . head ;
newList . t a i l = l . t a i l ;
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return newList ;
}
. . .
public stat ic void main ( St r ing [ ] a rgs ) {

Lis t <?> l = new List<Str ing >() ;
L i s t <?> l2 = c lone ( l ) ;

}

The runtime-type of l is List<String>. When cloning this list, a programmer
would expect that the copy is a List<String> as well, but our model produces
List<Z> where Z is a fresh type variable introduced by wildcard capture. The prob-
lem for type safety already occurs within the clone method: because T is inferred to
be Z, the parameter l of type List<Z> contains a value of type List<String>, but
ListNode<String> is not a subtype of ListNode<Z>. The definition of type safety
as used in the Jbook [SSB01, §8.4], namely that the type of the value computed by
any expression is a subtype of the static type of that expression, would not hold with
this model.
A possible solution to this problem is to avoid using type variables at runtime and

instead pass the type hidden by the wildcard – this is the approach taken by the
EGO reification model [CV08]. In the case where there is no type hidden by the
wildcard, for example because the runtime value is null, it is possible to use the
lower bound of the wildcard instead. The lower bound can be safely used without
having to deal with F-bounded types parameters because type parameters can only
have upper bounds.
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AsmGofer [Sch01] is a programming system that adds support for Abstract State
Machines to the functional programming language Gofer. Gofer is a subset of the
popular Haskell programming language.
The CD accompanying the Jbook contains an implementation of the execJava

ASM in AsmGofer. Static contraints, the elaboration phase and derived functions
used by the ASM are implemented as Gofer functions.
For experimenting with the Java model, the Jbook AsmGofer code contains a

graphical user interface that allows to single-step through the execution of execJava,
allowing inspection of the model by stepping through the execution and seeing how
expressions are replaced with values.
Figure 5.1 shows the GUI executing a simple test program for ArrayList. We have

extended the bottom left view to show the reified runtime type of the heap objects,
based on the model from Section 4.6.1.
The user interface also allows selecting any expression and pressing „Show type“

to display the static type of that expression. For method calls, this will also display
the chosen overload. This allows easily exploring the results of the elaboration phase.

5.1 Parsing Java 1.5

The parser originally used with the Jbook ASM implementation was created using
the Happy Parser Generator [Mar]. However, due to the large syntactic changes in
Java 1.5, we decided to not extend this parser, but replace it with a different existing
parser which can handle Java 1.5.
For this, we chose the open-source project JavaParser [Ges], which is implemented

in Java and produces a set of Java objects representing the abstract syntax tree.
To convert this AST into the Gofer data structure, we wrote a small program that
traverses the AST and outputs Gofer code. When executed, the generated Gofer
code reconstructs the syntax tree. This allows using the new parser with the existing
abstract source tree defined by the Gofer code included with the Jbook. We only
had to perform minor adjustments to the data structures to add support for the new
language constructs.

5.2 Implementation of the Type System

To implement the generic type system, we extended the definition of JavaType to
include all type expressions necessary to represent Java types, including those which
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Figure 5.1: AsmGofer GUI for Java ASM

cannot be named directly by the programmer.
data JavaType = TJInt

...
| TJBoolean

| TJRef (TypeName)
| TJP(TypeName, [TypeArgument ])
| TJArray(JavaType)
| TJVariable(Int ,TypeParameterOwner ,TypeContext)
| TJFBoundRef (Int)
| TJCapturedWildcard(Int , JavaType, JavaType)
| TJIntersection([JavaType])
| TJNull

| TJVoid

| TJNoType
This declaration defines all the possible types. These correspond to the types

defined in Section 3.5.
The constructor TJRef , which was already used in the existing implementation,

refers to a class or interface type without any type arguments.
We added the constructor TJP to refer to a parameterized type. Each type ar-

gument is either another JavaType, a wildcard bounded in both directions, or a
wildcard reference ?i .

data TypeArgument = TAType(JavaType)
| TAWildcard(JavaType, JavaType)
| TAWildcardRef (Int)
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Wildcard references can occur only within the upper bound of an enclosing
TAWildcard . When accessing such an upper bound using the ⌈ ⌉ function, wild-
card references are replaced as described in Section 3.7, thus ensuring that wildcard
references can never occur anywhere in top-level types.
TJVariable is used to refer to a type variable. It is identified by the owner of the

corresponding type parameter, and by its index (Int) within the type parameter list
of the owner. TypeParameterOwner is a simple enumeration type with two values:

• TPOClass : The type parameter belongs to a class declaration.
• TPOMethod : The type parameter belongs to a method declaration.

Index and owner are used to determine which types represent type parameters that
need to be replaced with type arguments whenever such a substitution needs to be
done. Finally, the last element of the TJVariable is the TypeContext : this is the
full list of type parameters belonging to the owner. For each type parameter, name
and upper bound are stored. This is used so that the upper bound of the type
variable (which might be F-bounded) can be determined without having to pass a
type context into all functions that work with types.
The constructor TJFBoundRef is used to solve the infinite recursion that would

otherwise occur when representing the F-bounded type parameters with TJVariable.
The TJFBoundRef is not considered a valid type and will occur only in the upper
bound of type parameter declarations. Whenever the upper bound of a type param-
eter is accessed, all F-bound references are replaced with TJVariables that correctly
represent the upper bound as a type. The type parameter is identified using its index
(similar to the first element in TJVariable).
TJCapturedWildcard is used to represent the fresh type variables created by cap-

ture conversion. An integer is used as unique identifier to tell apart the different
types created by repeated invocation of wildcard capture on a parameterized type.
Both lower and upper bound are stored with a captured wildcard type.
To represent intersection types, the type constructor TJIntersection is used. It is

implemented as a simple list of types.
Finally, TJNoType is a special type used during elaboration that is used when type

are not yet inferred, taking the role of undef in Section 4.2.

Using these definitions, the type operations defined in the type system chapter are
implemented as Gofer functions.
For example, the implementation of type erasure follows directly from the definition

in Section 3.8:

e r a su r e : : JavaType > JavaType
e ra su r e (TJP( t ,_) ) = TJRef t
e ra su r e (TJArray e ) = TJArray ( e ra su r e e )
e ra su r e ( TJIn t e r s e c t i on ( t :_) ) = era su r e t
e ra su r e x@( TJVariable _) = era su r e ( upperBound x )
e ra su r e t = t
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6 Conclusions

6.1 Summary

We have introduced a type system for use with our ASM model. Based on the work
of Daniel Smith [Smi07], we have built a type system that fully specifies the behavior
of all Java types, including infinite types, which are left unexplained by the Java
specification.
The major change when modeling Generic Java was the introduction of an explicit

elaboration machine elabJava in order to model the static semantics of type checking
and overload resolution. In some places, we simplified the algorithms by reusing
definitions where the Java specification contains redundancies, for example when
using applicability for defining the ‘more specific’ relation.

6.2 Observations

The vast changes to the type system in Java 1.5 made it problematic to model the
changes as a separate sublanguage similar to the way the Jbook decomposes the
Java language into five layers. Instead, we replaced existing definitions with ex-
tended versions of these definitions, or, in case of the overload resolution algorithm,
reformulated the whole algorithm to support the new features. While Java Gener-
ics were designed to be backward-compatible, modeling the addition of Generics as
conservative extension is problematic because the backward compatibility of Java is
not achieved through existing language mechanisms, but through the careful addi-
tion of special cases (for example, using multiple passes in overload resolution) and
compatibility constructs such as raw types.
Limitations in the Java specification have shown to be a bigger problem than

expected.
An important observation is that a proof of type safety, if it should show the safety

of using generic types, depends on assigning runtime type information to objects.
However, the exact semantics for this are not clear as no proposal for reification has
been chosen so far.

6.3 Future Work

The results of this work can build a basis for a full model of Java semantics.
Several other language features are also missing from the model:

• Inner classes and anonymous classes
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6.3 Future Work

• Static Import
• Enums
• Enhanced for-Loop

These have little to do with the Java type system, but nevertheless are necessary for
a full model of Java. Inner classes in particular require a major change to the name
lookup algorithm.
If the reification problem is solved, it will be possible to use this model to prove

the type safety of Java by extending the proof from the Jbook.
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