
CLAM Speci�cation for Provably Correct
Compilation of CLP(R) Programs

Egon B�orger and Rosario F. Salamone

Abstract

The chapter extends the correctness proof in [4] for compilation
of Prolog programs on the WAM to CLP(R) programs on the Con-
straint Logic Arithmetic Machine (CLAM [8, 10]). This serves to
illustrate, through a complex case study, how the evolving algebra
speci�cation methodology allows us to incorporate modularity and
extendability principles in system design.

1 Introduction

This chapter extends, to the Constraint Logic Arithmetic Machine (CLAM)

and CLP(R) programs, the mathematical analysis of the Warren Abstract

Machine (WAM) for executing Prolog and the resulting correctness proof

for a general compilation scheme of Prolog to the WAM given in [4].

Starting from an abstract CLP(R) model|which paraphrases the primary

model for Prolog de�ned in [5]|we follow the stepwise re�nement of Prolog

models to the WAMmodel given in [4] and enrich both the speci�cation and

the correctness proofs by what is needed to cover CLP(R) constraints and

their implementation in the CLAM. Use of Gurevich's evolving algebras [6]

as our speci�cation vehicle allows us to couple smoothly the modularity of

the WAM speci�cation in [4] to extendibility of uni�cation to handling of

CLP(R) constraints.

For expository reasons we start (in section 3) from scratch by de�n-

ing an operational semantics of CLP(R) through CLP(R) trees, close to

the usual intuitive picture and to its proof theoretical logical background

(resolution-trees). This de�nition, which serves as our primary mathemat-

ical model, is easily shown to be correct w.r.t. resolution (for CLP(R)

programs without built-in predicates), and can be extended to a transpar-

ent rigorous formulation of the full language using the de�nitions given in

[5].

The �rst major re�nement steps are devoted to analysis and imple-

mentation of the disjunctive and conjunctive structure of CLP(R) pro-

grams. These structures correspond to WAM handling of clause selection

(predicate structure) and continuations (clause structure) and can be taken

unchanged from the WAM as long as the representation of terms and con-

straints is kept abstract. We then analyze in detail how the WAM repre-

sentation of terms and substitutions has to be enriched in order to make

97

98 Egon B�orger, Rosario F. Salamone

it work also for constraints (sections 4), the cooperation of uni�cation and

contraint solving (section 5) and constraint compilation (section 6). The

�ne points of the WAM|environment trimming, local and unsafe values,

last call optimization, Warren's classi�cation of variables and their on-the-

y initialization|can again be taken almost unchanged from the WAM

and enriched by speci�c CLAM optimizations (section 7).

We thus arrive at a speci�cation of the full CLAM which allows us to

prove the following:

Theorem 1.1. (Main Theorem) Each compiler which satis�es the as-
sumptions for predicate, clause, term compilation listed in [4] and the as-
sumptions for constraint compilation listed in this chapter, compiles CLP(R)
programs correctly with respect to CLP(R) trees and CLAM algebras.

All we assume of the reader is general understanding of CLP(R) and

Prolog as programming languages. In order to keep the chapter within

reasonable bounds we refer to [4] each time we can take from there without

crucial modi�cations. To help readability we list, however, in section 2 the

basic notions from evolving algebras.

2 Prerequisites on Evolving Algebras

The CLAM model constructed in this chapter is an evolving algebra, a
notion introduced by Gurevich in [7]. Since this notion is a mathemat-

ically rigorous form of fundamental operational intuitions of computing,

the chapter can be followed without any particular theoretical prerequi-

sites: indeed our rules can be read as \pseudocode over abstract data".

For completeness we nevertheless list in this section the basic de�nitions

for evolving algebras.

The abstract data come as elements of sets (domains, universes), and
the allowed operations as partial functions. This determines a class of

algebras (in the sense used in logic) or states of an abstract \machine"

which we allow to evolve in time by executing function updates of form

f(t1; : : : ; tn) : = t whose execution is to be understood as changing (or

de�ning, if there was none) the value of function f at given arguments.

De�nition 2.1. An evolving algebra is a �nite set of transition rules of
form

if R? then R!

where R? (condition or guard) is a boolean, the truth of which triggers si-
multaneous execution of all updates in the �nite set R! of function updates.

Simultaneous execution avoids fussing with intermediate storage prob-

lems. Since functions may be partial, equality in the guards is to be inter-

preted as implying that both arguments are de�ned. The signature of an

CLAM Speci�cation and Compiler Correctness 99

evolving algebra can always be reconstructed, as the set of function sym-

bols occurring in the rules. An evolving algebra usually comes together

with a set of integrity constraints , i.e. extralogical axioms and/or rules of

inference, specifying the intended domains.

In applications of evolving algebras as here, one usually encounters a

heterogenous signature with several universes, which may in general grow

and shrink in time|update forms are provided to extend a universe:

extend A by t1; : : : ; tn with updates endextend

where updates may (and should) depend on ti's, setting the values of some

functions on newly created elements ti of A. In [6] Gurevich has shown how

to reduce such setups to the above basic model of a homogenous signature

(with one universe) and function updates only.

The forms obviously reducible to the above basic syntax, which we shall

freely use as abbreviations, are let, case and if then else. We shall assume

that we have the standard mathematical universes of booleans, integers,

lists of whatever etc. (as well as the standard operations on them) at our

disposal without further mention. We use usual notations, in particular

Prolog notation for lists.

An evolving algebra, as given above, determines the dynamics of a very

large transition system. Here we are usually interested only in states reach-

able from some designated initial states , which may be speci�ed in various

ways. We use an informal mathematical description, like in model the-

ory; but one could easily devise special initializing evolving algebra rules

which, starting >from a canonical \empty" state, produce the initial states

we need.

As CLP(R) is a sequential language, our rules are organized in such a

way that at every moment at most one rule is applicable.

3 CLP(R) with Predicate and Clause Compilation

In this section we show how one can adapt the Prolog tree model of [5]

to CLP(R) ([8]) and its re�nement with predicate and clause compilation.

We suppose the reader to be acquainted with the fundamentals of Prolog

and of CLP(R).

To obtain a primary model for CLP(R), characterized by the program-

mer's view and close to resolution trees, it suÆces to paraphrase the Pro-

log model of [5] by replacing substitution by constraints and uni�cation by

constraint solving, similar to what has been done for the type constraints

extension of Prolog in [2].

In the following we de�ne in some detail the primary CLP(R) model

and then explain shortly how to re�ne this model to the level where pred-

icates and clauses are no longer abstract but compiled. The reader who is

acquainted with [5] or [2] might skip this section.

100 Egon B�orger, Rosario F. Salamone

3.1 CLP Trees

A CLP(R) computation can be seen as systematic search of a space of pos-

sible solutions to an initially given query. The set of computation states

is viewed as carrying a tree structure, with initial state at the root, and

son relation representing alternative (single) derivation steps. This means

to represent CLP(R) computation states in a set NODE with two dis-

tinguished elements root and currnode, with the latter representing the

(dynamically) current state. Each element of NODE has to carry all in-

formation relevant|at the desired abstraction level|for the computation

state it represents. This information consists of the sequence of goals still

to be executed, the set of constraints collected so far, and possibly the se-
quence of alternative derivation states still to be tried, as explained below.

The tree structure over the universe NODE , representing the structure
of CLP(R)'s backtracking behavior , is realized by a total function

father : NODE � frootg ! NODE

such that from each node there is a unique father path towards root .

When, at a given node n, a user de�ned atom is selected (as activator

act) for execution, for each possible immediate derivation state a son of n
will be created, to control the alternative computation thread. Each son

is determined by a corresponding candidate clause of the program, i.e. one

of those clauses whose head might unify with act . All such candidate sons
are attached to n as a list cands(n), in the order re
ecting the ordering

of corresponding candidate clauses in the program. We require of course

the cands lists to be consistent with father , i.e. whenever Son is among

cands(Father), then father (Son) = Father .

This action of augmenting the tree with cands(n) takes place at most

once, when n gets �rst visited (in Call mode). The mode then turns to

Select , and the �rst unifying son from cands(n) gets visited (i.e. becomes

the value of currnode), again in Call mode. The selected son is simulta-

neously deleted >from the cands(n) list. If control ever returns to n (by

backtracking , cf. below), it will be in Select mode, and the next candidate

son will be selected, if any.

If none, that is if in Select mode cands(n) = [], all attempts at deriva-

tion from the state represented by n will have failed, and n will be aban-
doned by returning control to its father . This action is usually called

backtracking .

The information relevant for determining a computation state will be

associated to nodes by appropriate (in general partial) functions on the

universe NODE . For each state we have to know the sequence of goals still

to be executed. In view of the cut operator ! , however, this sequence is

not represented linearly, but structured into subsequences|clause bodies

decorated with appropriate cutpoints , i.e. backtracking states current when

CLAM Speci�cation and Compiler Correctness 101

the clause was called: a function decglseq : NODE ! DECGOAL� for

DECGOAL = (LIT +CONSTRAINT)��NODE associates the relevant

sequence of (decorated) goals to each node. CONSTRAINT is the universe

of constraints coming with functions

c : NODE ! CS ; solvable : CS ! BOOL

where CS is the universe of all sets of constraints.

The above-mentioned switching of modes will be represented by a dis-

tinguished element mode 2 fCall ;Selectg indicating the action to be taken

at currnode: creating the derivation states, or selecting among them. To

be able to speak about termination we will use a distinguished element

stop 2 f0; 1;�1g, to indicate respectively running of the system, halting

with success and �nal failure. We will use (and consider as part of CLP

tree algebras) all the usual CLP(R) data structures and list operations for
which we adopt standard notation. In the same way we shall use hd and

bdy to select heads and bodies of clauses, allowing ourselves the freedom

to confuse a list of literals and constraints with their iterated conjunction.

The codomain of bdy will thus be taken to be (TERM
S
CONSTRAINT)�.

We keep the above-mentioned notion of candidate clause (for executing

an atom) abstract (regarding it as implementation de�ned), assuming only

the following integrity constraints: every candidate clause for a given atom

has the proper predicate (symbol), i.e. the same predicate as the atom (cor-
rectness); every clause whose head uni�es with the given atom is candidate

clause for this atom (completeness). The reader might think of considering

any clause occurrence whose head is formed with the given predicate, or the

clause occurrences selected by an indexing scheme, or just all occurrences

of unifying clauses.

Having to allow for dynamic code and related operations, one has to

speak about di�erent occurrences of clauses in a program. We hence in-

troduce an abstract universe CODE of clause occurrences (or pointers),

coming with functions

clause : CODE ! CLAUSE ; cll : NODE ! CODE

where cll (n) is the candidate clause occurrence (\clauseline") correspond-
ing to a candidate son n of a computation state, and clause(p) is the clause
\pointed at" by p. Note that we do not assume any ordering on CODE .
We instead assume an abstract function

procdef : LIT � PROGRAM � CONSTRAINT ! CODE�;

which we assume to yield the (properly ordered) list of the candidate clause

occurrences for the given literal in the given program (the constraint pa-

rameter will allow us to formalize indexing mechanisms which depend on

constraints). The current program is represented by a distinguished ele-

102 Egon B�orger, Rosario F. Salamone

ment db of PROGRAM (the database). Note that existence of procdef is

all that we assume of the abstract universe PROGRAM .

We assume the following initialization for application of the rules given

below:

� root is supposed to be the nil element|on which no function is

de�ned|and father of currnode;

� currnode has a one element list [h query ; root i] as decorated goal

sequence, and empty set of constraints;

� the mode is Call , stop has value 0; db has the given program as value;

� the cands list is not (yet) de�ned at currnode.

We now de�ne the �ve basic rules by which the system attempts to reach

a state with stop = 1 (due to �rst successful execution of the query) or with

stop = �1 (due to its �nal failure by backtracking all the way to root). In
writing these rules, we suppress the parameter currnode by simply writing

father for father (currnode), cands for cands(currnode), c for c(currnode)
and decglseq for decglseq(currnode). Components of decorated goal se-

quence are accessed as goal � fst(fst(decglseq)), cutpt � snd(fst(decglseq)),
act � fst(goal)1, cont � [h rest(goal); cutpt i j rest(decglseq)], with act
standing for the selected literal (activator), and cont for continuation. We

also use the following abbreviation:

backtrack � if father = root then stop := �1

else currnode := father
mode := Select

When the stop value is 1 or �1, no transition rule will be applicable

which is a natural notion of \terminating state". All transition rules will

thus be tacitly assumed to stand under the guard

OK � stop = 0

The following query success rule|for successful halt| leads to success-

ful termination when all goals have been executed:

if all done then stop : = 1

where all done abbreviates decglseq = [] 2. The following goal success

rule describes success of a clause body, when the system continues to

1This de�nition implements the left-to-right computation rule. In general we could
have written act = goal select(goal), where goal select represents the computation rule.
Correspondingly, one has to change the de�nition of rest in cond.

2Note that we do not describe how output (answer constraints) is given. If the reader
wants to view CLP(R) as returning all solutions, all he has to do is to modify this rule
so as to trigger backtracking.

CLAM Speci�cation and Compiler Correctness 103

execute the rest of its goal sequence:

if goal = [] then decglseq := rest(decglseq)

The existence of goal , assumed in the guard, is understood as exclud-

ing all done, cf. above abbreviations. Likewise, the existence of act , as-
sumed in rules to follow, is understood as excluding both all done and

goal = [] conditions|we shall, in general, tacitly understand guards, rely-

ing on existence of some objects, as excluding all conditions under which

these objects could be unde�ned, suppressing the boolean conditions which

would formally ensure such exclusion. In goal success rule e.g. the sup-

pressed condition is NOT (all done), and in rules mentioning act below it

is NOT (all done) & goal 6= [].

The crucial derivation step, applicable to a user-de�ned predicate, is

split into calling the activator, creating new candidate nodes for alternative

derivations from currnode, to be followed by selecting one of them. We will

correspondingly have two rules. The following call rule, invoked by having

a user-de�ned activator in Call mode, will create as many sons of currnode
as there are candidate clauses in the procedure de�nition of its activator,

to each of which the corresponding clause(line) will be associated:

if is user de�ned(act)
&mode = Call

then let n = length(procdef (act ; db))
extend NODE by temp

1
; : : : ; temp

n
with

father (temp
i
) := currnode

cll(temp
i
) := nth(procdef (act ; db); i)

cands := [temp
1
; : : : ; temp

n
]

endextend

mode := Select

where is user de�ned is a boolean function recognizing those literals whose

predicate symbols are user de�ned (as opposed to constraints, built-in pred-

icates and language constructs). Note that goals and constraints are unde-

�ned for candidate sons, and that the value of currnode does not change3.

The Selection Rule is applicable to nodes already visited in Call mode.

It triggers the visit of the �rst candidate node or backtracks if the cands
list is empty. In the former case, the update of the sequence of goals pro-

vides for the uni�cation test and the execution of the body. The currently

accumulated constraints are copied and the selected node is cancelled from

3Given database operations of full Prolog this rule formalizes the so-called logical
view; see [3].

104 Egon B�orger, Rosario F. Salamone

the cands list:

if is user de�ned(act) &mode = Select
then if cands = []

then backtrack
else let clause = rename(clause(cll (fst(cands))); vi)

currnode := fst(cands)
c(fst(cands)) := c
decglseq(fst(cands)) :=
[happend([act

:
= hd(clause)]; bdy(clause)); father i j cont]

cands := rest(cands)
mode := Call
vi := vi + 1

where p(t1; : : : ; tn)
:
=p(s1; : : : ; sn) abbreviates the sequence t1=s1; : : : ; tn=

sn. Note that we represent renaming of variables abstractly, without going

into details of term and variable representation, by introducing a function

rename : TERM �N ! TERM

renaming all variables in the given term at the given index (renaming level).

The current renaming index|the one to be used for the next renaming|is

indicated by a 0-ary function vi.

The Add-constraint Rule �res when the activator is a constraint. In

this case the solvability of the current set of constraints put together with

the new constraint is tested; if the answer is yes, then the new constraint

act is added to c; otherwise execution backtracks:

if is constraint(act) then if solvable(c
S
factg)

then c := c
S
factg

succeed
else backtrack

where succeed stands for decglseq := cont . This concludes the description of
the primary CLP(R) model as far as user-de�ned predicates are concerned.

For built-in predicates one can now proceed as in Prolog; we refer for this

to the full description given in [5] and show here only the example of the

cut. It suÆces to update father to cutpt :

if act = ! then father := cutpt
succeed

It is easy to show that this model of CLP(R) is correct for CLP(R)

programs without built-in predicates with respect to the usual resolution

based de�nition of procedural semantics.

CLAM Speci�cation and Compiler Correctness 105

3.2 Compilation of Predicates and Clauses

For compilation of predicate and clause structure by WAM instructions,

CLP(R) constraints behave in the same way as uni�cation equations s = t

as long as terms and constraints remain abstract. Therefore the primary

(tree based) model for CLP(R) of the preceding section can easily be re-

�ned to re
ect WAM code for creation, reuse and discarding of choicepoints

(including switching) and for (de-)allocation of environments (representing

clause structure): just apply to the primary CLP(R) tree model the same

re�nement steps as de�ned (and proved to be correct) for Prolog in [4]. This

goes through embedding of the tree into a stack, reuse of choicepoints, de-

terminacy detection, try- retry- trust- and switching-code (where switching
will be canonically extended to arithmetical terms) and environment han-

dling code (where to instructions call(G) also instructions resolve(C) for
constraints C will be added). Thus the modularity of the WAM speci�ca-

tion in [4] allows us to naturally embed that speci�cation into the CLP(R)

context and to proceed directly to compilation of terms and constraints.

4 Representation of Constraints

When passing to the level of term representation, the CLAM requires

to properly extend all corresponding WAM data structures and to intro-

duce new data areas for representation and construction of arithmetic con-

straints.

CLAM data area locations may contain, in addition to Prolog objects,

numeric constants (tagged Numb) and \solver variables", i.e. variables ap-

pearing in the current collection of arithmetic constraints. Solver variable

locations, tagged S var, contain a reference, called the (solver) identi�er

of that solver variable, to another memory area (SVAR AREA) in which

information regarding solver variables becomes accessible. Di�erent solver

variables may have the same identi�er. Therefore, as in the WAM, we have

DATAAREA, a set of \locations" with mutually inverse successor and pre-

decessor functions (+;�), and with a \content" function

val : DATAAREA ! CLPO +MEMORY

where, as in the WAM,MEMORY is a universe that contains DATAAREA,
to enable storage of pure pointers, to be elaborated and used below. The set

CLPO extends the set PO of Prolog objects by SVAR AREA+NUMBER,

coupled with an extension of the WAM encoding scheme

6

f/nFunctAtomConstL var

106 Egon B�orger, Rosario F. Salamone

66

l+3+nl+4l+3l+2l+1l

VnV1

cnc1c0

nil
nstatetype ...

Fig. 1. Inequality c0 + c1V1 + : : :+ CnVn�0, � 2 f>;�g.

using functions

tag : CLPO ! fL var ;S var ;Numb;Const ;List ;Struct ;Functg

ref : CLPO ! DATAAREA+ SVAR AREA+NUMBER +

ATOM +ATOM�ARITY

where for uniformity the type label ref, used in the WAM to denote logical

variables, is replaced by L var.

For arithmetic constraints we use a stack4 (PF AREA,PFO;pftop,pfbot-
tom;+;�) to store \parametric forms" via a function pfval : PF AREA !
PFO as follows.

We call terms of form c0+ c1V1+ : : :+ cnVn \linear parametric forms",

where ci is a numeric constant and Vi (called parametric variables) are

distinct solver variables with n � 1. Linear equations or inequalities are of

the form V = lpf or lpf � 0, where lpf is linear parametric form, �2f�; >g

and V (called nonparametric variable) is di�erent >from the variables in

lpf. A linear inequality is stored (in consecutive locations starting from

l) as shown in Fig. 1, where type 2 f�; >g; state 2 factive; dormantg
indicates whether the linear form refers to a constraint which is actually

contained in the current collection of constraints (active linear form), or

whether it has been abandoned (in which case it may be restored during

backtracking and is called dormant); pointers to the parametric variables

Vi are pointers to locations in SVAR AREA (i.e. the identi�ers of the Vi).

Linear equations (type is =) have one more cell (coming after the arity

cell) containing the identi�er of the nonparametric variable.

The 0-ary functions top
=
; top� and top

>
represent the (addresses of

the) topmost linear equation, nonstrict inequality and strict inequality, re-

spectively. Equations are solved with the Gaussian elimination method. In

order to determine the solvability of a set of linear inequalities, an incre-

mental version of the Simplex algorithm is used to maintain inequalities

in a solved form representing a certain solution. So there will be another

4A stack is used because arithmetic constraints are subject to backtracking.

CLAM Speci�cation and Compiler Correctness 107

l+3+nl+2+nl+2l+1l

s0
n

s0
n�1

...s0
0

<op,n,i>nonlinear

Fig. 2. Nonlinear constraint.

area to store the solved form of each inequality (it is actually a Simplex

tableau). In addition, the \inequality solver" also has to determine the

equalities implied by a consistent collection of linear inequalities. At this

level of abstraction we specify the inequality solver only through abstract

updates on which conditions are imposed to ensure correctness.

Nonlinear constraints are stored in nonlinear form, s0 = op(s1; : : : ; sn)

where sj is either a numeric constant or a variable, 0 � j � n. A nonlinear

constraint stored at location l is represented in Fig. 2, where hop; n; ii 2

(ATOM � ARITY � N) and, if sj is a constant then s0
j
= sj , otherwise

s0
j
is the identi�er of variable sj . The index i codi�es the wakeup degree.

CLAM delays the satis�ability of nonlinear constraints until they become

linear. In order to detect when a nonlinear constraint becomes linear, it

is assigned wakeup degrees representing the information currently known

about variables appearing in the constraint. As variables become ground,

a particular instance of a nonlinear constraint changes degree until it can

be awoken.

Nonlinear equations are kept in normal form, in the sense that when a

solver identi�er gets instantiated to a ground value, it is substituted out in

all its \nonlinear" occurrences. The 0-ary function top
nl

keeps the address

of the topmost nonlinear equation.

When a solver variable gets instantiated to an arithmetic term, its value

must be substituted in every linear form where it appears and, if the value

is ground, also in every nonlinear form. Therefore for each solver vari-

able we need the address of its occurrences and the address of the linear

parametric form the variable is possibly bound to. When a solver vari-

able is instantiated to a ground value, this value has to be kept accessible

through SVAR AREA because other S var locations in DATAAREA may

point to the same identi�er. Therefore SVAR AREA is realized as a stack

(SVAR AREA;svtop, sbottom; +, -) to store those 3 kinds of objects (ac-

cessed using a content function sval into SVARO):

svar occ : SVARO ! (PF AREA�N)�

svar lpf : SVARO ! PF AREA + fnilg

svar value : SVARO ! NUMBER + fnilg

Formally we therefore assume that nonparametric variables correspond

108 Egon B�orger, Rosario F. Salamone

to identi�ers l with svar lpf (sval(l)) 6= nil and parametric variables to

identi�ers with svar lpf (sval (l)) = nil & svar value(sval (l)) = nil (this
corresponds to linear constraints being in solved form). We assume that

the elements of the list of occurrences of an identi�er are formed by the

address of a linear or nonlinear form in which the identi�er appears, and

its relative position within this form (a sort of o�set with respect to the

address of the form, for details see [11]).

Notationally, we often suppress the value functions and write tag(l) for
tag(val (l)), ref (l) for ref (val(l)), svar lpf (l) for svar lpf (sval (l)) etc. We

borrow from [4] the following abbreviations:

l1 l2 � val(l1) : = val (l2); l hT;R i � tag(l) : = T; ref (l) : = R

l unbound(l) � (tag(l) = L var & ref(l) = l)

mk l unbound(l) � l hL var; li

and de�ne their solver variable analogues by:

s unbound(l) � tag(l) = S var & svar lpf (ref (l)) = nil
svar value(ref (l)) = nil

s unfree(l) � tag(l) = S var & svar lpf (ref (l)) 6= nil

s ground(l) � tag(l) = S var & svar value(ref (l)) 6= nil

mk id unbound(l) � svar lpf (l) : = nil ; svar occ(l) : = [];

svar value(l) : = nil

mk s unbound(l) � l hS var ; svtopi;mk id unbound(svtop);
svtop := svtop+

We extend the WAM dereferencing and term reconstructing functions

deref : DATAAREA ! DATAAREA and term : DATAAREA !

TERM >from [4] to include solver variables. We add the analogues for

reconstructing linear parametric forms lpf : PF AREA ! TERM and

solver variable values svar : SVAR AREA ! TERM . The usual WAM

layout for the term represented at location l is thus extended to solver vari-

ables and linear parametric forms by the following requirements, assuming

that mk var associates a unique CLP(R) variable (without any type anno-

tation about variables being logical or arithmetic) to an arbitrary location

in DATAAREA or SVAR AREA:

deref(l) =

�
deref(ref(l)) if tag(l) = L var & NOT (l unbound(l))
l otherwise

lpf (l) = c0 + c1 � svar(l1) + : : :+ cn � svar(ln)

CLAM Speci�cation and Compiler Correctness 109

term(l) =

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

mk var(l) if l unbound(l)
mk var(ref (l)) if s unbound(l)
term(deref (l)) if tag(l) = L var &

NOT(l unbound(l))
ref (l) if tag(l) 2 fConst ;Numbg
svar (ref (l)) if NOT (s unbound(l)) &

tag(l) = S var
[term(ref (l)) j
term(ref (l)+)] if tag(l) = List

f(a1; : : : ; an) if tag(l) = Struct &

ref (ref (l)) = hf; ni &
term(ref (l) + i) = ai

where pfval (l) type is \=", pfval (l+2) = n, pfval (l+4) = hc0;nili, pfval (l+
4 + i) = hci; lii for 1 � i � n.

svar(l) =

8<
:

mk var(l) ifs unbound(l)

lpf (svar lpf (ref (l))) if s unfree(l)
svar value(ref (l)) if s ground(l)

>From these functions one can reconstruct arithmetic constraints by

means of functions eq ; ineq ;nlpf : PF AREA ! CONSTRAINT de�ned

on locations l when the type of pfval (l) is =;� or > and nonlinear respec-
tively.

5 Uni�cation

The \arithmetic part" of the current constraint system consists of all ac-

tive equations, active inequalities and nonlinear constraints; the \logical

part" is de�ned by the bindings in DATAAREA. The structures occurring
during uni�cation are represented as in Prolog on the stack usually called

(HEAP ;h; boh), which is contained in DATAAREA and contains a 0-ary

function str, a subterm (or structure) pointer to be used for navigating

through substructures. The active part of HEAP will be abbreviated as

heap � fl 2 HEAP j boh � l < hg (its �niteness follows from boh being

the initial value of h).

For uni�cation we use the standard pushdown list stack

(PDL; pdl ;nil ; +;�)

with content function pval into DATAAREA. In the uni�cation algorithm

we add to the abstract update bind (l1; l2) (to bind the \logical" variable

stored at l1 to term(l2)) an update equate(l1; l2) to call the equality solver

for the two arithmetic terms stored at l1 and l2; see below. bind (l1; l2),
a \logical operation", is always consistent with the current collection of

arithmetic constraints.

110 Egon B�orger, Rosario F. Salamone

To the assumptions for bind in [4] we add an assumption for equate:

Bind Assumption. Let l1; l2 2 DATAAREA and cs be the current con-

straint system. If l unbound(l1) holds and mk var (l1) does not occur in
term(l2), then, after execution of bind(l1; l2), the new constraint system is

equal to

cs
[
fmk var (l1) = term(l2)g

If the new constraint system is unsolvable, then execution backtracks.

Equate Assumption. Let l1; l2 2 DATAAREA such that term(l1) and

term(l2) are \arithmetic terms", and cs be the current constraint sys-

tem. After the execution of equate(l1; l2), the new constraint system is

the normalization5 of

cs
[
fterm(l1) = term(l2)g

If the new constraint system is unsolvable, then execution backtracks.

Uni�cation will be triggered by setting a 0-ary functionWhat to do with
values in fRun;Unifyg, given that the terms to be uni�ed have already been

pushed to PDL. The rules which control uni�cation considerably extend the
rules known for Prolog and can be obtained from Tables 1, 2 and 3.

The mathematical uni�cation fails on an attempt to bind a variable

to a term in which it occurs. To model such uni�cation with \occur-

check" it suÆces to require of bind (l1; l2) to trigger backtracking whenever
mk var (l1) occurs in term(l2). In accordance with usual practice in logic

programming, we do not specify the behavior of the system when the occur

check fails.

The abbreviations in the uni�cation tables are de�ned as follows; the

contents of the empty slots can be obtained by the symmetric cases (with

dl and dr exchanged):

left � pval (pdl); right � pval (pdl�); dl � deref (left);
dr � deref (right)

failure � What to do := Run; backtrack

top check � if value(dl) 6= value(dr) then failure else pdl := pdl ��

where value(l) gives ref (l) if l is a Numb cell; otherwise svar value(ref (l)).
list check denotes the updates for uni�cation with lists [l j l0]:

list check � pval (pdl�) := ref (dr);
pval (pdl) := ref (dl);
pval (pdl+) := ref (dr)+;
pval (pdl ++) := ref (dl)+;
pdl := pdl ++

5See next section.

CLAM Speci�cation and Compiler Correctness 111

Table 1 Uni�cation Table I.

l unbound(dl) s unbound(dl) tag(dl) = Numb

or s ground(dl)

l unbound(dr) bind(dl; dr)
pdl := pdl ��

s unbound(dr) bind(dl; dr)
pdl := pdl ��

equate(dl; dr)
pdl := pdl ��

tag(dr) = Numb

or s ground(dr)
bind(dl; dr)
pdl := pdl ��

equate(dl; dr)
pdl := pdl ��

top check

tag(dr)=Struct bind(dl; dr)
pdl := pdl ��

failure failure

s unfree(dr) bind(dl; dr)
pdl := pdl ��

equate(dl; dr)
pdl := pdl ��

equate(dl; dr)
pdl := pdl ��

tag(dr)=Const bind(dl; dr)
pdl := pdl ��

failure failure

tag(dr)=List bind(dl; dr)

pdl := pdl ��

failure failure

Table 2 Uni�cation Table II.

tag(dl) = Struct s unfree(dl)

tag(dr) = Struct func check

s unfree(dr) failure equate(dl; dr)
pdl := pdl ��

tag(dr) = Const failure failure

tag(dr) = List failure failure

func check describes the updates for uni�cation with terms f(t1; : : : ; tn):

func check � if ref (ref (dl)) = ref (ref (dr))
then seq pdl := pdl ��

seq i = 1 : : : arity(ref (dl))
pval (pdl+) := ref (dr) + i

pval (pdl ++) := ref (dl) + i

pdl := pdl ++

endseq

endseq

else failure

The crucial update equate, which we keep abstract here, has to re-

112 Egon B�orger, Rosario F. Salamone

Table 3 Uni�cation Table III.

tag(dl) = Const tag(dl) =List

tag(dr) = Const top check

tag(dr) = List failure list check

ect the complex interaction between solver modules for linear equations,

inequalities and nonlinear equations (see Fig. 3). In particular equate is

assumed to:

1. Rewrite the equation term(l1) = term(l2) in such a way that exactly

one variable (called the subject) appears on the left-hand side6; the

result is stored in PF AREA and occurrences lists are updated.

2. \Propagate" the rewritten equation to other constraints so that oc-

currences lists are updated and constraints are mantained in solved

form.

3. Invoke the Simplex algorithm if the subject of the new equation is

contained in inequalities; the set of implied equalities is calculated

and each of them is handled by equate.

4. Calculate the wakeup degrees of all modi�ed nonlinear constraints

for each grounding equation which a�ects nonlinear equalities; if a

nonlinear constraint is awoken7, then an equate update is invoked.

It is further assumed that whenever a linear form must be changed,

it is put to sleep and rewritten on top of PF AREA. >From the above

assumptions one can prove the following:

Lemma 5.1. (Uni�cation Lemma) Let l1; l2 be in DATAAREA such
that term(l1); term(l2) 2 TERM and let cs be the current constraint sys-
tem. After execution of unify(l1; l2), the new constraint system is the nor-
malization of

cs
[
fterm(l1) = term(l2)g

If the new constraint system is unsolvable, then execution backtracks.

6 Compilation of Constraints

In this section we show how the formal description of WAM compilation of

terms can be naturally extended to constraints. For simplicity we assume

here that all variables are permanent and get initialized to unbound as soon
as they are allocated8.

6The choice of the subject variable is ruled by eÆciency criteria.
7An awoken nonlinear constraint gives rise to a linear equation.
8This assumption can be eliminated later by a re�ned variable classi�cation.

CLAM Speci�cation and Compiler Correctness 113

�

- �

-

D: Awoken nonlinear constraint.

C: Equation affecting nonlinear equalities;

B: Inferred equality;

A: Equation affecting inequalities;

Handler

Nonlinear
C

D

Equation

Solver

B

A

Solver

Inequality

Fig. 3. Interactions between solver modules.

Term arguments occurring during term compilation will be represented

in a register subdomain AREGS of DATAAREA, disjoint from the heap.

Registers are numbered by a function x : N ! AREGS for which we

write xi � x(i).

The CLAM code for compiled body subgoals is accessed from a sub-

set CODEAREA of MEMORY through a content function code into the

universe INSTR of instructions which is assumed to contain all WAM in-

structions and the following instructions for handling of constraints:

unify number(c) put number(c; xj) get number(c; xj)
initpf (c) addpf val(c; xj) addpf val(c; yn)
addpf var(c; xj) get lpf (xj) set svariable(xj)
solve eq0 solve ge0 solve gt0
put lpf (xj)

with n; j 2 N , yn 2 DATAAREA, c 2 NUMBER, xj 2 AREGS (INSTR
will be tacitly extended with further instructions occurring below).

For compilation of arithmetic constraints, coming as streams of simple

token patterns, we need a concept of constraint normal form which is an

analogue of the logical notion of term normal form. An arithmetic equation,

inequality or nonlinear constraint is said to be in normal form if it is of

form lpf = 0, lpf � 0, lpf > 0, nlpf , respectively, where lpf is a linear

parametric form and nlpf is a nonlinear form.

We extend the usual normalization procedures nf
s
and nf

a
|corres-

ponding to the analysis (for putting instructions) and synthesis (for getting

instructions) of terms|from logical term equations to constraints as fol-

lows:

nf (Xi=Yn) = [Xi=Yn]; nf (Xi=c) = [Xi=c]

nf (Yi=Yn) = nf (Xi=Xi) = nf (c=c) = []

114 Egon B�orger, Rosario F. Salamone

nf
s
(Xi=c0 + c1s1 + : : :+ cnsn) =
atten([nf

s
(Z1=s1); : : : ;

nf
s
(Zn=sn);

Xi = c0 + c1Z1 + : : :+ cnZn])

The same applies for linear inequalities replacing Xi = by 0 <,0 � respec-

tively:

nf
s
(s0=op(s1; : : : ; sm)) =
atten([nf

s
(Z0=s0);

nf
s
(Z1=s1); : : : ;nf s(Zm=sm);

Z0=op(Z1; : : : ; Zm)])

nf
a
(Xi = op(s1; : : : ; sm)) =
atten([Xi = op(Z1; : : : ; Zm);

nf
a
(Z1 = s1); : : :nf a(Zm = sm)])

nf
a
(Xi = c0 + c1s1 + : : :+ cnsn) =
atten([Xi = c0 + c1Z1 + : : :+

cnZn;

nf
a
(Z1 = s1); : : : ;nf a(Zn = sn)])

where nf stands for both nf
s
and nf

a
; Zi is equal to si if si is a constant

or a variable, otherwise it is a fresh X variable.

Use of normalization is justi�ed by the well known fact that the con-

straint s�t is equivalent to the set of constraints nf (s�t); computationally

this is re
ected by the CLP(R) e�ect of executing s�t being the same as

executing all members of nf (s�t).

For each nonlinear operation, instructions are provided for creating a

nonlinear constraint of any degree. For example, we could de�ne �ve in-

structions for pow, corresponding to the various wakeup degrees (see [10]):

� pow vvv(Vi; Vj ; Vk) for Vi = pow(Vj ; Vk), pow cvv(c; Vj ; Vk) for c =

pow(Vj ; Vk)

� pow vcv(Vi; c; Vk) for Vi = pow(c; Vk), pow vvc(Vi; Vj ; c) for Vi =

pow(Vj ; c)

� pow cvc(c0; Vj ; c1) for c0 = pow(Vj ; c1)

We suppose that we have an auxiliary function nl instr that takes a nor-

malized nonlinear constraint and returns the appropriate instruction. For

example,

nl instr(X = pow(3; Y)) = pow vcv(X; 3; Y)

6.1 Putting Instructions (Body Subgoals Compilation)

We extend the WAM function put instr, yielding the sequence of instruc-

tions which compiles by a normalized equation, to provide also compiled

code for constraints. The extension is de�ned according to the following

table, where j stands for an arbitrary \top level" index (corresponding to

input Xj = t for term normalization), k for a \non top level" index (corre-

sponding to an auxiliary variable introduced by normalization itself) and i

CLAM Speci�cation and Compiler Correctness 115

for any index:

Xj = c ! [put number(c; xj)]

Xi = c0 + c1Z1 + : : :+ cnZn ! [initpf (c0); addpf (c1; z1); : : : ;
addpf (cn; zn); put lpf (xi)]

where addpf (c; zi) is addpf val(c; yn) if Zi = Yn and addpf val(c; xi) if

Zi = Xi. The same applies for c0 + c1Z1 + : : : + cnZn � 0 replacing

put lpf (xi) by instr(�), where

instr(�) =

(
solve eq0 if � =\="

solve ge0 if � =\�"

solve gt0 if � =\>"

Next we consider the case of nonlinear constraint. Note the use of the

set svariable instruction because nonlinear instructions are supposed to

handle variables which are already initialized:

Xi = op(Z1; : : : ; Zm) ! [set svariable(xi);nl instr(Xi = op(Z1; : : : ; Zm))]

V = op(Z1; : : : ; Zm) ! [nl instr(V = op(Z1; : : : ; Zm))]

where V =c or V =Yn

Moreover, a numeric constant c appearing inside a structure or a list is com-

piled into the instruction unify number(c), with yn 2 DATAAREA; xi 2
AREGS .

The function put seq|de�ning the compilation of a body goal, see [4]|

is here extended to specify how constraints are to be compiled. The de�-

nition uses the auxiliary function put code, de�ned by
attening the result

of mapping put instr along nf
s
(Xi = t), nf

s
(c0 + c1s1 + : : : + cnsn � 0)

and nf
s
(s0 = op(s1; : : : ; sm)), where � 2 f=; >;�g. For terms si where

the outermost function symbol is not arithmetic, we set as for body goals

in the WAM:

put seq(s1 = s2) =
atten([put code(X1 = s1); put code(X2 = s2)])

with top level j = 1; 2

For nonlinear constraints put seq coincides with put code:

put seq(s0 = op(s1; : : : ; sm)) = put code(s0 = op(s1; : : : ; sm))

On arithmetic constraints, put seq applies put code to a simpli�ed con-

straint version where all terms with the same variable are collected and all

constants are added:

put seq(t1 = t2) = put code(simplify (t1 � t2 = 0))

put seq(t1 > t2) = put code(simplify (t1 � t2 > 0))

put seq(t1 � t2) = put code(simplify (t1 � t2 � 0))

116 Egon B�orger, Rosario F. Salamone

put seq(t1 < t2) = put code(simplify (t2 � t1 > 0))

put seq(t1 � t2) = put code(simplify (t2 � t1 � 0))

In the following rules which describe the execution of code generated

by putting, an auxiliary stack (ACCUMULATOR; acctop; accbottom) is

needed which allows us to construct linear forms to build arithmetic con-

straints. Its content function accval has to yield constants or pairs (con-

stant, solver identi�er).

Also a 0-ary function add counter is added containing the number of

parametric variables which have appeared so far in the linear form being

read.

For the WAM putting instructions the rules de�ned in [4] are taken. For

the CLAM instructions the rules are de�ned now. The rules for put number
and unify number are like those for WAM instructions put constant and
unify constant:

if code(p) = put number(c; xj)
then xj hNumb; c i

succeed

if code(p) = unify number(c)
& mode =Write

then h hNumb; c i
h : = h+

succeed

The rule for set svariable(xi) is used for initializing a fresh free solver

variable pointed at by xi. It is similar to the instruction set variable used

in [1]:

if code(p) = set svariable(xi)
then mk s unbound(xi)

succeed

The instruction set svariable will be optimized away in the sequel.

The rule that begins the construction of a linear parametric form9 puts

the constant on top of the accumulator and sets add counter to zero (there
are still no parametric variables):

if code(p) = initpf (c)
then accval (acctop) := c

acctop := acctop+
add counter := 0

succeed

The instruction addpf var (c; l) enriches the linear form being built in

9Note that the arithmetic term which is \accumulated" will not necessarily result in
a linear form: it may be simply a numerical constant.

CLAM Speci�cation and Compiler Correctness 117

the accumulator with a variable to be initialized:

if code(p) = addpf var (c; xi)
then mk s unbound(xi)

accval (acctop) hc; svtopi
acctop := acctop+
add counter := add counter + 1

succeed

The instruction addpf val(c; l) enriches the linear form being built in

the accumulator with a new component. We have the following cases:

1. deref (l) gives the address of a Numb cell or a ground solver variable:

the constant so obtained is multiplied by c and then the result is

added to the constant already stored at the bottom of the accumula-

tor.

2. deref (l) gives the address of a free logical variable: the logical vari-

able is transformed into a solver variable; its identi�er is put onto

the accumulator (along with the constant c) and add counter is in-
cremented by 1.

3. deref (l) gives the address of a free solver variable: if the solver vari-

able is a parametric variable already appearing in the linear form

being built with coeÆcient c0, then c is added to c0; otherwise the el-

ement hc; ref (deref (l))i is put onto the accumulator and add counter
is incremented by 1.

4. deref (l) gives the address of an unfree solver variable pointing to a

linear form lpf: the term to be added is c � lpf .

Note that the linear form is built so as to be in solved form when it has to

be copied in PF AREA. In the addpf val rule we make use of an abstract

binary update add, for which we assume that it does what is described in

(3) and (4):

add (c0) � accval (accbottom) := accval (accbottom) + c � c0

118 Egon B�orger, Rosario F. Salamone

and of the trail update discussed below:

if code(p) = addpf val(c; l) then case tag(deref (l)) of
Numb : add (ref (deref(l)))

succeed
L var : mk s unbound(deref (l))

trail(deref (l))
accval (acctop) hc; svtopi
acctop := acctop +

add counter := add counter + 1

succeed
S var : if s ground(deref (l))

then add (svar value(ref (deref(l))))
succeed

else add (c; deref(l))
succeed

other : backtrack

The instruction put lpf (xi) concludes the construction of a linear form

by storing the equation in memory. We have two possible cases:

1. add counter = 0. The arithmetical term built on the accumulator is

a numerical constant: in this case register xi is instantiated to that

constant.

2. add counter > 0: the arithmetic term built on the accumulator is

actually a linear form that has to be stored on top of PF AREA. A
new free solver identi�er is initialized and then the equality solver is

called:

if code(p) = put lpf (xi)
then succeed

if add counter = 0 then xi hNUMB ; accval (accbottom)i

else mk s unbound(xi)
trigger equate(xi; accbottom)

In the following we make use of an abbreviation to store linear inequal-

ities:

store(type) � pfval (pftop) := type
pfval (pftop+) := active
pfval (pftop + 2) := add counter

pfval (pftop + 3) := haccval (accbottom);nili
seq j = 1; : : : ; add counter
pfval (pftop + 3 + j) := accval (accbottom + j)

endseq

pftop := pftop + add counter + 4

CLAM Speci�cation and Compiler Correctness 119

where trigger equate is an abstract update which triggers equate10. The

instruction put lpf will become super
uous in the sequel.

The instruction solve ge0 concludes the construction of an arithmetic

term in the accumulator; this term must be compared with zero if it is

ground, otherwise it must be stored as a nonstrict inequality in PF AREA.
We have two cases:

1. add counter = 0: the contructed arithmetic term is a numeric con-

stant, so the test can be done;

2. add counter > 0: the contructed arithmetic term is a linear form, so

it has to be copied onto PF AREA with type �; Lists of occurrences

are updated (using an abstract update update occ) and the inequality

solver is called.

The call to the inequality solver is represented by an abstract update

inequality(l), which yields backtrack if the Simplex tableau becomes un-

solvable. Eventual equalities are inferred and for each of them the equality

solver is called.

The same also holds for solve gt0 which generates a strict inequality:

if code(p) = solve ge0 j solve gt0
then if add counter = 0

then if accval (accbottom) � 0 j > 0

then succeed
else backtrack

else store(�) j store(>)
update occ
top� := pftop j top

>
:= pftop

succeed
trigger inequality(pftop)

where trigger inequality is an abstract update which triggers the update

inequality.

The rule for solve eq0 is quite similar to the previous one:

if code(p) = solve eq0
then if add counter = 0

then if accval (accbottom) = 0

then succeed
else backtrack

else succeed
trigger equate(accbottom ; 0)

10Note that the equality solver is called after the creation of the linear form and the
solver variable.

120 Egon B�orger, Rosario F. Salamone

For instructions for nonlinear constraints, we consider as a typical ex-

ample the real operator sin, de�ned for any real number (so it is not in-

vertible). Sleeping nonlinear constraints involving this function have only

one wakeup degree, call it ind, and are awoken when the argument gets

instantiated to a ground term. sin has two instructions sin vv(l1; l2) and
sin cv(c; l). Using the abbreviation

store nlpf (l) � pfval (pftop) := nonlinear
pfval (pftop+) := hsin ; ind ; 1i
pfval (pftop + 2) := c

pfval (pftop + 3) := l

nleq := pftop
pftop := pftop + 4

update occ

we have the rule for sin cv, using dl instead of deref (l):

if code(p) = sin cv (c; l)
then case tag(dl) of
Numb : if c = sin(ref (dl))

then succeed
else backtrack

L var : if � 1 � c � 1

then trail(dl)
mk s unbound(dl)
store nlpf (svtop)
succeed

else backtrack
S var : if s ground(dl)

then if c = sin(svar value(ref (dl)))
then succeed
else backtrack

else if � 1 � c � 1

then store nlpf (ref (dl))
succeed

else backtrack
other : backtrack

>From the assumptions made for the abstract updates introduced above

one can prove:

Lemma 6.1. (Putting Lemma I) Let fY1; : : : Yl g be the set of vari-
ables occurring in the CLP(R) literal g(t1; : : : ; tn), yn 2 DATAAREA
with term(yn) 2 TERM (n = 1; : : : ; l), cs be the current constraint sys-
tem associating every Yn with term(yn) and Xi be fresh pairwise distinct
variables, i = 1; : : : ;m. The e�ect of executing (setting p to a value where

CLAM Speci�cation and Compiler Correctness 121

unload yields) put seq(g(t1; : : : ; tn)) is that the new constraint system is the
normalization of

cs
[
fXi = tig

Lemma 6.2. (Putting Lemma II) Let fY1; : : : ; Ylg be all the variables
occurring in the CLP(R) constraint c, yn 2 DATAAREA with term(yn) 2

TERM (n = 1; : : : ; l) and let cs be the current constraint system associating
Yn with term(yn). The e�ect of executing put seq(c) is that if cs

S
fcg is

solvable then it will be equal (up to normalization) to the new constraint
system; otherwise execution backtracks.

6.2 Getting Instructions (Clause Head Compilation)

The compilation of clause heads is de�ned in the same way as clause body

compilation where only the function get instr is di�erent.

For Xj = c and Xi = c0 + c1Z1 + : : : + cnZn it suÆces to replace put
by get, whereas for nonlinear forms we set

Xi = op(Z1; : : : ; Zm) !
atten([set seq([Z1; : : : ; Zm]);

nl instr(Xi = op(Z1; : : : ; Zm))])

The set seq ensure that when a variable Xi �rst occurs in a nonlinear

constraint, it is initialized before executing the appropriate \nonlinear"

instruction11:

set seq([]) = []

set seq([Xi j T]) = [set svariable(xi) j set seq(T)]

set seq([c j T]) = set seq(T)

set seq([Yn j T]) = set seq(T)

In addition to the rules for WAM's getting instructions (see [4]), we

de�ne now the rules for new CLAM instructions. The get number rule is

11Use of set seq could been avoided by introducing variants of nonlinear instructions
which allow a variable to be initialized. For example, for a constraint c = sin(Yn) where
Yn appears in its �rst occurrence, the instruction sin cV can be used with execution
rule:

if code(p) = sin cV (c; l) then if � 1 � c � 1 then mk s unbound (l)
store nlpf (svtop)
succeed

else backtrack

It is easy to see that the sequence set svariable(yn), sin cv(c; yn) is equivalent to
sin cV (c; yn).

122 Egon B�orger, Rosario F. Salamone

analogous to the get constant rule:

if code(p) = get number(c; xi)
then case tag(deref (xi)) of
Numb : if c = ref (deref (xi))

then succeed
else backtrack

L var : deref (xi) := hNumb; ci
trail(deref (xi))
succeed

S var : if s ground(deref (xi))
then if c = svar value(ref (deref (xi)))

then succeed
else backtrack

else succeed
trigger equate(deref (xi); c)

other : backtrack

The rule for unify number is analogous to the rule for unify constant:

if code(p) = unify number(c) & mode = Read
then case tag(deref (str)) of
Numb : if c = ref (deref (str))

then str := str+
succeed

else backtrack
L var : deref (str) := hNumb; ci

trail(deref (str))
str := str+
succeed

S var : if s ground(deref (str))
then if c = svar value(ref (deref (str)))

then str := str+
succeed

else backtrack
else str := str+

succeed
trigger equate(deref (str); c)

other : backtrack

The instruction get lpf (xi) uni�es the arithmetic term built in the ac-

cumulator with term(xi). In order to make updates more readable we split

the rule into two. The �rst regards the case in which the term constructed

CLAM Speci�cation and Compiler Correctness 123

in the accumulator is a constant:

if code(p) = get lpf (xi) & add counter = 0

then case tag(deref (xi)) of
Numb : if ref (deref (xi)) = accval (accbottom)

then succeed
else backtrack

L var : deref (xi) hNumb; accval (accbottom)i

trail(deref (xi))
succeed

S var : if s ground(deref(xi))
then if accval (accbottom) = svar value(ref (deref (xi)))

then succeed
else backtrack

else succeed
trigger equate(deref (xi); accbottom)

other : backtrack

The second rule regards the case in which a linear form has been built:

if code(p) = get lpf (xi) & add counter > 0

then case tag(deref (xi)) of
Numb;S var : succeed

trigger equate(deref (xi); accbottom)

L var : mk s unbound(deref (xi))
trail(deref (xi))
succeed
trigger equate(deref (xi); accbottom)

other : backtrack

The instruction get lpf will be optimized away in the sequel. For the getting

code described above one can prove:

Lemma 6.3. (Getting Lemma) Let all variables occurring in the literal
g(t1; : : : ; tm) be among fY1; : : : ; Ylg, and let further yn 2 DATAAREA with
l unbound(yn); n = 1; : : : ; l; Xi fresh pairwise distinct variables with xi 2

DATAAREA and term(xi) 2 TERM , 1 � i � m. Let cs be the current
constraint system. If

cs
[
fterm(xi) = tig

is solvable, then, after executing (setting p to) get seq(g(t1; : : : ; tm)), it
will be equal (up to normalization) to the new constraint system; otherwise
execution backtracks.

Modifying put- and get-code (to generate unify local value instead of

unify value for all occurrences of local variables), as in the WAM one can

124 Egon B�orger, Rosario F. Salamone

cp

.

.

.

(continuation environment)

(number of arguments)

h

ttop

p

b

e

n

(heap pointer)
(trail pointer)

svtop

xn

x1

top
nl

top
=

top
>

top�

(topmost linear equation)
(topmost nonlinear equation)
(topmost strict inequality)
(topmost nonstrict inequality)

(continuation pointer)
(previous choicepoint)
(next clause)

(argument register 1)

(argument register n)

(SVAR AREA pointer)

b+1:
b:

b+n:
b+n+1:
b+n+2:
b+n+3:
b+n+4:
b+n+5:
b+n+6:
b+n+7:
b+n+8:
b+n+9:
b+n+10:
b+n+11:

Fig. 4. Choicepoint frame.

preserve the Heap Variable Constraint (that no heap variable points outside
the heap); see [4].

7 CLAM

In this section we obtain a description of the CLAM by embedding the

compilation of terms and constraints into the CLP(R) model with predicate

and clause compilation (outlined in section 3).

7.1 Stack and Trail

The �rst step is, as in the WAM, to re�ne the choicepoint and environ-

ment stack to become a subalgebra (STACK ; tos(b; e); bos ; +;�; val) of

DATAAREA disjoint from HEAP and AREGS . The distinguished ele-

ments b and e stand for the (address of the) topmost choicepoint and envi-

ronment, respectively. The environment frame is taken unchanged from the

WAM (see [4]), while the choicepoint frame gets extended by information

on constraints as described in Fig. 4. Formally:

svtop(l) � l + n+ 7 top�(l) � l + n+ 8 top
>
(l) � l+ n+ 9

top
nl
(l) � l + n+ 10 top

=
(l) � l + n+ 11 hb � val(h(b))

n(l) � l

Thus we have the same form of environment (de-)allocation and choicepoint

handling rules as for the WAM (including the conditions on binding and

HEAP < STACK < AREGS ; see [4]). We have to re�ne in particular the

trail update, which allows to undo, on backtracking, all the modi�cations

CLAM Speci�cation and Compiler Correctness 125

to the constraint system made after creation of the choicepoint where the

system backtracks to. The stack (TRAIL;TO ; ttop; tbottom; +;�) is thus

extended to contain (via a function tval) not only DATAAREA locations,

but trail objects which are tagged and refer to the items to be stored:

ttag : TO ! fFREE L;FREE S ;S var ;LPF ; ID ;NLPFg

tref : TO ! DATAAREA + PF AREA+

(PF AREA� SVAR AREA)+
+SVAR AREA + (PF AREA�N)

under the following conditions (writing ttag(l) for ttag(tval(l)), tref (l) for
tref (tval(l))):

case ttag(l) of

FREE L : tref (l) 2 DATAAREA

FREE S : tref (l) 2 SVAR AREA

ID ;S var : tref (l) 2 (PF AREA� SVAR AREA)

LPF : tref (l) 2 PF AREA

NLPF : tref (l) 2 (PF AREA�N)

According to the location to be trailed the update trail(l), assumed to

be executed at each invocation of bind or equate concerning l, can be:

� trail lf (l) if l unbound(l); l is an unbound logical variable;

� trail sf (l) if id unbound(l); l is an unbound solver identi�er;

� trail sid(l) if id unfree(l); l is a solver identi�er equated to a linear

form;

� trail lpf (l) if pfval (l) 2 f=;�; >g; l is the initial address of a linear

form which is going to be put to sleep;

� trail nlpf (l) if pfval (l) = nonlinear ; l is the address of a nonlinear

constraint whose wakeup degree is going to be modi�ed12;

� trail id(l) if pfval (l) 2 SVAR AREA; l contains the address of a non-
constant parameter of a nonlinear constraint.

trail lf (l) � ttag(ttop) := FREE L;

tref (ttop) := l;

ttop := ttop+

trail sf (l) � ttag(ttop) := FREE S ;
tref (ttop) := l;

ttop := ttop+

12Alternatively, the wakeup degree of all nonlinear constraints a�ected by trailing
operations could be calculated as part of the backtrack update.

126 Egon B�orger, Rosario F. Salamone

trail sid(l) � ttag(ttop) := S var ;
fst(ttref (ttop)) := svar lpf (l);
snd(tref (ttop)) := l;

ttop := ttop+

trail lpf (l) � ttag(ttop) := LPF ;
tref (ttop) := l;

ttop := ttop+

trail nlpf (l) � ttag(ttop) := NLPF ;
fst(tref (ttop)) := l;

snd(tref (ttop)) := third(pfval (l+));
ttop := ttop+

trail id(l) � ttag(ttop) := ID ;
fst(tref (ttop)) := l;

snd(tref (ttop)) := pfval (l);
ttop := ttop+

Accordingly, the WAM backtrack update must be re�ned to undo all

constraints trailed after the current choicepoint was pushed. In the follow-

ing de�nition ttop(b) yields the value ttop had when the choicepoint b was

created. Here is the de�nition:

backtrack � if b = bos then stop : = �1

else p := val(p(b))
seq l = ttop � : : : tr(b)

case ttag(l) of
FREE L : mk l unbound(tref (l))
FREE S : mk id unbound(tref (l))
S var : svar lpf (snd(tref (l))) :=

fst(tref (l))
update occ

LPF : pfval (tref (l)+) := active
update occ

NLPF : third(pfval (fst(tref (l)))) :=
snd(tref (l))

ID : pfval (fst(tref (l))) :=
snd(tref (l))

update occ
endcase

endseq

(Recall that we assume that update occ adjusts occurrence lists.)

Trailing operations (and backtracking) also have to take into account

the result of the inequality solver. Since we keep the latter unspeci�ed,

we assume that trailing records the inequality solver data structures (for

CLAM Speci�cation and Compiler Correctness 127

example the Simplex tableau) which are relevant for the currently \active"

inequalities stored in PF AREA.
Putting together all the assumptions made for compilation of predicates,

clauses, terms and constraints one can prove the main theorem stated in

the introduction; see [11].

7.2 Optimizations

In this section we outline some of the major optimizations for the CLAM.

The classi�cation of variables|which is crucial for environment trim-

ming and last call optimization|can be taken together with all the proofs

almost literally from the WAM model of [4] thanks to the modularity of the

speci�cation introduced here. We state here only the adaptation, to clauses

with constraints, of the de�nition of permanent and temporary variables:

De�nition 7.1. A variable occurring before or in a body subgoal �i of a
clause H :��1; : : : ; �n, is needed at �i, 1 � i < n, if either (a) it occurs
in some �j , j > i, and there exists k with i � k < j such that �k is an
atom or (b) �i is an atom (not the last one) and the �rst occurrence of the
variable in the clause is an argument position of �i.

De�nition 7.2. A variable appearing in a clause is said to be permanent
if it is needed at some body subgoal; otherwise it is temporary.

The environment allocation is super
uous when the clause body is

empty or contains only constraints or contains only constraints followed

by one atom: in all these cases no variable is needed at any subgoal.

Trailing operations on variables can be optimized by executing the up-

date trail lf (l) only if (l 2 heap & l < hb) or (l 2 STACK & l < b) just as

in the WAM. An optimization for linear parametric forms can be obtained

by executing trail lpf (l) only if one of the following conditions holds:

pfval (l) = eq & val(leq(b)) � l

pfval (l) = ge & val(nsineq(b)) � l

pfval (l) = gt & val(sineq(b)) � l

Also trail sf (l) and trail sid(l) can be optimized, executing them only if

l < val (svtop(b)). For nonlinear constraints trail nlpf (l) and trail id (l) can
be optimized by executing them only if val (nleq(b)) � l.

One of the principal mechanisms for enhancing eÆciency is to avoid

invoking the full solver when constraints are simple. As we have seen in

section 5, the process of solving a linear constraint consists �rst of building

a linear form in the accumulator13 and then handling the constraint by

means of solve eq0, solve ge0 or solve gt0 instructions. Solving an equation

amounts to:

13A linear form built on the accumulator contains only parametric and new variables.

128 Egon B�orger, Rosario F. Salamone

1. �nding a parameter V to become nonparametric;

2. writing the equation with subject V , i.e. in the form V = lpf ;

3. substituting out V using lpf in all other linear constraints;

4. adding the new constraint V = lpf .

Suppose that a new variable appears in the equation to be compiled;

then it will certainly appear in the linear form built at run time. So it may

be chosen in step 1 at compile time. Much of the work in step 2 can also

be compiled away. Step 3 is not needed because the variable is new. Only

step 4 must be executed at runtime, so a new instruction is needed, which

executes it and always succeeds. Similar simpli�cations can be made for

the compilation of inequalities which contain a new variable. The presence

of a new unconstrained variable in an inequality can in fact signi�cantly

simplify the work made by the inequality solver. The new instructions are:

solve no fail eq(l); solve no fail ge(l); solve no fail gt(l)

The instruction solve no fail eq contains a special call to the equality

solver containing the terms to be equated and the variable that shall become

nonparametric:

if code(p) = solve no fail eq(l)
then succeed

if add counter = 0

then l hNumb; accval (accbottom)i

else mk s unfree(l)
equate no fail (svtop ; accbottom)

where

mk s unfree(l) � l hS var ; svtopi
svar lpf (svtop) := pftop
svar occ(svtop) := []

svar value(svtop) := nil

svtop := svtop +

The update equate no fail (l; a) has the same e�ect as a call to the solver

in order to equate the identi�er l, chosen to become nonparametric, with

the linear form built in the accumulator.

The instructions for inequalities are quite similar:

if code(p) = solve no fail ge(l) j solve no fail gt(l)
then mk s unbound(l)

store v(�; svtop) j store v(>; svtop)
top� := pftop j top

>
:= pftop

inequality no fail (pftop ; svtop)
succeed

CLAM Speci�cation and Compiler Correctness 129

where

store v(type ; l) � pfval (pftop) := type
pfval (pftop+) := active
pfval (pftop + 2) := add counter

pfval (pftop + 3) := haccval (accbottom);nili
seq j = 1; : : : ; add counter
pfval (pftop + 3 + j) := accval (accbottom + j)

endseq

pfval (pftop + add counter + 4) := h1; li

pftop := pftop + add counter + 5

inequality no fail (lpf ; lid) has the same e�ect as inequality(lpf), except
that the inequality solver can exploit the presence of the new identi�er lid .

Since put lpf is used only for the �rst occurrence of a variable, a similar

optimization can be made for the instruction put lpf (xi), which assigns xi
to a new identi�er. This comes up to replace in the put lpf-rule

mk s unbound(xi)
trigger equate(xi; accbottom)

by mk s unfree(xi)
equate no fail (svtop; accbottom)

By this transformation rules put lpf (xi) and solve no fail eq(xi) be-

come identical, so that put lpf can be eliminated.

When building a linear form in the accumulator, the cases where the

constant is zero or the coeÆcient is 1 or �1 occur in the majority of in-

stances. Special instructions can be introduced to cater for these commonly

occurring cases in order to keep down the code size and cut down on decode

time. The new instructions are:

� initpf 0
start a new linear form with constant 0;

� addpf vaflrg f+�g14(xi)
add a term consisting of a temporary variable with coeÆcient 1 or

�1;

� addpf vaflrg f+�g(yn)
add a term consisting of a permanent variable with coeÆcient 1 or

�1.

We omit to spell out the simple rules for these new instructions.

Note also that get lpf (xi) can be replaced by

addpf val �(xi); solve eq0

14The brace notation stands for the instructions addpf var +, addpf var -, addpf val +
and addpf val -.

130 Egon B�orger, Rosario F. Salamone

The instruction get lpf may then be entirely dispensed with. Through elim-

ination of set svariable, put lpf and get lpf we obtain the same instruction

set as described in [10].

Bibliography

1. H.A��t-Kaci, Warren's Abstract Machine. A tutorial reconstruction, MIT

Press, 1991.

2. C.Beierle & E.B�orger, Correctness proof for the WAM with types. In:
Computer Science Logic (Eds. E. B�orger, G. J�ager, H. Kleine B�uning,

M. Richter), Springer LNCS 626, 1992, 15{34.

3. E.B�orger & D.Rosenzweig, An analysis of Prolog Database Views and
their Uniform Implementation, In: Prolog. Paris Papers-2. ISO/IEC
JTC1 SC22 WG17 Prolog Standardization Report no. 80, July 1991,

pp. 87{130.

= CSE-TR-89{91, University of Michigan, Ann Arbor, Michigan 1991.

4. E.B�orger & D.Rosenzweig, The WAM|De�nition and Compiler Cor-
rectness, to appear in Logic Programming: Formal Methods and Prac-

tical Applications (Eds. C.Beierle, L.Pl�umer), Studies in Computer Sci-

ence and Arti�cial Intelligence, North-Holland, 1994.

5. E.B�orger & D.Rosenzweig, Mathematical De�nition of Full Prolog, to
appear in Science of Computer Programming, 1994.

6. Y.Gurevich, Evolving Algebras. A Tutorial Introduction in: Bulletin

of the European Association for Theoretical Computer Science, no.43,

February 1991, pp. 264{284.

7. Y.Gurevich, Logic and the Challenge of Computer Science, in: E.B�orger
(Ed.), Trends in Theoretical Computer Science. Computer Science Press,

Rockville MA 1988, pp. 1{57.

8. J.Ja�ar, S.Michaylov, P.J.Stuckey & R.H.C.Yap, The CLP(R) Lan-
guage and System, ACM Transactions on Programming Languages and

Systems, July 1992, pp 339{395.

9. Nevin C.Heintze, Joxan Ja�ar, Spiro Michaylov, Peter J.Stuckey &

Roland H.C.Yap, The CLP(R) Programming Manual, Version 1.2,
September 1992.

10. J.Ja�ar, S.Michaylov, P.J.Stuckey & R.H.C.Yap, An Abstract Machine
for CLP(R), November 1992.

11. R.F.Salamone, An Abstract Modular Speci�cation of the CLAM, Tesi

di Laurea, Dipartimento di Informatica, Universit�a di Pisa, July 1993.

Appeared in: E.B�orger (Ed.), Speci�cation and Validation Methods, Ox-
ford University Press, 1995, pp.IX+460.

