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Abstract
1We develop a simple interpreter for programs of the new logic

programming language G�odel. The de�nition provides a clean inter-
face between logical and control components for execution of G�odel
programs. The construction is given in abstract terms which cover
the general logic programming paradigm and allow for concurrency.

The formalization directly re
ects the intuitive procedural un-
derstanding of programs, but is formulated at the level of abstract
search spaces and proceeds in a modular fashion. This combination
of procedural and abstract features, made possible by use of Gure-
vich's notion of evolving algebras, provides a tool for mathematical|
machine and proof system independent|description and analysis of
design decisions for logic programming languages; it also lays the
ground for provably correct stepwise re�nements, through a hierar-
chy of speci�cations at lower levels, down to implementations.

1 Introduction

J.W.Lloyd and P.Hill (1992) have proposed the new general{purpose logic

programming language G�odel, with particular emphasis on improving the

declarative semantics compared with Prolog. G�odel has a type system

which is based on many-sorted logic with parametric polymorphism, a mod-

ule system and in�nite precision integers, rationals and 
oating-point num-

bers; it can solve constraints over �nite domains of integers as well as linear

rational constraints; it supports processing of �nite sets as well as meta{

logical facilities (created in order to provide support for meta{programs for

1in: G.Levi (Ed.), Advances in Logic Programming Theory, Oxford University Press,
1994
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2 An abstract interpreter for G�odel programs

analysis, transformation, compilation, veri�cation and debugging of pro-

grams).

We do not analyse any of these features but concentrate our attention

in this paper on the special role which is played by three forms of non

determinism in the logic programming paradigm (see below) that charac-

terize the top level de�nition of the procedural semantics of G�odel pro-

grams. From the implementation point of view, non determinism re
ects

the intended 
exibility of G�odel's computational rule and the desire \to

give implementors the option" of not relying upon (some generalization

of) SLDNF-resolution but \of using other theorem proving techniques to

implement the language, e.g. ones which avoid 
oundering or are more

complete" (Lloyd 1992).

We develop here, by stepwise re�nement, a mathematically precise but

simple procedural formalisation of the language which describes the full

(control 
ow) behaviour of G�odel programs on the basis of abstract|
machine and resolution independent|search spaces. In particular our spec-
i�cation provides a rigorous basis for an equivalence proof between declar-

ative and procedural semantics of pure G�odel programs. We exemplify the

model for (an SLDNF like) resolution as basic computation mechanism; we

do it in a modular way and exhibit explicitly the interface where one can

� adapt the semantics to possible future changes in the design of the

language,

� re�ne it in terms of particular proof systems or lower level speci�-

cations which are driven by consideration of execution eÆciency and

similar implementation issues.

Our search spaces are reminiscent of Prolog Tree Algebras, which appear
in hybrid stack oriented form in (B�orger 1990b) and have been de�ned in

(B�orger and Rosenzweig 1991a) and used in (B�orger and Rosenzweig 1993a)

as basis for a formal model of Prolog. The abstract search spaces have

been obtained from Prolog tree algebras by a further abstraction step, in-

troduced in order to directly re
ect the desired 
exible character of G�odel's

computational rule.

This rule is indeed non deterministic

� in choosing where the next deduction step takes place|thus abstract-

ing in particular from Prolog's depth{�rst strategy,

� in selecting, out of a conjunction of goals, the literal to be computed|

thus abstracting from Prolog's left{to{right strategy ,

� in selecting a clause to reduce the current call|thus abstracting

from Prolog's sequential strategy and from any scheme for indexing,

switching, last call optimization etc.

Gurevich's concept of external functions (Gurevich 1991) in evolving alge-
bras (Gurevich 1988) gave us the technical instrument to express in an ex-
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plicit and transparent way the role of these three (pairwise orthogonal) non

deterministic control components for the semantics of G�odel (and in general

logic) programs. The e�ect of control by delaying, pruning, conditionals,

negation, etc. on program execution is expressed by abstract conditions,

which can be viewed as directives for the implementation of eÆcient but

semantically correct search strategies. In this way a highly abstract math-

ematical framework for logic programming systems is laid down in which

one can conduct a comparative study of the di�erent answers which have

been given, by well known logic programming languages and their imple-

mentations, to the Gretchenfrage of logic programming|namely to explic-

itly and exactly determine the real relation between \logic" and \control",

between declarative (high-level) speci�cation and procedural (\low"-level)

implementation of (not only pure) logic programs.

On this basis we give a simple description of the high-level procedural

semantics of G�odel programs, including, besides a full treatment of user-

de�ned predicates, as characteristic built-in control 
ow features the prun-
ing operator (which relativises Prolog's cut operator and generalises the

commit operator of the concurrent logic programming languages), negation
and conditionals together with their delay properties. Other system fea-

tures in G�odel (for constraints, number manipulation etc.) can be dealt

with in this model by adapting the methodology developed in (B�orger

1990b, 1992; B�orger and Rosenzweig 1993a; B�orger and Schmitt 1991) for

the formalization of their (sometimes quite di�erent) Prolog homonyms;

see also (Beierle and B�orger 1992) for a treatment of polymorphic types for

an extension of Prolog. We indicate the e�ect of depth-�rst search on this

abstract speci�cation and brie
y discuss how to obtain from it a concurrent

model of G�odel.

2 Evolving Algebras

We expect from the reader basic knowledge of logic programming (Apt

1990; Lloyd 1987) or G�odel (Hill and Lloyd 1992) and rudimentary knowl-

edge of the language of �rst order logic.

Our model comes in the form of evolving algebras. This concept has been
introduced by Gurevich (1988) and has since then been applied success-

fully for the speci�cation of languages covering all the major programming

paradigms; see (Gurevich and Morris 1988; B�orger 1990a,b,1992; Gurevich

and Moss 1990; B�orger and Schmitt 1991; Gurevich and Huggins 1993;

B�orger and Rosenzweig 1993a; Beierle and B�orger 1992; B�orger and Ric-

cobene 1993; B�orger and Riccobene 1992; B�orger et al. 1993; Blakley 1992;
Gottlob et al. 1991). Although evolving algebras have a rigorous math-

ematical foundation as transition systems over �rst order structures (see

Gurevich 1991; Glavan and Rosenzweig 1993), we make this paper inde-

pendent by listing in this section some de�nitions which will enable the
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reader to grasp our rules as 'pseudocode over abstract data'.

For a general and extensive discussion of the evolving algebra method-

ology for speci�cation of (the semantics of) programming languages and

systems, in particular in comparison to other well known approaches in the

literature (denotational, algebraic, axiomatic, : : :), we refer the reader to

the introduction to (Boerger and Rosenzweig 1993a).

The abstract data come as elements of (not further analysed) sets (do-

mains, universes). The operations allowed on universes will be represented

by partial functions. The setup is allowed to evolve in time, by executing

function updates of form

f(t1; � � � ; tn) := t

whose execution is to be understood as changing (or de�ning, if there was
none) the value of function f at given arguments.

The 0-ary functions are like variable quantities of ancient mathematics

or variable of programming; this is the reason why we abstain from calling

them constants. Functions which do not appear as outer function f on the

left hand side of function updates have been called external functions in
(Gurevich 1991). They are not changed by the rule system, but they might

nevertheless be (supposed to be) subject to change due to the activity of

some external agent; in this case they are called dynamic external functions.
In this paper we will make crucial use of such dynamic external functions.

For a natural high-level formalization of G�odel's pruning operator we

allow also parameterized and guarded function updates of form

U(~j) or 8j(guard(~j)) : U(~j)

where U is a function update in which parameters ~j may occur, meaning

that U(~j) is executed for all values of parameters (which satisfy guard(~j)).

(Typically j will be used to range over nodes on a segment of a path in a

tree.) Note that such updates are not considered in the original de�nition

given by (Gurevich 1988).

We shall also allow some of the universes (typically initially empty) to

grow in time, by executing updates of form

Extend U by t1; : : : ; tn with updates EndExtend

where updates may (and should) depend on ti's, setting the values of some

functions on the newly created elements ti of U .

The precise way our "abstract machine" (evolving algebras) may evolve

in time will be determined by a �nite set of transition rules of form

If condition then updates

where condition is a (usually boolean) expression (guard), the truth of

which triggers simultaneous execution of all updates listed in updates. Si-

multaneous execution helps us to avoid coding, for example to interchange
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two values. Note that since functions may be partial, equality in the guards

is to be interpreted in the usual sense of `partial algebras', as implying that

both arguments are de�ned; for more details see (Gurevich 1991; Glavan

and Rosenzweig 1993).

In applications an evolving algebra usually comes together with a set

of integrity constraints, i.e. extralogical axioms and/or rules of inference,

specifying the intended domains. Indeed we are usually interested only

in states which are reachble from some designated initial states, speci�ed
using any formal methods, such as those of algebraic speci�cation.

The forms obviously reducible to the above basic syntax, which we shall

freely use as abbreviations, are let and if then else. We shall assume that

we have the standard mathematical universes of booleans, integers, lists of

whatever, etc (as well as the standard operations on them) at our disposal

without further mention.

For the sake of exposition the model we are going to construct spec-

i�es the behaviour of G�odel programs and goals such that the module

structure is 
attened and, when all commits are removed from the body

of each statement, what remains is a normal program and a normal goal

(which may contain the conditional construct). The additional �rst-order

features|other connectives and quanti�ers, which are allowed in G�odel

statements|can easily be described as built-in predicates (using the tech-

nique presented here for negation and conditionals) or by preprocessing

(which reduces to normal clause form, see (Lloyd 1987) and are skipped

here for space reasons.

For simplicity we assume programs and queries to be well (static) type-

checked.2

3 Signature of G�odel Algebras

This and the next section explain the basic data types (domains and func-

tions) which are used in the transition rules of section 5.

A G�odel computation can be seen as systematic, weakly controlled non

deterministic search of all solutions to an initially given query, to be found

in a space of possible solutions. For a formalization we represent the set of

computation states by a set of nodes, a subset of which will be structured

as a tree to re
ect the control conditions (like pruning) imposed by G�odel

on angelic non determinism, an idea used already in (B�orger 1990b) (in

hybrid stack oriented form) and in (B�orger and Rosenzweig 1991a, 1993a)

as basis to de�ne backtracking in an abstract model for Prolog. Therefore

G�odel Algebras have as basic universe a set Node representing all pos-

sible G�odel computation states, containing a distinguished element (0-ary

function) currnode representing the current computation state.

2See (Beierle and B�orger 1992) for a formal speci�cation, using the methodology of
evolving algebras, of polymorphic types present at runtime for an extension of Prolog.
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One aspect of G�odel's non determinism is that the computation can

leave what it is doing at any part of the search space and compute at

another part, maybe returning later; this abstracts from any particular

strategy, like depth-�rst or breadth-�rst or others, in building and search-

ing the solution tree, and brings G�odel computations rather close to the

logician's understanding of deductions. We re
ect this non determinism

explicitly by treating currnode as dynamic external function. This means

that currnode will never be updated by any of our rules, but is nevertheless
supposed to change value due to some outside (hidden or implementation

de�ned) control. The reader might be helped by considering currnode as

a demon who executes a basic logical computation step. The control de-

termines not the logic of what the demon does, but the place where he is

put to work. This control re
ects some restrictions to full non determinism

(like that no step should be repeated, that pruning should be respected

etc.), which we will formulate explicitly below. 3

Each element n of Node has to carry the relevant information for a

complete description|at the abstraction level of the user of the language

which interests us here|of the computation state it represents, thus allow-

ing to describe the execution of its subsequent computation in the subtree

rooted at n. At the desired abstraction level this information consists of the
literals which have still to be computed, the substitution computed (or the

constraint system accumulated) so far and the statements which are still

to be considered as candidates for alternative computations. We formalise

these concepts by three functions

goal : Node! Goal

(associating with each node the goal which is still to be computed)

sub : Node! Subst

(representing the substitution (or the sytem of constraints) current at a

state)

cands : Node! Clause�

(representing the relevant candidate clauses at given state), where Clause�

denotes (a subset of) the power set of the set Clause of (user-de�ned)

program statements.

3Thus we decide to exclude, from the speci�cation of the semantics of G�odel programs
at this level of abstraction, any explication of the dynamics of currnode. This means in
particular that we can avoid to introduce the tree structure on Node into the signature
of G�odel algebras|say by a partial function parent : Node ! Node (unde�ned on
root), to be dynamically updated through rules in such a way that from each node
(di�erent from root) there is a unique parent path towards root. We can de�ne instead
at the meta-level, in terms of applications of our rules, a parent-relation which will allow
us to speak of Node as a tree. This will be useful for the description of pruning.
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Goal is the set of (normal) G�odel goals, i.e. terms constructed apply-

ing the (and) operator "&" to the empty goal and elements of universes

Lit, Conditional and Commit. Lit denotes the universe of (positive

and negative) literals; Conditional denotes the set of G�odel conditionals
and comes with three functions cond, then, else which on arguments IF

Cond THEN Formula1 ELSE Formula2 yield the conditional's guard, THEN

part, ELSE part respectively, where Cond, Formulai belong to the universe
Goal. Commit is the universe of terms involving the commit operator, i.e.
terms of the form fg1& � � �&gng l, n � 0, where l is (an integer de�ning)

the label of the commit and gi 2 Lit[Conditional[Commit. Note that

commits are not allowed to occur inside conditionals. Term is the set of

(generic) G�odel terms which contains Lit, Conditional, Commit, Goal

as subsets.

Subst is a set of (not further speci�ed) substitutions and comes together
with three abstract functions

unify : Term�Term! Subst [ fnilg

associating to two terms either their unifying substitution or the answer

that there is none; the substitution applying function

subres : Term� Subst! Term

yielding the result of applying the given substitution to a given term; sub-

stitution concatenation

Æ : Subst� Subst! Subst:

Note that the presentation in terms of substitutions does not limit the gen-

erality of our de�nitions. The latter apply indeed to arbitrary constraint

systems by replacing uni�ability of terms by solvability of constraints, uni-

�cation by constraint solving and concatenation of substitutions by ac-

cumulation of constraints. (See (B�orger and Schmitt 1991; Beierle and

B�orger 1992) for a detailed account of abstract constraint handling in the

framework of evolving algebras.)

Clause comes with auxiliary functions clhead : Clause! Lit; clbody :

Clause! Goal yielding head and body of G�odel statements. The current
program is represented by a distinguished element db (database) of a uni-

verse Program. The candidate clauses which have to be considered in a

call to de�ne the alternatives of a computation state, are accessed using an

abstract function

procdef : Lit�Program! Clause�

which yields the (normal) statements de�ning, in the given program, the

predicate having the same functor as the given literal.

For reasons of transparency we separate two di�erent aspects of the
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action to be taken at currnode in executing a call: to collect the candidate

statements for the potential alternative computation states and to select

one of them for execution, distinguished by values call, select of a monadic
function mode with domainNode4. To be able to speak about termination
we will use distinguished elements root (with the obvious intended meaning)
and stop with values in f0,1,-1g to indicate running of the system, stop with
success and stop due to �nal failure respectively.

4 Delaying computations

The G�odel computation rule5 is partly built into the system and partly

under the control of the programmer through explicit DELAY control decla-

rations. Let DelayDecl be the set of DELAY declarations and delaydecl(db)
the set of delay declarations occurring in program db. To describe G�odel's
goal selection abstractly (thus leaving it largely implementation dependent)

let

gl select : Goal�DelayDecl� Subst! Lit [Conditional

be a (partial) function which selects from a given goal either a positive

literal|which under the given substitution is non-delayed according to

the given DELAY declarations|or a negative literal (which is ground) or a

conditional (with closed guard formula)6. ( Note that the selected literal

or conditional may occur within the scope of a commit.) If in the current

goal, wrt the current substitution and the current program, there is no such

\non-delayed" literal or conditional, the computation 
ounders. gl select
re
ects this abstractly by not being de�ned in this case, thus preventing

applicability of any transition rule of our system because the value of act
in the rule guards is unde�ned, where act (for activator) stands for

act � gl select(goal(currnode); delaydecl(db); sub(currnode)):

The transition rules in section 5 can be read in terms of act, abstracting
from the details of delay speci�cation. Thus our rules apply to any goal

selection mechanism of any logic programming system. A natural re�ne-

ment step for G�odel programs consists in further specifying the notion of

delayed positive literal, used in the above abstract speci�cation of gl select

4For an abstract formulation of the restrictions imposed upon angelic non determin-
ism by pruning, negation and conditionals, it will be useful to introduce an additional
mode value abandoned, see below.

5If one wants to include at this level also the constraint solving part, this could
abstractly be dealt with incorporating the method of (B�orger and Schmitt 1991).

6The present version of G�odel really does not specify any more that negative literals
must be ground or that the condition in a conditional must be closed. The implemen-
tation just has to implement correctly the declarative meaning. However, these are the
likely restrictions implementations will make in the near future. Cited from (Lloyd
1993)
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(and therefore of act). Following (Hill and Lloyd 1992) the DELAY declara-

tion delaydecl(l,P) for a predicate (literal) l in a program P has form DELAY

Atom 1 UNTIL Cond 1 : : : Atom n UNTIL Cond n with conditions built up

from predicates NONVAR, GROUND, TRUE using conjunction and dis-

junction, and atoms pairwise without common instance. A set d of DELAY

declarations delays calls as follows:

� an atom l is delayed, if it has a common instance with some Atom i
in a DELAY declaration in d without being an instance of Atom i;

� an atom l is delayed, if it is an instance of an Atom i in a DELAY

declaration in d whose corresponding condition Cond i is not satis�ed
under the instantiating substitution;

It is a routine task to formalize this de�nition for a re�nement of gl select.

5 Transition Rules

We now de�ne the rules by which the system, starting from an algebra

with stop = 0 - we tacitly assume this running condition to be part of each

rule guard - tries to reach successful execution of the query signalled by

say stop = 1. To abbreviate, we usually suppress the parameter currnode
simply writing

mode � mode(currnode)

cands � cands(currnode)

s � sub(currnode)

goal � goal (currnode)

5.1 Initialization and Rules for user-de�ned predicates

We do not assume G�odel Algebras to be given as static (in�nite) search

space; they rather evolve dynamically along the computation, starting from

initial algebras determined by given program P and query Q. Hence the

initial (ization of) G�odel Algebras: Node = froot,currnodeg, goal:= Q,
mode:= call, s:= ;, db:= P, stop:= 0. cands is not (yet) de�ned at currnode.

The basic computation step, applicable to user-de�ned predicates, is

split into calling the activator (to look for the candidate statements for

alternative computations at currnode) and selecting one of them for execu-

tion. We will correspondingly have two rules: aCall Rule and a Selection

Rule.

The following Call Rule, applicable to nodes with user de�ned activa-

tor in call mode, will store the relevant candidate statements (e.g. clauses
whose head may unify with act , or whose constraints are consistent with
the set of already accumulated constraints), copying from the procedure

de�nition of act into cands(currnode). To ensure that this action of candi-
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date collection takes place at each n at most once, when n gets �rst visited

(becomes value of currnode in call mode), the mode turns to select .

If mode = call & is user de�ned(act)
then cands :=procdef(act,db)

mode:= select

The following Selection Rule, applicable to nodes with user de�ned ac-

tivator and in select mode, attempts to execute a candidate statement, to

be found in cands(currnode) (the set of remaining alternatives), using an

abstract selection function7

alt select : Clause� ! Clause:

Since this selection function too is kept abstract (considered as implemen-

tation de�ned), the formalization given here for G�odel applies mutatis mu-

tandis to any logic programming system.

If a candidate statement has been selected, it is erased from the list

of candidates (and thereby will not be tried again). If the selected state-

ment does not apply successfully to act|typically, in the case of resolution,

because the renamed head of the selected clause does not unify with the

activator|, nothing else is done. Otherwise the selected statement is ap-

plied: a new node in call mode is created 8, its goal is de�ned|in the case

of resolution by executing the resolution step, replacing the activator by

clause body and applying the unifying substitution|and its substitution

is updated (in the resolution case by the uni�er between the clause head

and the calling literal). Note that currnode remains in select mode, so that

at this node further candidate children may be created.

If mode = select & is user de�ned(act)
then let alt � alt select(cands)

cands := cands n faltg
If apply(alt,act) 6= nil
then Extend Node by t with

7For Prolog it is well known that due to sequential execution of program clauses,
di�erent (even consecutive) occurrences of the same clause in a program may have dif-
ferent e�ect during a computation. For this reason a faithful description of Prolog has
to distinguish between occurrences of clauses and the clauses themselves, see (B�orger
1990a; B�orger and Rosenzweig 1993a). The introduction of an abstract clause selec-
tion function allows to hide this distinction, at this level of abstraction, and to reduce
the question of di�erent occurrences of a same clause to whether alt select and thereby
procdef have as range a set or a multi{set.

8Each time we introduce a new node, if not otherwise stated we will consider the
present value of currnode as its parent node, thus providing the above mentioned tree
structure on Node which will be needed to deal with G�odel's pruning operator. To
re
ect the desired non determinism of G�odel in an unspoiled way, we do not de�ne this
tree structure by updates parent(t):= currnode in the rules.
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mode(t):= call
de�ne goal(t) using apply(alt,act)
update sub at t

EndExtend

The function apply(alt,act) and the updates de�ne goal(t) using �, update
sub at t are deliberately kept abstract here; they depend on the basic com-

putation mechanism. In case of resolution they can be speci�ed furthermore

by:

apply(alt,act) � unify(act,Hd)
de�ne goal(t) using � � goal(t):= (goal[act Bdy]) �

update sub at t � sub(t):= s Æ�

where

Hd Bdy � rename(alt,currnode)

� � unify(act,Hd)

G [lit term] is the result of replacing (the occurence of) lit in goal G by

term, and

rename : Term�Node! Term

associates with a term a new copy of it where all variables and all commit
labels are renamed at the level determined by the given node. (Thus we

handle variable renaming abstractly, avoiding details of term and variable

representation.)

Obviously one has to re
ect the correctness assumption for applications

of Hilbert's �-operator, namely that the selection function is not applied to

an empty domain (here cands). One possibility is to let the system check

this condition in form of a guard If cands = [ ], whose satisfaction in Prolog

triggers backtracking (B�orger 1990b). If one wishes to keep such control

features outside the system (as belonging to implementation and not to

semantics), one can impose the correct use of the selection mechanism by

an external condition on how currnode is allowed to be chosen. Such a

condition can be viewed as a directive to be respected by an implementor.

The following rather weak condition suÆces here:

�-choice condition: currnode never assumes as value a node in mode

select with empty cands.

This condition avoids also repetitions (i.e. trying to apply statements

in a part of the deduction which has already been explored.)

The Query Success rule stops the computation with successful halt

when hitting the empty goal 2: If mode = call & goal = 2 then stop:=
1.9

9This rule only stops the system, without giving output or looking for further so-
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5.2 The pruning operator

In this section we re�ne the system to include G�odel's pruning operator,

called commit, of form fFormulag l (with bar commit j of concurrent pro-

gramming languages and one solution commit f: : :g as special case). The

brackets f: : :g indicate the scope of the commit inside a statement, the

label l the scope of the commit over the statements in a procedure de�ni-

tion. The computational e�ect of an l-commit fFormulag l is that once

a solution is found for Formula, a) each potential alternative solution for

Formula is skipped, and b) all potential alternatives are skipped which arise
from other statements (in the underlying procedure de�nition) containing

a commit with the same label l.10

To perform actions a) and b) one has to keep track of the point in

the computation where label l has been introduced into the current goal:

the value of currnode when|in a selection rule application|l enters the
newly updated goal as (renaming of a) label occurring in the body of the

selected statement. Since this node will be the starting point of the pruning

operation realizing a) and b), to be executed on the computation tree once

the formula in the scope of an l-commit has been satis�ed, we call it pruning
point and denote it by a function

prun pt : Integer! Node

whose values are set by updates

prun pt(l):= currnode,

to be added to the Selection Rule for each l occurring as (renamed and

therefore fresh) commit label in the body of the selected input statment.
11

In order to satisfy stipulation a), when a commit fFormulag l has be-

come empty at currnode (through successful computation of the formula

in the scope), one has to inspect the path12 from the introduction of the

commit|namely at prun pt(l)| to currnode and to abandon each13 branch

lutions. These features can easily be provided using the substitution associated to the
halting state.

10From the declarative viewpoint the programmer might be asked to use pruning only
where semantically correct, i.e. to prevent parts of the tree which are known to compute
no new solutions from being explored. Any statement which relates \declarative" to
\procedual" program meaning has to take into account the possibly semantical e�ect of
pruning.

11This is an adaptation of the goal decoration by cutpoints introduced in (B�orger
1990a). For the initialization it seems reasonable to assume prun pt(l) = root for each
commit label l in the initial query, and to de�ne root as parent of the initial value of
currnode.

12It is here that the tree structure of Node, de�ned at the meta-level as indicated
above, is used.

13We describe eager pruning.
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which has been or still may be created for an alternative solution of For-
mula. Such branches are created for a potential alternative solution of an

activator which occurred during the (successful) computation of Formula.
Consider the potential children at each node n on the path which has its

activator in the scope of a commit with label l. These children which ei-

ther will be or have been created and are not on the path must never be

selected. Thus we abandon those children that exist and prevent the re-

maining clauses in cands(n) from creating new children. Using the wording

of (Hill and Lloyd 1992) we access these nodes and candidate clauses, which

may have to be abandoned and deleted respectively, by abstract functions

children 1st kind : Node� Integer! Node� [ fnilg

and

cands 1st kind : Node� Integer! Clause�

(It would be easy to de�ne these functions dynamically by updates to be

added to Call and Selection Rule in case the activator is in the scope of

a commit with label l.) Requirement a) can therefore be formalized by

adding to the Selection Rule the update

Let path = path(currnode,prun pt(l))
8n 2 path:

cands(n):= cands(n) n cands 1st kind(n,l)
8m 2children 1st kind(n,l) n path: mode(m):= abandoned

with path(n,n') the set of nodes which lie on the path from n to n0, and by

adding the following Pruning control condition on how currnode is allowed
to be chosen. This restriction is formulated in terms of a mode value

abandoned:

Pruning control condition: currnode never assumes as value a node in
mode abandoned or below such a node.

Note that if one wants to have both, control management outside the

system which de�nes the semantics and a pruning operation inside, then

the e�ect of pruning upon future choices of currnode can be formulated

only as external condition (as directive for implementations).

In order to satisfy stipulation b), when a commit fFormulag l has be-

come empty at currnode, one has to delete at prun pt(l)|where the commit

has been introduced|each candidate clause which contains a commit with

same label l, and to abandon each child which has been created for execut-

ing such a clause. We access those nodes and candidate clauses again by

(dynamic and as such easily de�nable) functions

children 2nd kind : Node� Integer! Node� [ fnilg

cands 2nd kind : Node� Integer! Node�
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Then it suÆces to add to the Selection Rule the following updates 14:

cands(prun pt(l)):= cands(prun pt(l)) n cands 2nd kind(prun pt(l),l)
8m 2 children 2nd kind(prun pt(l),l) n path: mode(m):= abandoned

where path is de�ned as above.

Summing up the preceding discussion, we can formalise the pruning

operation by re�ning the goal update (replacement of act by Bdy in goal
to goal [act  Bdy]'), which now includes also deletion of empty commits,

and by adding to the previous Selection Rule the following updates:

let commgoal � (goal[act Bdy]) �

8j 2 label set(Bdy) : prun pt(j):= currnode
pruning(currnode,commgoal)

where pruning(n; goal) stands for the updates 15:

8l 2 empty commit label(goal) :
Let path = path(currnode,prun pt(l))

cands(prun pt(l)):= cands(prun pt(l)) n cands 2nd kind(prun pt(l),l)
8m 2 children 2nd kind(prun pt(l),l)n path: mode(m):= abandoned
8n 2 path :

cands(n):= cands(n) n cands 1st kind(n,l)
8m 2 children 1st kind(n,l)n path: mode(m):= abandoned

The auxiliary function label set: Clause! Integer� yields the set of all

labels occurring in a clause body, empty commit label: Goal ! Integer�

yields the set of all labels l of empty commits fg l occurring in a given goal.
After the current goal has been updated|in the case of resolution by

replacing a literal by the selected clause body|it may contain a commit

with empty scope, say fg l. This means that the formula h of a previously

introduced commit fhg l has been computed with success. (Note that by

the syntax of G�odel, no clause body or initial query has empty commits.)

In this case "pruning" must (and by the above pruning update will) be

performed.16

5.3 The computation of negative literals

Computation of negative literals is delayed until they have become ground;

this is assured by the abstract gl select function introduced in section 4. If

14This is a relativization of the cut rule for Prolog in (B�orger 1990a; B�orger and
Rosenzweig 1993a)

15Remember that commits may be nested.
16Note that if di�erent commits in di�erent parts of the tree have the same label, then

they come from statements in the same procedure de�nition and have been introduced
into the current goal by the same call. This re
ects the scoping of labels over a procedure
de�nition and the renaming of labels (together with variables) in calling.
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a ground negative literal �lit becomes activator, its computation is consid-

ered to succeed/fail if the computation of lit �nitely fails/succeeds.

Therefore to compute �lit, a subcomputation for lit has to be started

which includes a special action at its exit to report �nite failure or suc-

cess for lit. For soundness reasons, pruning has to be disabled inside such

subcomputations, which can also be nested. In order to re
ect all this in

a simple way, we introduce auxiliary marks neg beg, neg end(n) which

during the computation of lit act as delimiters of the still to be computed

goal 17. When entering the subcomputation, they are placed around lit. We

impose that they can become visible to the function gl select|and thereby

value of act|only as pair bracketing the empty goal, thus signalizing that

the computation of lit has succeeded.
With this proviso, the following Negation Start Rule formalizes the

call of a negative (ground) literal �lit: control may now pass to a new node

with goal neg beg lit neg end(currnode). Note that the subtree which has

the newly created node as root models the tree associated to the (negation

sub-) computation of lit. In order to assure that this subcomputation has

been exited (by success or failure) before the computation of �lit can be

terminated, currnode has to go into a waiting status, realized by mode select
with unde�ned cands list and the following Negation control condition:

Negation control condition: currnode never assumes as value a node,
with negated literal as activator and in mode select, unless the child,
created at this node for the corresponding subcomputation, has been

abandoned.

If mode = call & act = � lit
then Extend Node by t with

mode(t):= call
goal(t):= neg beg lit neg end(currnode)
sub(t):= s

EndExtend

mode:= select

If currnode comes back to a node with activator �lit (and therefore in mode
select), by the negation control condition its only child must have been

abandoned and therefore all alternatives for lit have produced failure. Then

�lit is considered to have been computed with success. This is expressed
by the following Negation Success Rule: the computation may continue

here in call mode, after deleting �lit from goal. (Note that the computation
of a negative ground literal does not modify the substitution attached to

currnode).

17This technique, well known to implementors, has been used with advantage in math-
ematical form already in (B�orger 1990a; B�orger and Rosenzweig 1993a).
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If mode = select & act = � lit
then mode:= call

goal:= delete act from goal

with the obvious meaning of deletion.

The following Negation Failure Rule formalizes the case when lit
succeeds: this provokes failure of �lit (easily formalizable, due to pruning

control condition, by abandoning the node where �lit had to be computed).
It happens when act becomes neg beg neg end(n) in call mode, for some
node n.

If mode = call & act = neg beg neg end(n)
then mode(n):= abandoned

To disable pruning inside a negated call (Hill and Lloyd 1992, p.77),

it suÆces to re�ne the pruning update by putting it under the (easily

formalizable) guard:

If act is not in the scope of neg-brackets neg beg neg end(n) Then.

5.4 The computation of conditionals

In (Hill and Lloyd 1992) two forms of conditionals IF Condition THEN For-
mula1 ELSE Formula2 are distinguished, depending on whether Condition
and Formula1 share (local) variables. The version with shared variables|

so called Some-version with guard of form Some [x] Cond for a sequence

x of possibly shared variables| has to be treated separately from what

one might call the normal version, because it allows backtracking from

Formula1 to Cond. By the gl select function de�nition, activator takes a

conditional as value only when its guard Condition (in the Some-version
the expression Some [x] Cond) has no free variables.

Let X-Conditional be the set of X-conditionals for X=S(ome), N(or-

mal). For both cases we apply the marking technique introduced already

for negation subcomputations, using delimiters X cond beg,X cond end(n)

with corresponding stipulations for the visibility to gl select. The computa-
tion of the guard is triggered by the following Guard Evaluation Rule,

which (in the very same way as the negation Start Rule) creates a node,

decorated in mode call for the computation of the guard, and puts cur-
rnode into waiting status (realized by assigning mode select and unde�ned

cands list, given the Conditional-Guard control condition which extends the

negation control condition to X-conditionals).

Conditional-Guard control condition: currnode never assumes as

value a node, activated by an X-conditional and in mode select, unless
the child, created at this node for the computation of the guard, has

been abandoned.
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Fig. 1. The computation of an N-conditional's THEN-part

If mode = call & act 2 X-Conditional

then Extend Node by t with

mode(t):= call
goal(t):= X cond beg cond(act) X cond end(currnode)
sub(t):= s

EndExtend

mode:= select

18The Conditional-Guard control condition prevents the demon to come

back to the node with X-conditional activator before the guard computation
started here has been terminated (by failure, see the ELSE rules below, or

success, see the THEN rules below).

Due to the stipulations made for gl select wrt the conditional markers,
act = X cond beg X cond end(n) for some n signals that the guard of a con-
ditional has been computed successfully. This triggers the following X THEN

Rules to create a new node t, ready in mode call for the computation of

the conditional's THEN-part.

For normal conditionals (X=N) it has to be assured that the system

looks only for one solution of the guard. By pruning control condition, it

suÆces to abandon the node n where the corresponding conditional was

called and to create a new node for the computation of the THEN-part (see

18Thanks to Rosario Salamone for production of the two pictures.
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Fig. 2. The computation of an S-conditional's THEN-part

FIG.1)19. The goal and the substitution for the new node are de�ned

without applying the substitution which has been computed during the

guard evaluation, re
ecting the fact that in a normal conditional the guard

(which was ground when called) does not share variables with the THEN-

part. (A similar remark applies to the goal update for the THEN-part in the

ELSE rule below.)

The corresponding S-THEN rule has similar structure but di�erent up-

dates. Due to the possible presence of shared variables in S-conditionals,

the substitution computed by the guard is passed to the computation of

the THEN-part and applied to the result of the replacement in de�ning the

new goal20. Since from the computation of an S-conditional's THEN-part,

the system may (backtrack in an) attempt to resatisfy also the guard, the

mode of currnode is set to select21.

19Since currnode is below n, we de�ne n and the newly created node to be siblings.
20For simplicity of exposition we assume here the computed substitutions to be idem-

potent; otherwise, instead of applying the current substitution s, one should apply only
the substitution computed during the just terminated guard evaluation.

21Correspondingly the new node is de�ned to be child of currnode. See FIG.2.
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To prevent the system from stepping, by backtracking at node n, into
the ELSE rules, we set additionally a mark then case(n) to 1. The idea in

(Hill and Lloyd 1992) seems to be that once the guard of a conditional

is satis�ed, computation �rst proceeds with the THEN-part and only upon

failure tries to resatisfy the guard. This sequentiality is re
ected in the

following restriction of the choice of currnode:

S-Then control condition: Let n be an S-conditional node. If currnode
assumes as value a node in the subtree generated by n, then either

there is no node m below n with goal S cond beg S cond end(n)
whose child is not abandoned or there is exactly one such node and

currnode is in the subtree of m22.

We use the well known j-notation to exhibit structural similarity but

di�erence in content of the following N- and S-THEN Rules:

If mode = call &

act = N cond beg N cond end(n) j S cond beg S cond end(n)
then let cond � gl select(goal(n),delaydecl(db),sub(n))

newgoal � goal(n)[cond then(cond)]

Extend Node by t with
mode(t) : = call
goal(t) : = newgoal j goal(t) : = (newgoal )s
sub(t) : = sub(n) j sub(t) : = s

Endextend

mode(n) : = abandoned j then case(n) : = 1

j mode : = select

For S-conditionals, the THEN rule puts currnode into mode select; if
currnode comes back to this point (in this mode), it gets abandoned:

If mode = select & act = S cond beg S cond end(n)
then mode:= abandoned

If the conditional guard evaluation has failed, this will allow currnode
to return to the conditional node which originated the guard evaluation

subtree and thereby passed to mode select (see conditional-guard control

condition). In this case, by the following ELSE Rule, the conditional node

will be abandoned and a new node is created 23, ready (in call mode and
decorated by goal and substitution) for the computation of the ELSE-part of

the conditional. Note that for S-conditionals this is allowed to happen only

if the then-case has not been entered; if the THEN-case has been entered,

22With depth-�rst search, this apparently complicated condition becomes simple, see
the next section.

23Due to abandoning of currnode, the latter and the new node are de�ned as siblings.
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the system cannot enter the ELSE-part and therefore backtracks (through
the remaining choices for the value of currnode).

If mode = select &
act 2 N-Conditional j (act 2 S-Conditional & then case 6= 1)

then Extend Node by t with

mode(t):= call
goal(t):= goal[act  else(act)]
sub(t):= s

EndExtend

mode(currnode):= abandoned

If mode = select & act 2 S Conditional & then case = 1
then mode:= abandoned

(We assume that in conditionals without ELSE-part, act is deleted. See also
the remark above to the N THEN rule.)

6 Depth-First Search and Concurrency

In this section we outline brie
y how the preceding de�nition of semantics

of G�odel programs can be re�ned to include depth-�rst search (as a typical

step towards eÆcient implementation) or concurrency (as the theoretically

most challenging extension).

The ground for depth-�rst search has already been prepared by the

de�nition of the parent-children relation used to describe the semantics of

pruning. The de�nition of the parent function becomes part of the (seman-

tics de�ning) evolving algebra by including the corresponding update into

the rules. Namely add the update

parent(t):= currnode

to the rules for selection, negation start, conditional guard evaluation,

S-THEN; the update

parent(t):= parent(n)

to the N-THEN rule, and the update

parent(t):= parent(currnode)

to the ELSE rules. The depth-�rst strategy is incorporated into the system

by adding to all above mentioned rules the update

currnode:= t
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and setting initially parent(currnode):= root. The control conditions are

then easily implemented using the backtracking update

backtrack � if parent = root
then stop := �1

else currnode := parent
mode(parent) := Select

The �-choice condition is implemented by introducing the additional update

If cands = [ ] then backtrack

into the THEN-part of the selection rule. The pruning control condition is

realized by reinterpreting the update

mode(m):= abandoned

as cands(m):=[ ]. Under the same interpretation of being abandoned, the
control conditions for negation, conditional guard and S-THEN are then

automatically satis�ed. Thus it is a simple exercise to prove the following

Proposition 6.1. Let G be the evolving algebra de�ned in section 1-5 and
G' its re�nement as indicated in this section. Then G' correctly implements
G under the strategy of depth-�rst search.

Now to the question of what is needed to build a parallel implementation

of the G�odel language. The recent work of Glavan and Rosenzweig (1993)

de�nes a notion of concurrent runs within the framework of evolving alge-

bras, which is based upon a notion of independence of rules and runs. Using
those notions it is easy to extend the above interpretation of the G�odel in-

terpreter I by allowing di�erent demons to execute concurrently the rules

of I, restricted only by the independence property. The problem of a par-

allel implementation of G�odel is thereby reduced to the (not at all trivial)

problem of implementing an interesting independence notion for our rules

(and thereby runs). This corresponds to what has been experienced by us

in our formalization of the two forms of parallel logic programming rep-

resented by PARLOG (B�orger and Riccobene 1993) and CONCURRENT

PROLOG (B�orger and Riccobene 1992).

7 Conclusion and Outlook

The abstract interpreter for G�odel programs which has been developed

in this paper|re�ning the core for user-de�ned predicates by introduc-

ing stepwise delay, pruning, negation, conditionals and their implemen-

tation under the depth-�rst strategy|constitutes a mathematical object

of manageable complexity. It can therefore serve as a basis for mathe-

matical investigations of computational e�ects of G�odel programs. Our

abstract speci�cation of the semantics of G�odel programs, which supports
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the intuitive procedural understanding in a direct manner, can also serve as

starting point for a hierarchy of speci�cation re�nements leading to actual

implementation, where each re�nement step comes with a mathematical

correctness proof; very much along the lines of what has been achieved

for PROLOG with respect to the Warren Abstract Machine (B�orger and

Rosenzweig 1993b) and for its typed extension PROTOS-L (Beierle et al.
1991) with respect to the Protos Abstract Machine (Beierle and B�orger

1992). This may actually provide some methodological help for imple-

menting G�odel.
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