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Abstract.We provide a mathematical speci�cation of an extension of Warren's
Abstract Machine for executing Prolog to type-constraint logic programming and
prove its correctness. Our aim is to provide a full speci�cation and correctness
proof of a concrete system, the PROTOS Abstract Machine (PAM), an extension
of the WAM by polymorphic order-sorted uni�cation as required by the logic
programming language PROTOS-L.
In this paper, while leaving the details of the PAM's type constraint represen-
tation and solving facilities to a sequel to this work, we keep the notion of
types and dynamic type constraints abstract to allow applications to di�erent
constraint formalisms like Prolog III or CLP(R). This generality permits us to
introduce modular extensions of B�orger's and Rosenzweig's formal derivation of
the WAM. Since the type constraint handling is orthogonal to the compilation
of predicates and clauses, we start from type-constraint Prolog algebras with
compiled AND/OR structure that are derived from B�orger's and Rosenzweig's
corresponding compiled standard Prolog algebras. The speci�cation of the type-
constraint WAM extension is then given by a sequence of evolving algebras, each
representing a re�nement level, and for each re�nement step a correctness proof is
given. Thus, we obtain the theorem that for every such abstract type-constraint
logic programming system L, every compiler to the WAM extension with an
abstract notion of types which satis�es the speci�ed conditions, is correct.
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1. Introduction

Recently, Gurevich's notion of evolving algebra [Gur88] has not only been used
for the description of the (operational) semantics of various programming lan-
guages (Modula-2, Occam, Prolog, Prolog III, Smalltalk, Parlog, C; see [Gur91]),
but also for the description and analysis of implementation methods: B�orger
and Rosenzweig ([BR91, BR92b, BR92a]) provide a mathematical elaboration
of Warren's Abstract Machine ([War83], [AK91]) for executing Prolog. The de-
scription consists of several re�nement levels together with correctness proofs,
and a correctness proof w.r.t. B�orger's phenomenological Prolog description
[B�or90a, B�or90b].

In this work we demonstrate how the evolving algebra approach naturally
allows for modi�cations and extensions in the description of both the semantics of
programming languages as well as in the description of implementationmethods.
Based on B�orger and Rosenzweig's WAM description we provide a mathematical
speci�cation of a WAM extension to type-constraint logic programming and
prove its correctness. Note that thereby our treatment can be easily extended
to cover also all extra-logical features (like the Prolog cut) whereas the WAM
correctness proof of [Rus92] deals merely with SLD resolution for Horn clauses.

The extension of logic programming by types requires in general not only
static type checking, but types are also present at run time (see e.g. [MO84],
[GM86], [NM88], [Han88], [Han91], [Smo89]). For instance, if there are types
and subtypes, restricting a variable to a subtype represents a constraint in the
spirit of constraint logic programming. PROTOS-L ([Bei92], [BBM91], [Bei95])
is a logic programming language that has a polymorphic, order-sorted type con-
cept (similar to the slightly more general type concept of TEL [Smo88]) and
a complete abstract machine implementation, called PAM ([BMS91], [BM94])
that is an extension of the WAM by the required polymorphic order-sorted uni-
�cation. Our aim is to provide a full speci�cation and correctness proof of the
concrete PAM system.

Here we keep the notion of types and dynamic type constraints su�ciently
abstract to allow applications to di�erent constraint formalisms. Since the type
constraint handling is orthogonal to the compilation of predicates and clauses,
we start from type-constraint Prolog algebras with compiled AND/OR structure
that are derived from B�orger's and Rosenzweig's corresponding compiled stan-
dard Prolog algebras. The speci�cation of the type-constraint WAM extension
is then given by a sequence of evolving algebras, each representing a re�nement
level. For each re�nement step a correctness proof is given. As �nal result of this
paper we obtain the theorem: For every such abstract type-constraint logic pro-
gramming system L and for every compiler satisfying the speci�ed conditions,
compilation from L to the the WAM extension with an abstract notion of types
is correct.

Although our description in this paper is oriented towards type constraints,
it is modular in the sense that it can be extended to other constraint formalisms,
like Prolog III [Col90] or CLP(R) [JL87], [JMSY90], as well. For instance, in
[BS95] a speci�cation of the CLAM, an abstract machine for CLP(R), is given
along these lines, together with a correctness proof for CLP(R) compilation.
[Bei94] extends the work reported here by studying a general implementation
scheme for CLP(X) and designing a generic extension WAM(X) of the WAM.
Nevertheless, in order to avoid proliferation of di�erent classes of evolving al-
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gebras, we will already speak here in terms of PROTOS-L and PAM algebras
(instead of type-constraint Prolog and type-constraint WAM algebras).

In a sequel to this work ([BB96]) we will re�ne the type constraints to the
polymorphic order-sorted types of PROTOS-L, again in several re�nement steps.
This allows us to develop a detailed and mathematically precise account of the
PAM's compiled type constraint representation and solving facilities, and to
prove its correctness w.r.t. PROTOS-L which we then obtain as the �nal cor-
rectness theorem [BB96].

This paper was written in 1992/93 and revises and extends our work pre-
sented in [BB91] and [BB92]. It is organized as follows: Section 2 introduces
an abstract notion of (type) constraints and de�nes PROTOS-L algebras with
compiled AND/OR structure, the starting point of our development. This al-
ready includes the treatment of indexing and switching instructions which on
this level of abstraction carry over from the WAM to the PAM. Section 3 intro-
duces the representation of terms. The stack representation of environments and
choicepoints is given in Section 4 which also contains the \Pure PROTOS-L"
theorem stating the correctness of the PAM algebras developed so far w.r.t. the
PROTOS-L algebras of Section 2. Various WAM optimizations that are also
present in the PAM (environment trimming, last call optimization, initialization
\on the 
y" of temporary and permanent variables) are described in Section 5.
The notions of type constraint and constraint solving have been kept abstract
through all re�nement levels so far; thus, the whole development carried out
applies to any type system satisfying the given abstract conditions.

Notation and prerequisites

In this section we �rst list those de�nitions which are necessary to the reader who
is interested only in analysis of the PAM, reading our rules as `pseudocode over
abstract data', and not in checking the correctness proof (for which we rely more
explicitely on the underlying methodology of evolving algebras; for background
and a de�nition of this notion which is due to Y. Gurevich see [Gur91]).

The abstract data comes as elements of (not further analysed) sets (domains,
universes). The operations allowed on universes will be represented by partial
functions.

We shall allow the setup to evolve in time, by executing function updates of
the form

f(t1,: : :,tn) := t

whose execution is to be understood as changing (or de�ning, if there was none)
the value of function f at given arguments.

We shall also allow some of the universes (typically initially empty) to grow

in time, by executing updates of form

extend A by t1,: : :,tn with updates endextend

where updates may (and should) depend on the ti's, setting the values of some
functions on newly created elements ti of A.

The precise way our `abstract machines' may evolve in time will be deter-
mined by a �nite set of rules of the form

if condition

then updates
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where condition or guard is a boolean, the truth of which triggers simultaneous

execution of all updates listed in updates. Simultaneous execution helps us avoid
coding to, say, interchange two values.

If at every moment at most one rule is applicable (which will in this paper
always be the case), we shall talk about determinism - otherwise we might think
of a daemon freely choosing the rule to �re. The forms obviously reducible to
the above basic syntax, which we shall freely use as abbreviations, are let and
if then else. The transition rule notation

if condition1 | : : : | conditionn
then updates1 | : : : | updatesn

with pairwise incompatible conditions conditioni stands for the obvious set of
n transition rules

if condition1
then updates1

if condition2
then updates2

: : :

if conditionn
then updatesn

We will also use the |-notation to separate alternative parts within more com-
plex rule conditions and the corresponding update parts. For instance, the rule
notation

if OK

& code(p) = call(BIP)

& BIP =

true | fail | cut

then
succeed | backtrack | b := ct'(e)

| | succeed

deals with the built-in predicates true, fail, and cut and stands for the three
rules

if OK if OK

& code(p) = call(BIP) & code(p) = call(BIP)

& BIP = true & BIP = fail

then then
succeed backtrack

if OK

& code(p) = call(BIP)

& BIP = cut

then
b := ct'(e)

succeed

Also, we will often introduce abbreviations of the form a � term. For instance,
in the rules just given we used the three abbreviations

succeed � p := p + 1 backtrack � if b = nil

then stop := -1

OK � stop = 0 else p := p(b)
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We shall assume that we have the standard mathematical universes of
booleans, integers, lists of whatever etc. (as well as the standard operations
on them) at our disposal without further mention. We use usual notations, in
particular Prolog notation for lists.

Here are some more remarks on the formal background for the reader who is
interested to follow our proofs.

De�nition. An evolving algebra is a pair (A; R) where A is a �rst-order hetero-
geneous algebra with partial functions and possibly empty domains, and R is a
�nite system of transition rules. The transition rules are of form

if condition then updates

where condition is a boolean expression of the signature of A and updates is a
�nite sequence of updates of one of the following three forms:

function update : f(t1; : : : ; tn) := t

where f is a function of A and t1; : : : ; tn; t are terms in the signature of A.

universe extension : extend A by t1; : : : ; tn with updates endextend
where t1; : : : ; tn are variables possibly occurring in function updates updates

(standing for elements of A).

update schema : FORALL i = t1; : : : ; t2 DO updates(i) ENDFORALL
where t1 and t2 are numerical terms and updates(i) are updates (with param-
eter i).

The meaning of rules and updates execution is as explained above. We intend
an update schema to denote an algebra update obtained by �rst evaluating t1 and
t2 to numbers n1 and n2 and then executing updates(i) for all i 2 fn1,: : : ,n2g in
parallel. This construct, which does not appear in Gurevich's original de�nition
in [Gur91] is obviously reducible to rules with function updates.

Every evolving algebra (A; R) determines a class of structures called algebras

or states of (A; R). Within such classes we will have a notion of initial and ter-

minal algebras, expressing initial resp. �nal states of the target system. We are
essentially interested only in those states which are reachable from inital states
by R. In our re�nement steps we typically construct a more concrete evolving
algebra (B; S) out of a given more abstract evolving algebra (A; R) and relate them
by a (partial) proof map F mapping states B of (B; S) to states F(B) of (A; R),
and rule sequences R of R to rule sequences F(R) of S, so that the following
diagram commutes:

F(B) -
F(R)

F(B0)

F

6

B

-
B

0

6

F

R
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In accordance to terminology used in abstract data type theory [EM89] we
call F also an abstraction function.

We shall consider such a proof map to establish correctness of (B; S) with
respect to (A; R) if F preserves initiality, success and failure (indicated by the
value of a special 0-ary function stop) of states, since in that case we may view
successful (failing) concrete computations as implementing successful (failing)
abstract computations.

We can consider such a proof map to establish completeness of (B; S) with
respect to (A; R) if every terminating computation in (A; R) is image under F of a
terminating computation in (B; S), since in that case we may view every successful
(failing) abstract computation as implemented by a successful (failing) concrete
computation.

In case we establish, in the above sense, both correctness (as we will do
explicitly on every of our re�nement steps) as well as completeness (which follows
from all our re�nement steps by straightforward observations) we may speak of
operational equivalence of evolving algebras.

2. PROTOS-L Algebras with compiled AND / OR

structure

2.1. An abstract notion of type constraints

The basic universes and functions in PROTOS-L algebras dealing with terms and
substitutions can be taken directly from the standard Prolog algebras ([B�or90a],
[B�or90b]). In particular, we have the universes TERM and SUBST of terms
and substitutions with a function

subres: TERM � SUBST ! TERM

yielding subres(t,s), the result of applying s to t.
To be able to talk about (type constraints of) variables involved in substitu-

tions we introduce a new universe

VARIABLE � TERM

Since in PROTOS-L uni�cation on terms is subject to type constraints on the
involved variables, we have to distinguish between equating terms and satisfying
type constraints for them. For this purpose we introduce a universe

EQUATION � TERM � TERM

whose elements are written as t1
:

= t2. Substitutions are then supposed to be
(represented by) �nite sets of equations of the form fX1

:

= t1, : : : , Xn
:

= tng with
pairwise distinct variables Xi. The domain of such a substitution is the set of
variables occurring on the left hand sides. (Note: If you want to have the logically
correct notion of substitution - with occur check -, you should add the condition
that no Xi occurs in any of the tj.)

For a formalization of type constraints for terms - in the spirit of constraint
logic programming - we introduce a new abstract universe TYPETERM, dis-
joint fromTERM and containing all typeterms, of which we only assume that it
comes with a special constant TOP 2 TYPETERM. Type constraints are given
by the universe

TYPECONS � TERM � TYPETERM
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whose elements are written as t :tt. A set P � TYPECONS is called a pre�x

if it contains only type constraints of the form X :tt where X 2 VARIABLE
and at most one such pair for every variable is contained in P. The domain of
P is the set of all variables X such that X :tt is in P for some tt. We denote by
TYPEPREFIX the universe of all type pre�xes.

Constraints are then de�ned as equations or type constraints, i.e.

CONSTRAINT � EQUATION [ TYPECONS

Let CSS denote the set of all sets of constraints together with nil 2 CSS
denoting an inconsistent constraint system.

The uni�ability notion of ordinary Prolog is now replaced by a more general
(for the moment abstract) constraint solving function:

solvable: CSS ! BOOL

telling us whether the given constraint system is solvable or not. Every (solution
of a) solvable constraint system can be represented by a pair consisting of a
substitution and a type pre�x. Thus, we introduce a function

solution: CSS ! SUBST � TYPEPREFIX [ fnilg

where solution(CS) = nil i� solvable(CS) = false. For the trivially solv-
able empty constraint system we have

solution(;) = (;,;)

and the functions

subst part: CSS ! SUBST
prefix part: CSS ! TYPEPREFIX

are the two obvious projections of solution. As an integrity constraint we as-
sume

solution(ft : TOPg) = (;,;)

i.e., TOP is used to represent a trivially solvable type constraint.
These are the only assumptions we make about the universe TYPETERM

in this paper. (A special representation for it is introduced in [BB96].) Thus,
the complete development carried out here applies to any concept of (type)
constraints that exhibits the minimal requirements stated so far.

Having re�ned the notions of uni�ability and substitution to constraint solv-
ability and (solvable) constraint system, respectively, we can now also re�ne the
related notion of substitution result to terms with type constrained variables.
The latter involves three arguments:

1. a term t to be instantiated,

2. type constraints for the variables of t given by a pre�x Pt , and

3. a constraint system CS to be applied.

Since a CS-solution consists of an ordinary substitution sCS together with vari-
able type constraints PCS via solution(CS) = (sCS, PCS), the result of the
constraint application can be introduced by

conres(t, Pt, CS) = (t1, P1)

as a pair consisting of the instantiated term t1 and type constraints P1 for the
variables of t1. For this function

conres: TERM � TYPEPREFIX � CSS !
TERM � TYPEPREFIX [ fnilg
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we impose the following integrity constraints:

8 t 2 TERM, Pt 2 TYPEPREFIX, CS 2 CSS .

if solvable(Pt [ CS) then
conres(t, Pt, CS) = (t1, P1)

where:
t1 = subres(t, subst part(CS))

P1 = prefix part(Pt [ CS)jvar(t1)
else

conres(t, Pt, CS) = nil

where P0jvar(t0) is obtained from P0 by eliminating the type constraints for all

variables not occurring in t0.
PnX will be an abbreviation for Pjdomain(P)nfXg, the pre�x obtained from P

by eliminating (if present) the constraint for X.
Thus, the condition that a constraint system CS \can be applied" to a term

t with its variables constrained by Pt means that Pt is compatible with CS, i.e.
solvable(CS [ Pt) = true.

2.2. Compilation

As already mentioned, our starting point in this paper are PROTOS-L algebras
with compiled AND/OR structure. This is motivated by the fact that the type
constraint mechanism is orthogonal both to the compilation of the predicate
structure (OR structure) as well as to the compilation of the clause structure
(AND structure). Leaving the notion of terms and substitutions as abstract as
in 2.1, we can use the compiled AND/OR structure development for Prolog
in [BR91], [BR92b] also for PROTOS-L: Essentially we just have to replace
substitutions by the more general constraint systems, and have to take care of a
clause constraint when resolving a goal.

In a PROTOS-L algebra a program is a pair consisting of a de�nition context
and a sequence of clauses

PROGRAM � DEFCONTEXT � CLAUSE�

The de�nition context contains declarations of types, type constructors, etc. and
will be re�ned in [BB96]. For prog = (defc,db) 2 PROGRAM we will write x
2 prog for both x 2 defc and x 2 db when it is clear from the context whether
x is e.g. a type declaration or a list of clauses. A clause, depicted as

fPg H <-- G1 & : : : & Gn.

is an ordinary Prolog clause together with a set P of type constraints for (all and
only) the variables occurring in the clause head and body. As in [BS91] we use
three obvious projection functions

clhead: CLAUSE ! LIT
clbody: CLAUSE ! LIT�

clconstraint: CLAUSE ! TYPEPREFIX

where LIT is the universe of literals. Literals as used in ordinary logic program-
ming are (non-negated) atomic �rst-order formulas. An element of the universe
GOAL also comes with a type pre�x and is written as

fPg G1 & : : : & Gn.
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We assume a universe INSTR of instructions containing

funify(H), add constraint(P), call(G), allocate, deallocate,

proceed, true, fail, cut, try me else(N), try(L),

retry me else(N), retry(L), trust me, trust(L),

switch on term(i,Lv,Ls), switch on structure(i,T) j i 2 NAT,
H, G 2 TERM, P 2 TYPEPREFIX, N, L, Lv,

Ls 2 CODEAREA, T 2 (ATOM � NAT � CODEAREA)�g

Here, add constraint is a new instruction not occurring in the WAM that adds
a clause constraint to the current set of constraints accumulated so far. The uni-
verse ATOM contains the constant and function symbols; elements of ATOM
are used in the switch on structure instruction in order to allow indexing over
the top-level function symbol of an argument. Later on, further instructions will
be added to INSTR.1

For the compilation of clauses we have a function

compile: CLAUSE ! INSTR�

compile(fPg H <-- G1 & : : : & Gn) =
[allocate, add constraint(P), unify(H),

call(G1), : : :call(Gn), deallocate, proceed]

Compiled programs are \stored" in a universe CODEAREA which comes with
functions

+,-: CODEAREA ! CODEAREA
code: CODEAREA ! INSTR

where + and its inverse - yield a linear structure on CODEAREA and code(l)

gives the instruction \stored" in l. The function

unload: CODEAREA ! INSTR�

unload(Ptr) = if code(Ptr) = proceed

then [proceed]

else [code(Ptr)|unload(Ptr+)]

is an auxiliary function. We say that Ptr 2 CODEAREA points to code for a

clause Cl if

unload(Ptr) = compile(Cl)

The function

procdef: LIT � CSS � PROGRAM ! CODEAREA

yields a pointer Ptr = procdef(G,Cs,Prog) that points to a chain chain(Ptr)

of clauses containing all candidate clauses for resolving G in Prog under the
constraint system Cs, i.e.:

8 Cl 2 Prog . ((8 P 2 chain(procdef(G,Cs,Prog)) .

P does not point to code for Cl) )

solvable(fg
:

= rename(clhead(Cl),i)g [ Cs

[ rename(clconstraint(Cl),i)) = false)

where i 2 NAT is chosen such that rename(GC,i) renames all variables in a
goal or constraint GC to new variables. For the auxiliary function chain

1 Note that in this paper we do not consider a special representation for constants or lists.
These are present in the PAM, and could be added to our formal treatment without di�culty.
For instance, switch on term would get an additional argument for the constant case.
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chain: CODEAREA ! CODEAREA�

we assume for an activator literal act

chain(Ptr) =8>>>>>><
>>>>>>:

chain(Lv) if code(Ptr) = switch on term(i,Lv,Ls)

and is var(Xi)

chain(Ls) if code(Ptr) = switch on term(i,Lv,Ls)

and is struct(Xi)

chain(select(T,f,a)) if code(Ptr) = switch on structure(i,T)

and f = functor(Xi) and a = arity(Xi)

chain1(Ptr) otherwise

chain1(Ptr) =8>>>>>><
>>>>>>:

flatten[chain1(Ptr),chain1(N)] if code(Ptr) = try me else(N)

or code(Ptr) = retry me else(N)

flatten[chain1(C),chain1(Ptr+)] if code(Ptr) = try(C)

or code(Ptr) = retry(C)

chain1(Ptr+) if code(Ptr) = trust me

chain1(C) if code(Ptr) = trust(C)

[Ptr] otherwise

where Xi = arg(act,i), functor, arity, and arg are the term analyzing
functions, and is var and is struct are true for variables and compound
terms, respectively. Furthermore, the switch on structure parameter T could
be thought of as a hash table, with select(T,f,a) = pt if (f,a,pt) 2 T.

2.3. Choicepoints and Environments

Executing AND/OR compiled PROTOS-L programs requires two stacks where
w.r.t. the Prolog case we replace the substitution part by a constraint system.
STATE is a universe to store the choicepoints and comes with functions

nil: ! STATE
cs: STATE ! CSS accumulated constraint system
p: STATE ! CODEAREA program pointer
cp: STATE ! CODEAREA continuation pointer
e: STATE ! ENV environment
b: STATE ! STATE backtracking point
vi: STATE ! NAT renaming index for variables
ct: STATE ! STATE cut point

The universe ENV of environments comes with functions

nil: ! ENV
ce: ENV ! ENV continuation environment
cp': ENV ! CODEAREA continuation pointer
ct': ENV ! STATE cut point
vi': ENV ! NAT renaming index for variables

As in the WAM, STATE and ENV are embedded into a single STACK

STATE, ENV � STACK
-: STACK ! STACK

with a common bottom element nil. tos(b,e) denotes the top of the stack

which will always be the maximum of b and e.
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2.4. Initial State

To hold the current status of the machine there are some 0-ary functions which
correspond to their unary counterparts above. Given the PROTOS-L goal fPg
G1 & : : : & Gn we have the following initial values:

cs 2 CSS cs = ;
p 2 CODEAREA unload(p) = [add constraint(P),

call(G1),: : :,call(Gn),

proceed]

cp 2 CODEAREA cp = p++

e 2 ENV vi'(e)=0, ct'(e)=nil, ce(e)=nil
b 2 STATE b = nil

vi 2 NAT vi = 0

ct 2 STATE ct = nil

The literals of the initial PROTOS-L goal, as well as all intermediate goals
that will be constructed during program executing, can be recovered via the
continuation pointer. For code(cp-) = call(G) (which will always be the case
as long as there is still something to do) we have in particular

act � subres(rename(G,vi'(e)),subst part(cs))

which is called the current activator.
The 0-ary function prog 2 PROGRAM holds all declarations and clauses

of the program (which in this paper will always be constant since we do not
consider database operations like assert or retract). Finally, stop 2 f-1,0,1g
indicates whether the machine has stopped with failure, is still running, or has
stopped with success.

2.5. Transition rules

The transition rules are as in the Prolog case with the substitution component
being replaced by a constraint system, and with the following extension to the
unify rule and the new add constraint instruction:

if OK unify

& code(p) = unify(H)

then
let cs1 = fact

:

= rename(H,vi)g

if solvable(cs [ cs1)

then cs := cs [ cs1

vi := vi + 1

succeed

else backtrack

if OK add constraint

& code(p) = add constraint(P)

then
let cs1 = rename(P,vi)

if solvable(cs [ cs1)

then cs := cs [ cs1

succeed

else backtrack

The condition OK is an abbreviation for stop = 0, i.e., the machine is operating
in normal mode and no stop condition has been encountered. All abbreviations
as well as the complete set of transition rules are given in Appendix A.
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3. Term representation

The representation of terms and substitutions in the WAM can be introduced
in several steps. Following the development in [BR92b] we �rst introduce the
treatment of the low-level run-time uni�cation (but leaving the details of type
constraint solving as an abstract update to be re�ned later), followed by the
term constructing and analyzing put and get instructions. In particular, the
WAM-speci�c optimizations of environment trimming, last call optimization, or
the initialization of temporary and permanent variables are postponed until we
have established the correctness of the �rst re�nement level with respect to the
PROTOS-L algebras with compiled AND/OR structure in Section 2. The major
derivation from the real PAM code in Sections 3 and 4 will be our simplifying
assumption that all variables are permanent and are initialized on allocation to
free unconstrained variables. Under this assumption the variables receive their
initial type restrictions, derived statically by the compiler, immediately after
allocation. This is achieved by a new (auxiliary) put constraint instruction
which will be dropped again later (in Section 5).

3.1. Universes and Functions

For the representation of terms we use the pointer algebra

(DATAAREA; +, -; val)

with DATAAREA � MEMORY, where

+, - : DATAAREA ! DATAAREA

connect the locations in DATAAREA and are inverse to each other. In the
codomain of the function

val: DATAAREA ! PO + MEMORY + SYMBOLTABLE

we use the universe SYMBOLTABLE in order to connect a function symbol
to its arity and type. It comes with functions

atom: SYMBOLTABLE ! ATOM
arity: SYMBOLTABLE ! NAT
entry: ATOM � NAT ! SYMBOLTABLE

of which we assume atom(entry(f,n)) = f and arity(entry(f,n)) = n for
any atom f with arity n, and entry(atom(s),arity(s)) = s for any s 2

SYMBOLTABLE.
The functions tag and ref are de�ned on the universe PO of \PROTOS-L

objects"

tag: PO ! TAGS
ref: PO ! DATAAREA + TYPETERM

where, because of the type constraint treatment, a new tag VAR for indicating
free variables is introduced into the universe

TAGS = fREF, STRUC, VARg

Special tags for representing constants, lists, built-in integers, etc. are also present
in the PAM, but in this paper we consider them as optimizations that can be
added later on without any di�culties. The tag FUNC from [BR92b] is not in-
cluded since it is not needed.
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The codomain of ref contains the universe TYPETERM since we will keep
the type term representation abstract here; it will be re�ned later (see Section 2
in [BB96]).

As in [BR92b] we use some abbreviations for dealing with locations l 2

DATAAREA:

tag(l) � tag(val(l))

ref(l) � ref(val(l))

l1  l2 � val(l1) := val(l2)

l  <t,r> � tag(l) := t

ref(l) := r

unbound(l) � tag(l) = VAR

mk unbound(l) � mk unbound(l,TOP)

mk unbound(l,tt) � tag(l) := VAR

insert type(l,tt)

insert type(l,tt) � ref(l) := tt

where the last four abbreviations deal with the typed variable representation and
where tt 2 TYPETERM. Note that an unconstrained free variable gets the
trivial type restriction TOP, representing no restriction at all (c.f. Section 2.1).

In addition to the (partial) dereferencing and term reconstructing functions
from the WAM case we now also assume a function that recovers the type con-
straints for all variables occurring in a term. Of these functions

deref: DATAAREA ! DATAAREA
term: DATAAREA ! TERM
type prefix: DATAAREA ! TYPEPREFIX

we assume for l 2 DATAAREA:

deref(l) =

�
deref(ref(l)) if tag(l) = REF

l otherwise

term(l) =

8>>>>><
>>>>>:

mk var(l) if unbound(l)
term(deref(l)) if tag(l) = REF

f(a1,: : :,an) if tag(l) = STRUC and
f = atom(val(ref(l)))

n = arity(val(ref(l)))

ai = term(ref(l)+i)

type prefix(l) =

8>>><
>>>:

mk var(l) :ref(l) if unbound(l)
type prefix(deref(l)) if tag(l) = REF

P1 [ : : : [ Pn if tag(l) = STRUC and
n = arity(val(ref(l)))

Pi = type prefix(ref(l)+i)

where make var(l) 2 VARIABLE is a unique variable assigned to l. Note that
the condition term(l) 2 TERM now implies various consistency properties
like:

if unbound(l) then ref(l) 2 TYPETERM
if tag(l) 2 fREF, STRUCg then ref(l) 2 DATAAREA

term(l) 2 TERM
typeprefix(l) 2 TYPEPREFIX

if tag(l) = STRUC then val(ref(l)) 2 SYMBOLTABLE
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term(ref(l)+i) 2 TERM
type prefix(ref(l)+i) 2 TYPEPREFIX

with i 2 f1,: : :,arity(val(ref(l)))g.

3.2. Uni�cation

Lowlevel uni�cation in the PAM can be carried out as in the WAM (see [AK91])
if we re�ne the bind operation into one that takes into account also the type
constraints of the variables ([BMS91], [BM94]). The bind operation may thus
also fail and initiate backtracking if the type constraints are not satis�ed. Thus,
we can use the treatment of uni�cation as described in [BR92b], while leaving
the bind operation abstract for the moment, not only in order to postpone the
discussion of occur check and trailing but also to stress the fact that the bind
operation will take care of the type constraints for the variables.

To be more precise, the DATAAREA subalgebra

(PDL; pdl, nil; +, -; ref')

with pdl, nil 2 PDL and

ref': PDL! DATAAREA

is the push down list used for lowlevel uni�cation, containing all pairs of (ad-
dresses of) terms still to be uni�ed, with

left � ref'(pdl) right � ref'(pdl-)

being the current pair of terms. Uni�cation is triggered by the update

unify(l1,l2) � ref'(nil++) := l1
ref'(nil+) := l2
pdl := nil++

what to do := Unify

The 0-ary function

what to do 2 fUnify, Rung

will be used in the guard of all following rules in the form of conditions like

UNIF � OK & what to do = Unify

RUN � OK & what to do = Run

Uni�cation is carried out by uni�cation rules as in [BR92b] (see appendix B.1)
where for the abstract bind update we impose the following modi�ed

BINDING CONDITION 1: For any l1, l2, l 2 DATAARRA, with
term resp. term' values of term(l) and with prefix resp. prefix' values
of type prefix(l) before resp. after execution of bind(l1,l2), we have if
unbound(l1) holds:

LET CS = fmk var(l1) = term(l2)g [ type prefix(l1)

[ type prefix(l2)

If solvable(CS) = true

then (term', prefix') = conres(term, prefix, CS)

else backtrack update will be executed.
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With this generalized binding assumption we obtain the following modi�ed

UNIFICATION LEMMA: If pdl-- = nil, term(left), term(right) 2
TERM, and type prefix(left), type prefix(right) 2 TYPEPREFIX,
the e�ect of setting what to do to Unify, for any l 2 DATAAREA such that
term(l) 2 TERM and type prefix(l) 2 TYPEPREFIX is as follows:

Let term resp. term' be the values of term(l) and prefix resp. prefix'
be the values of type prefix(l) when setting what to do to Unify and when
what to do has been set back to Run again, respectively. Then we have:

LET CS = fterm(left) = term(right)g [ type prefix(left)

[ type prefix(right)

If solvable(CS) = true

then (term', prefix') = conres(term, prefix, CS)

else backtrack update will be executed.

Proof. The proof of the Uni�cation Lemma is by induction on the size of the
terms to be uni�ed, relying on our generalized Binding Condition.

3.3. Putting of terms

As in the WAM, run time structures are created in the subalgebra of
DATAAREA

(HEAP; h, boh; +, -; val)

where h, boh 2 HEAP represent the top resp. the bottom element of the heap.
We use nextarg 2 HEAP to point to the next argument when anyalyzing a
structure on the heap. Furthermore, we now assume

DATAAREA + CODEAREA � MEMORY

where CODEAREA is as in Section 2.2 but where INSTR now contains

put value(yn,xj), put structure(f,xi), get value(yn,xj),

get structure(f,xi), unify value(yn), unify variable(xn),

put constraint(yn,tt)

with n,j,i 2 NAT, f 2 SYMBOLTABLE, tt 2 TYPETERM, yn 2

DATAAREA, xi � x(i), where x: NAT ! AREGS and AREGS �
DATAAREA. Note that put constraint(yn,tt) is a new instruction used
for inserting a type restriction into a heap location. Instead of having a pair
(fn,a) 2 ATOM � NAT we use f = entry(fn,a) in the code.

The code developed in Section 1.2 of [BR92b] for constructing terms in body
goals uses put instructions which assume that, for all variables Yi of the term t

to be built on the heap, there is already a term denoting yi 2 DATAAREA
available. Since this means in particular that no variables are created during this
process, we can use (with the obvious modi�cation mentioned above) the same
put instructions (i.e. put value, unify value in Write mode, put structure)
for the compilation of a body goal (see Appendix B.2 and B.3). Furthermore, we
may assume that for the variables Yi we have no type constraints to formalize
here because they have already been associated to the corresponding location yi
(i.e. the variable term(yi) which is - up to renaming - equal to Yi. This gives us
the following
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PUTTING LEMMA: If all variables occurring in a term t 2 TERM are
among fY1,: : : ,Ylg, and if for n 2 f1, : : :, lg, yn 2 DATAAREA with

term(yn) 2 TERM
type prefix(yn) 2 TYPEPREFIX

and Xi is a fresh variable, and CS is the constraint system consisting of the
substitution associating every Yn with term(yn) and of the union of the type
constraints type prefix(yn), i.e.

CS =
S
n
fYn

:

= term(yn)g [ type prefix(yn)

then the e�ect of setting p to

load(append(put code(Xi = t), More))

with subsequent fresh indices generated by the term normal form function nfs

(Appendix B.2) being non-top level, is that the pair

(term(xi), type prefix(xi))

at the moment of passing to More, gets value of

conres(t, ;, CS)

Proof. The proof follows by induction over the size of the involved terms, ob-
serving that no type related actions like variable creation or variable binding is
involved here.

3.4. Getting of terms

Unlike putting of terms that does not involve uni�cation, the getting of terms
does involve uni�cation where parts of it are compiled into the getting instruc-
tions (like get structure followed by a sequence of unify instructions) and the
remaining uni�cation tasks are handled by the lowlevel unify procedure.

The get value, unify value, and unify variable instructions are as in
the WAM case (see Appendix B.4 and B.5). Note that we need unify variable

both in Read and Write mode which is controlled by the 0-ary function mode 2

fRead, Writeg. In [BR92b] unify variable in Write mode is introduced only
as an optimization for variable initialization \on the 
y", but when the machine
enters Write mode in get structure, unify variable will be executed for the
auxiliary substructure descriptors Xi generated by the term normal form function
nfa (Appendix B.2). Since we do not have to consider type contraints for such
Xi, it su�ces to initialize them to a free variable without any type restriction.
Thus, for the generation of a heap variable in Write mode of unify variable

we use

mk heap var(l) � mk unbound(h)

bind(l,h)

h := h+

When unify variable will be used for \on the 
y" initialization of typed vari-
ables, we will have to consider an additional type initialization parameter (c.f.
Section 5).

The �rst get structure rule for PROTOS-L is as in the WAM case, covering
the situation where xi in get structure(f,xi) is bound to a non-variable term
(Appendix B.4). When xi is unbound, it must be bound to a newly created term
with top-level symbol f. Whereas in the WAM this will always succeed, in the
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PAM case the type constraint of xi must be taken into account. Indeed, what is
happening here is the binding of a variable X with a type constraint, say tt, to a
term t starting with f. In abstract terms this amounts to solving the constraint
system

fX
:

= t, X :ttg

We still want to leave the details of variable binding abstract here; what is of in-
terest for this special case occurring in get structure is which type constraints
stemming from tt and (the declaration of) f must be propagated onto the ar-
gument terms of t = f(: : :). Therefore, we introduce the function

propagate list: SYMBOLTABLE � TYPETERM
! TYPETERM� [ fnilg

yielding for arguments entry(f,n) and tt the list of type terms the arguments
of f must satisfy. To be more precise, we have the following integrity constraint:

propagate list(entry(f,n),tt) = (tt1,: : :,ttn)

i�
prefix-part(ff(X1,: : :,Xn) : ttg) = fX

i1
:tt

i1
,: : :, X

ik
:tt

ik
g

where fi1,: : :,ikg � f1,: : :,ng, and for j 2 f1,: : :,ngnfi1,: : :,ikg we have
ttj = TOP.

If the constraint system ff(X1,: : :,Xn) : ttg is not solvable, no propagation
is possible, and if it reduces to the trivially solvable empty constraint system,
propagate list yields a list containing only TOP. Thus we introduce the abbre-
viations

can propagate(entry(f,n),tt) � solution(ff(X1,: : :,Xn) : ttg) 6= nil

trivially propagates(entry(f,n),tt) �

solution(ff(X1,: : :,Xn) : ttg) = ;

if RUN Get-Structure-2

& code(p) = get structure(f,xi)

& unbound(deref(xi))

& can propagate(f,ref(deref(xi)))

= true | = false

& trivially propagates(f,ref(deref(xi))) |

= true | = false |

then
h  <STRUC,h+> | backtrack

bind(deref(xi),h) |

val(h+) := f |

h := h++ |

mode := Write | nextarg := h++ |

| mk unbounds(h+,propagate list(f,ref(deref(xi))) |

| mode := Read |

succeed |

For l 2 DATAAREA and tt1,: : : ,tn 2 TYPETERM, the update

mk unbounds(l,(tt1,: : :,ttn)) � FORALL i = 1,: : :,n DO

mk unbound(l+i,tti)

ENDFORALL
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puts n type restricted variables at the locations l+1,: : :,l+n on the heap. When
this update is executed in the rule above the machine continues in read mode so
that the subsequent n unify instructions take into account these type restrictions.

GETTING LEMMA: If all variables occurring in a term t 2 TERM are
among fY1,: : :,Ylg, and if for n 2 f1,: : :,lg, yn 2 DATAAREA with

unbound(yn)

ref(yn) 2 TYPETERM

and Xi is a fresh variable with xi 2 DATAAREA and

term(xi) 2 TERM
type prefix(xi) 2 TYPEREFIX

and CS is the constraint system consisting of the equation t
:

= term(xi) together
with type prefix(xi) and the union of the type constraints type prefix(yn),
i.e.

CS = ft
:

= term(xi)g [ type prefix(xi) [
S
n

type prefix(yn)

then the e�ect of setting p to

load(append(get code(Xi = t), More))

for any l 2DATAAREA with term = term(l) 2 TERM and typeprefix

= type prefix(l) 2 TYPEPREFIX being the values before execution, is as
follows:

If solvable(CS) = true then p reaches More without backtracking and the
pair

(term(l), type prefix(l))

at the moment of passing to More, gets value of

conres(term, typeprefix, CS)

else backtracking will occur before p reaches More.

Proof. The proof follows by induction on the size of the involved terms. Observe
that similar to the Putting Lemmano real variable creation occurs: When an aux-
iliary variable Xk (generated by nfa) is created on the heap via unify variable

in Write mode, its <VAR,TOP> initialization will be overwritten by a subse-
quent get structure instruction corresponding to the subterm represented by
Xk. Note also that if CS is solvable, then conres(term, typeprefix, CS) 6=
nil because CS [ typeprefix is also solvable since the intersection between
typeprefix and any type prefix(yn) is already contained in CS.

In order to uphold the

HEAP VARIABLES CONSTRAINT: No heap variable points outside the
heap, i.e. for any l 2 HEAP with boh � l < h and tag(l) = REF, we have
boh � ref(l) < h.

the instruction unify local value in Write mode creates a new heap variable
for a so-called local variable (cf. B.5):

local(l) � unbound(l) & l 2 HEAP & NOT(boh � l < h)

For a discussion of local variables see [AK91] or [BR92b]. In the PROTOS-L
case the type restriction of the local variable must be taken into account which
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is done by the binding update in our mk heap variable abbreviation. Thus, the
HEAP VARIABLES CONSTRAINT as well as the

HEAP VARIABLES LEMMA: If the put code and get code functions gen-
erate unify local value instead of unify value for all occurrences of local
variables, then the execution of put seq and get seq preserve the HEAP VARI-
ABLES CONSTRAINT [BR92b].

carries over to the PROTOS-L case, provided we ensure

BINDING CONDITION 2: The bind update preserves the HEAP VARI-
ABLES CONSTRAINT.

3.5. Putting of Constraints

In this section we will still keep the type constraint representation abstract, while
specifying the conditions about the constraint handling code (for realization of
add constraint of Section 2) in order to prove a theorem corresponding to the
Pure Prolog Theorem of [BR92b] (see 4).

The compile function will be re�ned using

put constraint seq(fY1 : tt1,: : :,Yr : ttrg) = [put constraint(y1,tt1),

: : :,

put constraint(yr,ttr)]

for which we use the new instruction put constraint(yn,tt) (where tt 2

TYPETERM) and the following rule:

if RUN Put-Constraint

& code(p) = put constraint(l,tt)

then
insert type(l,tt)

succeed

The update for inserting a type restriction has still the straightforward de�nition
given in 3.1 (i.e. ref(l) := tt), but will be re�ned later when we introduce a
representation of type terms. In any case it must satisfy the following

TYPE INSERTING CONDITION: For any l1, l 2 DATAARRA, with
term resp. term' values of term(l) and with prefix resp. prefix' values of
type prefix(l) before resp. after execution of insert type(l1,tt) we have if
unbound(l1) holds:

(term', prefix') = conres(term,prefixnfmk var(l1)g,fmk var(l1) : ttg)

For the de�nition given above the type inserting condition is obviously satis�ed.

4. PAM Algebras

4.1. Environment and Choicepoint Representation

The stack of states and environments of PROTOS-L algebras with compiled
AND/ OR structure of Section 2 are now represented by a subalgebra of
DATAAREA
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(STACK; bos; +, -; val)

with bos 2 STACK representing the bottom element corresponding to nil in
Section 2. The concrete memory layout can be done as in the WAM [BR92b] (see
Appendix B.6) since the only type-related action is in the allocation of n free
variable cells in the rule for Allocate: This situation is covered by our modi�ed
mk unbound abbreviation that assigns the trivial TOP type restriction to each
such initialized variable:

if OK allocate

& code(p) = allocate(n)

then
e := tos(b,e)

val(ce(tos(b,e))) := e

val(cp(tos(b,e))) := cp

FORALL i = 1,: : :,n DO

mk unbound(yi(tos(b,e)))

ENDFORALL

succeed

if OK deallocate

& code(p) = deallocate

then
e := val(ce(e))

cp := val(cp(e))

succeed

4.2. Trailing

As is standard practice in the WAM, we assume that HEAP < STACK <

AREGS and the WAM binding discipline:

BINDING CONDITION 3: If unbound(l1) and unbound(l2) and
bind(l1,l2) does not initiate backtracking, then after executing bind(l1,l2)

the higher location will be bound to the lower one.

Together, these conditions imply BINDING CONDITION 2 and also the

STACK VARIABLES PROPERTY: Every stack variable l points either to
the heap or to a lower location of the stack, i.e. ref(l) 2 HEAP with boh �

l < h, or ref(l) 2 STACK with bos � l � tos(b,e).

Whereas BINDING CONDITION 3 and the STACK VARIABLES PROPERTY
are exactly as in the WAM case [BR92b], for trailing variable bindings also the
type restrictions must be taken into account in the PAM. Since variables in the
PAM carry a type restriction represented in the ref value of a location - which
is updated when binding the variable -, the type restriction must be saved upon
binding and recovered upon backtracking. Strictly speaking, it would be su�cient
to save only the ref value of a location; however, for use in a later re�nement
-when we will introduce di�erent tags for free variables - we also trail the tag of
a location. Therefore, in the DATAAREA subalgebra

(TRAIL, tr, botr; +, -; ref�)

with tr, botr 2 TRAIL being the top and bottom elements, the codomain of
the function

ref�: TRAIL ! DATAAREA � PO

records also the complete val decoration. The trail update, to be executed when
changing the value of a location l during binding is then:
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trail(l) � ref�(tr) := (l, val(l))

tr := tr+

Note that this is a non-optimized version of the trailing operation; we could have
also used a conditional trailing governed by the condition boh � l < h & l <

hb OR bos � l � tos(b,e) & l < b.
For t 2 TRAIL with ref�(t) = (l, v) we use the following abbreviation

for the two obvious projections on ref�(t):

location(t) � l value(t) � v

Upon backtracking we must now unwind the trail

backtrack � p := val(p(b))

unwind trail

unwind trail � FORALL t = tr-,: : :,tr(b) DO

location(t)  value(t)

ENDFORALL

where value(t) retrieves the previous tag and type restriction of location(t).
We still leave the binding update abstract, but pose the following

TRAILING CONDITION: Let l1, l2, l 2 DATAAREA. If val(l) be-
fore execution of bind(l1,l2) is di�erent from val(l) after successful execution
of bind(l1,l2), then the location l has been trailed with trail(l).

Note that due to the update on the type restrictions of a variable the trailing of
both locations l1 and l2 may be triggered by bind(l1,l2); moreover, if e.g. l2
denotes a polymorphic term containing variables these variables also have to be
trailed if they get another type restriction in the binding process (see [BB96]).

4.3. Pure PROTOS-L theorem

In order to establish a correctness proof of compilation to PAM algebras de-
veloped so far from PROTOS-L algebras with compiled AND/OR structure of
Section 2, we can generalize the "Pure Prolog Theorem" of [BR92b] to our case.
We will thus construct a function F (c.f. Section 1) from the PROTOS-L alge-
bras to the PAM algebras. We will also �rst ignore cutpoints (ct, ct') which
are not needed for pure PROTOS-L, as well as variable renaming indices (vi,
vi') since as in the WAM case the renaming is ensured by the o�sets in the
stack and the heap. Further, all names of universes and functions on Section 2
will get an index 1. For the function compile dealing with the term representing
algebras we have

compile(fPg H <-- G1 & : : : & Gn) =
flatten([allocate(r), put constraint seq(P),

get seq(H), call seq(G1), : : :, call seq(G1),

deallocate, proceed])

The abstraction function F maps PAM rules to PROTOS-L rules in the obvious
way. It is de�ned via a mapping between instruction sequences (which directly
correspond to rule sequences). For instance, with respect to uni�cation and type
constraint solving we have

call seq(G) 7! call(G)

get seq(H) 7! unify(H)

put constraint seq(P) 7! add constraint(P)
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This correspondence also de�nes a (partial) function

codepointer: CODEAREA � CODEAREA1

by mapping e.g. the beginning of get seq(H) to the location labelled with
unify(H). Furthermore, we establish the functions

css: TRAIL ! CSS1

subst: TRAIL ! SUBST1

choicepoint: STACK ! STATE1

env: STACK ! ENV1

term: DATAAREA � TRAIL ! TERM1

typeprefix: DATAAREA � TRAIL ! TYPEPREFIX1

where we have added - w.r.t. the WAM case in [BR92b] - the functions css and
typeprefix in order to construct the correspondence between the constraint
representations. Viewing an element of STATE1 (resp. ENV1) as a tuple of its
cs, p, cp, e, b (resp. cp', ce) values, these functions are de�ned by:

term(l,lt) yields the value term(l) would take after
having unwound the trail down to lt

typeprefix(l,lt) yields the value type prefix(l) would take after
having unwound the trail down to lt

css(lt) =
S

botr�l<tr
fmk var(location(l))

:

= term(location(l),lt)g

[ typeprefix(location(l),lt)

subst(lt) = subst part(css(lt))

choicepoint(lb) = h css(val(tr(lb))),
codepointer(val(p(lb))),

codepointer(val(cp(lb))),

env(val(e(lb))),

choicepoint(val(b(lb))) i

env(le) = h codepointer(val(cp(le))),

env(val(ce(le))) i

The 0-ary functions are de�ned by

cs1 = css(tr)

p1 = codepointer(p)

cp1 = codepointer(cp)

e1 = env(e)

b1 = choicepoint(b)

Furthermore, for the current activator act1 of 2.4 we have for code(cp-) =
call(g,m,r) the correspondence

act1 = g(term(x1),: : :,term(xm))

Correctness Theorem 1 (PURE PROTOS-L THEOREM): Compilation
from the PROTOS-L algebras with compiled AND/OR structure (of Section 2)
to the PAM algebras developed so far (and thus satisfying all the conditions
explicitely stated above) is correct.

Proof. For the proof it su�ces to show that for any PAM algebra A and any
transition rule sequence R such that F(A) and F(R) is de�ned, the diagram
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F(A) -
F(R)

F(A')

F

6

A - A'

6

F

R

commutes. This follows by case analysis, relying on the conditions and lemmas
established so far. In particular, w.r.t. type constraints we observe the fact that
allocate allocates a new variable location (with TOP restriction) for every vari-
able occurring in the clause. These locations are used by the put constraint

instructions, so that the preconditions for the TYPE INSERTING CONDITION
hold.

5. Additional WAM optimizations in the PAM

5.1. Environment Trimming and Last Call Optimization

Environment trimming and last call optimization (LCO) are among the
most prominent optimizations in the WAM; for a discussion we refer to
[AK91] and [BR92b]. The necessary ARGUMENT REGISTERS PROPERTY
as formulated in [BR92b] can be ensured by the compiler by generating a
put unsafe value(yn,xj) instruction instead of put value(yn,xj) for each un-
safe occurrence of Yn. This instruction is executed by the rule:

if RUN Put-Unsafe-Value

& code(p) = put unsafe value(yn,xj)

& deref(yn) � e | deref(yn) > e

then
xj  deref(yn) | mk heap var(deref(yn))

| xj  <REF,h>

succeed

Note that the condition deref(yn) > e implies unbound(deref(yn)). Thus, in
case of yn being unsafe, a new variable is created on the heap, referenced by both
yn and xj. Unlike in Prolog, in PROTOS-L the type restriction of yi must be
copied to the new heap variable - this is already taken into account by the bind
update in our mk heap var abbreviation introduced in Section 3.4. Therefore,
following the argumentation in [BR92b], we can savely assume that the compiler
enforces environment trimming and also last call optimization (LCO). Thus,
every call instruction gets an additional parameter n where n is the number
of variables that are still needed in the environment. LCO then means that the
instruction sequence

Call(g,a,0), Deallocate, Proceed

is replaced by
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Deallocate, Execute(g,a)

which disregards the current environment before calling the last subgoal of a
clause.

5.2. Initializing Temporary and Permanent Variables

Up to now, when allocating an environment, we have allocated r value cells in
that environment, where r is the number of variables occurring in the clause.
A sequence of r corresponding put constraint(yj,ttj) instructions initialized
the type restriction on the variables yj to ttj found in the clause's type pre�x.

However, as explained in [BMS91], the �rst occurrence of a variable in
a PROTOS-L clause is su�cient to consider the statically available type re-
striction. (The specialized instructions of [BMS91, BM94] for variables with
monomorphic, polymorphic, or with no type restriction are introduced as an
optimization in [BB96].) Both temporary and permanent variables can be ini-
tialized \on the 
y"; for a discussion of the classi�cation of variables into tempo-
rary and permanent ones which was introduced by [War83] we refer to [AK91]
and [BR92b]. Thus, we modify our compile function such that for a temporary
variable, Yn, yn is replaced by fresh Xi, xi, and such that

get variable put variable unify variable

instructions are generated for the �rst occurrence of a variable, replacing the
so-far used get value, put value (resp. put unsafe value), and unify value

instructions, respectively.

if RUN Put-1 (X variable)

& code(p) = put variable(xi,xj,tt)

then
mk unbound(h,tt)

xi  <REF,h>

xj  <REF,h>

succeed

if RUN Put-2 (Y variable)

& code(p) = put variable(yn,xj,tt)

then
mk unbound(yn,tt)

xj  <REF,yn>

succeed

When initializing a temporary variable with put variable, a new heap cell
must be allocated, which is not the case when initializing a permanent vari-
able, provided that put unsafe variable and unify local value instructions
are used properly. This, however, has already been veri�ed (see Section 5.1). In
both cases, the mk unbound(l,tt) update corresponds to the mk unbound(l)

update for that variable carried out previously during allocation, and the
insert type(l,tt) update carried out by the put constraint instruction im-
mediately after allocation (c.f. 3.5). Therefore, since the put variable instruc-
tion corresponds to the �rst occurrence of the variable Xi resp. Yn, we can savely
drop its initialization during allocation and its complete put constraint in-
struction.
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if RUN get variable

& code(p) = get variable(l,xj,tt)

then
mk unbound(l,tt)

bind(l,xj)

succeed

Whereas in the WAM case the get variable instruction always succeeds, in the
PROTOS-L case we have to check that the clause's type restriction tt for xj is
satis�ed. This is achieved by setting l to an unbound variable, inserting the type
term tt as its type restriction, and binding l and xj. The latter is su�cient as
the binding update will do the binding only if the type restrictions are satis�ed;
otherwise it will fail and initiate backtracking (c.f. the BINDING CONDITION
of Section 3.2).

if RUN unify variable

& code(p) = unify variable(l,tt)

& mode = Read | mode = Write

then
mk unbound(l,tt) | mk unbound(h,tt)

bind(l,nextarg) | l  <REF,h>

nextarg := nextarg+| h := h+

succeed

The instruction unify variable in Read mode has to make sure that the in-
coming argument satis�es the type restriction, which - as in get variable - is
achieved by a bind update. In Write mode, the type restriction has just to be
inserted into a new heap cell.

As argued above for put variable, the initialization of a free value cell during
allocation as well as the put constraint instruction can also be dropped for all
variables initialized by get variable or unify variable, which leads us to the

INITIALIZATION LEMMA: Given l > e, the instruction put vari-
able(l,xj,tt) (get variable(l,xj,tt), unify variable(l,tt), resp.) is
equivalent to initializing l to unbound with mk unbound(l), execut-
ing put constraint(l,tt), and then executing put unsafe value(l,xj)

(get value(l,xj), unify local value(l), resp.). For a permanent variable Yn,
the instruction put variable(yn,xj,tt) is equivalent to initializing yn to un-
bound with mk unbound(yn), executing put constraint(yn,tt), and then ex-
ecuting put value(yn,xj).

Thus, the rule for allocate looses its initialization update, and the compile func-
tion is modi�ed such that no put constraint instruction is generated any more.
Moreover, the argumentation of Section3.2 and 3.2 of [BR92b] can be applied
to our modi�ed setting, implying also the correctness of special compilation of
facts and chain rules where no environment needs to be allocated at all.

5.3. Switching instructions and the Cut

The PAM contains all switching instructions known from the WAM, and since
no type speci�c considerations have to be taken into account, their treatment
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in the evolving algebra approach in [BR92b] carries over to the PAM as well.
Thus, compared to the compiled AND/OR structure (Sect. 2 and Appendix A)
the indexing and choicepoint handling rules now also get the predicate arity n

as an additional parameter, and the choicepoint information is not attached to
a newly created stack element, but by reusing and \overwriting" elements on
the stack (see B.7). However, in PROTOS-L additionally a switch on the type

restriction of a variable is possible (see [BB96]).
For the establishment of the Pure PROTOS-L Theorem we had deliberately

left out the built-in predicate cut. Since there is no interdependence between
cut and the type constraints of PROTOS-L, the cut treatment of Prolog carries
over to our case as well [BR92a]: We could either extend every environment by
a cutpointer, to be set and restored just as in Section 2, or we could allocate an
extra (permanent) variable in those environments containig a so-called deep cut .
This extra variable would then be set immediately after allocation, and its value
would be assigned to the backtracking pointer b when a cut is encountered (see
also [AK91]).

5.4. Main Theorem

Putting everything together developed so far, we obtain

Correctness Theorem 2 (Main Theorem): Compilation from PROTOS-L
algebras to the PAM algebras developed so far is correct. Thus, since we kept
the notion of types abstract, for every such type-constraint logic programming
system L and for every compiler satisfying the speci�ed conditions, compilation
to the WAM extension with this abstract notion of types is correct.

Thus, any type system satisfying the minimal preconditions on the solution
function stated in Section 2.1 is covered by the development above.
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A. Transition rules for compiled And/Or structure

if OK allocate

& code(p) = allocate

then
PUSH ENV temp IN

cp'(temp) := cp

vi'(temp) := vi

ct'(temp) := ct

ENDPUSH

succeed

if OK deallocate

& code(p) = deallocate

then
POP ENV

cp := cp'(e)

succeed

if OK call

& code(p) = call(G)

& is user defined(G)

then
let p1 = procdef(act,cs,prog)

if code(p1) = fail

then backtrack

else p := p1

ct := b

cp := p+

if OK unify

& code(p) = unify(H)

then
let cs1 = fact

:

= rename(H,vi)g

if solvable(cs [ cs1)

then cs := cs [ cs1

vi := vi + 1

succeed

else backtrack

if OK true/fail/cut

& code(p) = call(BIP)

& BIP =

true |fail |cut

then
succeed|backtrack|b := ct'(e)

| |succeed

if OK add constraint

& code(p) = add constraint(P)

then
let cs1 = rename(P,vi)

if solvable(cs [ cs1)

then cs := cs [ cs1

succeed

else backtrack
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if OK try me else/try

& code(p) =

try me else(N)|try(L)

then
PUSH STATE temp IN

store state in(temp)

p(temp) := N |p(temp) := p+

p:= p+ |p := L

ENDPUSH

if OK trust me/trust

& code(p) =

trust me | trust(L)

then
fetch state from(b)

POP STATE

p:= p+ | p := L

if OK retry me else/retry

& code(p) =

retry me else(N)|retry(L)

then
fetch state from(b)

p(b) := N |p(b) := p+

p:= p+ |p := L

if OK proceed

& code(p) = proceed

& code(cp)

= proceed | 6= proceed

then
stop := 1 | p := cp

if OK switch on structure

& code(p) =

switch on structure(i,T)

then
let xi = arg(act,i)

p := select(T,func(xi),

arity(xi))

if OK switch on term

& code(p) =

switch on term(i,Lv,Ls)

& let xi = arg(act,i)

is var(xi) | is struct(xi)

then
p := Lv | p := Ls

Abbreviations:

succeed � p := p + 1

OK � stop = 0

backtrack � if b = nil

then stop := -1

else p := p(b)

PUSH STATE temp IN

updates ENDPUSH �

EXTEND STATE BY temp WITH

b := temp

b(temp) := b

temp- := tos(b,e)

updates

ENDEXTEND

PUSH ENV temp IN

updates ENDPUSH �

EXTEND ENV BY temp WITH

e := temp

ce(temp) := e

temp- := tos(b,e)

updates

ENDEXTEND

POP STATE � b := b(b) POP ENV � e := ce(e)

fetch state from(b) �

cs := cs(b)

cp := cp(b)

e := e(b)

store state in(temp) �

cs(temp) := cs

cp(temp) := cp

e(temp) := e
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B. Transition rules for the PAM with abstract type terms

B.1. Low level uni�cation

if OK & what to do = Unify Unify-1 (success)

& pdl = nil

then
what to do := Run

if UNIF Unify-2 (Unify-Var-Any)

& unbound(dl) | NOT(unbound(dl))

| & unbound(dr))

then
bind(dl,dr) | bind(dr,dl)

pdl := pdl--

if UNIF Unify-3 (Unify-Struc-Struc)

& NOT( unbound(dl) or unbound(dr) )

& val(ref(dl)) = val(ref(dr))

then
FORALL i = 1,...,arity(val(ref(dl))) DO

ref'(pdl+2*arity(val(ref(dl)))-2*i) := ref(dl)+i

ref'(pdl+2*arity(val(ref(dl)))-2*i-1) := ref(dr)+i

ENDFORALL

pdl := pdl+2*arity(val(ref(dl)))-2

if UNIF Unify-4 (Unify-Struc-Struc)

& NOT( unbound(dl) or unbound(dr) )

& NOT( val(ref(dl)) = val(ref(dr)) )

then
backtrack

what to do := Run

Abbreviations: dr � deref(right)

dl � deref(left)

UNIF � OK & what to do = Unify

RUN � OK & what to do = Run

B.2. Putting and Getting Code

The code for putting (resp. getting) instructions corresponding to a body goal
(resp. the clause head) is de�ned using the term normal form of �rst order logic.
Its two froms nfs (resp. nfa) correspond to the synthesis (resp. analysis) of terms:
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nf(Xi=Yn) = [Xi=Yn]
nf(Yi=Yn) = [ ]

nfs(Xi=f(s1,: : :,sm)) = flatten([nfs(Z1=s1),: : :,nfs(Zm=sm),

Xi=f(Z1,: : :,Zm)])
nfa(Xi=f(s1,: : :,sm)) = flatten([Xi=f(Z1,: : :,Zm),

nfa(Z1=s1),: : :,nfa(Zm=sm)])

The function put instr (resp. get instr) of a normalized equation is de�ned by
the following table, where j stands for an arbitrary `top level' index (correspond-
ing to the input Xi=t for term normalization) and k for a `non top level' index
(corresponding to an auxiliary variable introduced by normalization itself):

Xj=Yn ! [xxx value(yn,xj]

Xk=Yn ! [unify value(yn)]

Xi=f(Z1,: : :,Za) ! [xxx structure(entry(f,a),xi),

unifyxxx(z1),: : :,unifyxxx(za)]

where xxx stands for put (resp. get), yi 2 DATAAREA, xi 2 AREGS, and
with

unifyxxx(zi) =

8><
>:

unify value(Yn) if Zi = Yn and xxx = put

unify value(Xk) if Zi = Xk and xxx = put

unify value(yn) if Zi = Yn and xxx = get

unify variable(Xk) if Zi = Xk and xxx = get

The function put code (resp. get code) is de�ned by 
attening the result of
mapping put instr (resp. get instr) along nfa(Xi=t) (resp. nfs(Xi=t)). The
function put seq (resp. get seq) speci�es how a body goal (resp. clause head)
of the form g(s1,: : :,sm) is compiled:

xxx seq(g(s1,: : :,sm)) = flatten([xxx code(X1=s1),: : :,
xxx code(Xm=sm)])

with `top level' j = 1,: : :,m.
Additionally, for the HEAP VARIABLES LEMMA and the proof of the \Pure

PROTOS-L theorem" in 4 we assume that the put code and get code functions
generate unify local value instead of unify value for all occurrences of local
variables, and that

call seq(g(s1,: : :,sk)) = flatten([put seq(g(s1,: : :,sk)),

call(g,k,r)])

with fY1,: : : ,Yrg being all variables occurring in the clause.
Additional compiler assumptions are given in Section 5 for the optimizations

introduced there (environment trimming, LCO, variable initialization \on the

y", etc.).

B.3. Putting of terms

if RUN put value

& code(p) = put value(l,xj)

then
xj  l

succeed
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if RUN Put-Unsafe-Value

& code(p) = put unsafe value(yn,xj)

& deref(yn) � e | deref(yn) > e

then
xj  deref(yn) | mk heap var(deref(yn))

| xj  <REF,h>

succeed

if RUN put structure

& code(p) = put structure(f,xi)

then
h  <STRUC,h+>

xi  <STRUC,h+>

val(h+) := f

h := h++

mode := write

succeed

\On the 
y" initialization (Sec. 5.2):

if RUN Put-1 (X variable)

& code(p) =

put variable(xi,xj,tt)

then
mk unbound(h,tt)

xi  <REF,h>

xj  <REF,h>

succeed

if RUN Put-2 (Y variable)

& code(p) =

put variable(yn,xj,tt)

then
mk unbound(yn,tt)

xj  <REF,yn>

succeed

B.4. Getting of terms

if RUN get value

& code(p) = get value(l,xj)

then
unify(l,xj)

succeed

if RUN Get-Structure-1

& code(p) = get structure(f,xi)

& tag(deref(xi)) = STRUC

& val(ref(deref(xi))) = f | val(ref(deref(xi))) 6= f

then
nextarg := ref(deref(xi))+ | backtrack

mode := Read |

succeed |

if RUN Get-Structure-2

& code(p) = get structure(f,xi)

& unbound(deref(xi))
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& can propagate(f,ref(deref(xi)))

= true | = false

& trivially propagates(f,ref(deref(xi))) |

= true | = false |

then
h  <STRUC,h+> | backtrack

bind(deref(xi),h) |

val(h+) := f |

h := h++ |

mode := Write | nextarg := h++ |

| mk unbounds(h+,propagate list(f,ref(deref(xi))) |

| mode := Read |

succeed |

\On the 
y" initialization (Sec. 5.2): if RUN get variable

& code(p) = get variable(l,xj,tt)

then
mk unbound(l,tt)

bind(l,xj)

succeed

B.5. Unify instructions

if RUN Unify Variable

& code(p) = unify variable(l)

& mode = Read | mode = Write

then
mk unbound(l) | mk unbound(h)

bind(l,nextarg) | l  <REF,h>

nextarg := nextarg+ | h := h+

succeed

if RUN Unify Value

& code(p) = unify value(l)

& mode = Read | mode = Write

then
unify(l,nextarg) | h  l

nextarg := nextarg+ | h := h+

succeed

if RUN Unify Local Value

& code(p) = unify local value(l)

& mode = Read | mode = Write

| & NOT(local(deref(l)))| local(deref(l))

then
unify(l,nextarg) | h  deref(l) | mk heap var(deref(l))

nextarg := nextarg+| h := h+ |

succeed
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\On the 
y" initialization (Sec. 5.2):

if RUN unify variable

& code(p) = unify variable(l,tt)

& mode = Read | mode = Write

then
mk unbound(l,tt) | mk unbound(h,tt)

bind(l,nextarg) | l  <REF,h>

nextarg := nextarg+| h := h+

succeed

B.6. Environment and Choicepoint Representation

The entries of the environment frame are stored in STACK at �xed o�sets from
the environment pointer e (ignoring cut points at this stage, but see 5.3). In
particular, the environment also contains the variables y1,: : :,yn where n is the
second parameter of the last call being executed (which is accessible via cp-):

ce(l) � l + 1

cp'(l) � l + 2

yi � e + 2 + i ( 1�i�stack offset(cp) )

yi(l) � l + 2 + i ( 1�i�stack offset(val(cp'(l))))

stack offset(l) � n if code(l-) = call(g,a,n)

tos(b,e) � if b � e

then e + 2 + stack offset(cp)

else b

Similarly, the choicepoint information is stored in STACK at �xed o�sets from
the backtracking pointer b. The choicpoint also contains the argument registers
x1,: : :,xi of the current goal:

h(l) � l cp(l) � l - 4

tr(l) � l - 1 e(l) � l - 5

p(l) � l - 2 xi � l - 5 - i

b(l) � l - 3 hb(l) � val(h(b))

B.7. Indexing and Switching

if RUN try me else/try

& code(p) =

try me else(N,n) | try(L,n)

then
let new b = tos(b,e) + n + 6

b := new b

val(b(new b)) := b

store state in(new b,n)

val(p(new b)) := N | val(p(new b)) := p+

p := p+ | p := L
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if RUN retry me else/retry

& code(p) =

retry me else(N,n) | retry(L,n)

then
fetch state from(b,n)

val(p(b)) := N | val(p(b)) := p+

p:= p+ | p := L

if RUN trust me/trust

& code(p) =

trust me(n) | trust(L,n)

then
fetch state from(b,n)

b := val(b(b))

p := p+ | p := L

if RUN switch on term

& code(p) = switch on term(i,Lv,Ls)

& tag(deref(xi)) = VAR | tag(deref(xi)) = STRUC

then
p := Lv | p := Ls

if RUN switch on structure

& code(p) = switch on structure(i,T)

then
p := select(T,val(ref(deref(xi))))

Abbreviations:

store state in(t,n) �

FORALL i = 1,: : :,n

val(xi(t) := xi
ENDFORALL

val(e(t)) := e

val(cp(t)) := cp

val(tr(t)) := tr

val(h(t)) := h

fetch state from(t,n) �

FORALL i = 1,: : :,n

xi := val(xi(t))

ENDFORALL

e := val(e(t))

cp := val(cp(t))

tr := val(tr(t))

h := val(h(t))


