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Abstract

This paper provides a mathematical analysis of the Warren Abstract Machine for executing

Prolog and a correctness proof for a general compilation scheme of Prolog for the WAM.
Starting from an abstract Prolog model which is close to the programmer's intuition, we

derive the WAM methodically by stepwise re�nement of Prolog models, proving correctness

and completeness for each re�nement step. Along the way we explicitely formulate, as proof
assumptions, a set of natural conditions for a compiler to be correct, thus making our proof

applicable to a whole class of compilers.

The proof method provides a rigorous mathematical framework for the study of Prolog

compilation techniques. It can be applied in a natural way to extensions and variants of

Prolog and related WAMs allowing for parallelism, constraint handling, types, functional

components|in some cases it has in fact been successfully extended. Our exposition assumes

only a general understanding of Prolog. We reach full mathematical rigour, without heavy

methodological overhead, by using Gurevich's notion of evolving algebras.

�In: Logic Programming: Formal Methods and Practical Applications, C.Beierle,L.Pl�umer, Eds.), North{
Holland, Series in Computer Science and Arti�cial Intelligence, 1995, pp. 20{90 (chapter 2).
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Introduction

We provide a mathematical analysis of an implementation method|the Warren abstract machine

for executing Prolog|and a proof of its correctness. The analysis has the 
avour of a rational

reconstruction, i.e. deriving the WAM methodically from a description of Prolog, and thus con-

tributing, we hope, to understanding of its design principles. It proceeds by stepwise re�nement

of Prolog models, starting from an abstract, phenomenological, programmer's model. The proof

follows the analysis closely, and consists in a chain of local proofs, of (relative) correctness and

completeness for each re�nement step.

The WAM, as described by [Warren 83], resembles an intricate puzzle, whose many pieces �t

tightly together in a miraculous way. We analayze the complex web of their interdependencies,

attempting to isolate the orthogonal components along the following lines.

As a �rst step, (operational semantics of) Prolog may be seen as decomposed into disjunctive,

conjunctive and uni�cational components, which corresponds nicely to WAM handling of clause

selection (predicate structure), continuations (clause structure) and representation of terms and

substitutions.

We start therefore, in section 1, by de�ning an operational semantics of Prolog in which these

components appear abstractly. The model comes in the form of Prolog trees, close to the usual

intuitive picture and to its proof{theoretical logical background of SLD-trees. It is easily shown to

be correct wrt SLD-resolution (for pure Prolog programs), and has been extended to a transparent

yet rigorous formulation of the full language [Boerger,Rosenzweig 93], although we restrict it here

to pure Prolog with cut . We thus start from scratch. In the same section we re�ne to a stack

model (to the very same stack model on which the meaning of database operations was analyzed

in [Boerger,Rosenzweig 91b], elaborating on the stack model of [Boerger 90a]). A stack model may

be viewed as linear layout of Prolog tree traversal into `computer memory' which brings us closer

to the implementation view of the WAM.

Section 2 provides a complete account of WAM clause selection, i.e. representation of predicate

structure. Since selection of clauses is largely independent of what clauses are, a `compiler' model

which emits WAM indexing and switching instructions, interspersed with abstract Prolog clauses,

su�ces for that purpose.

In section 3 we take up the continuations, i.e. clause structure. Since Prolog terms and substi-

tutions are still kept abstract, i.e. unrepresented, whereas full WAM treatment of continuations

does partially depend on term representation, we arrive, on this level, to a simpli�ed `compiler'

which encodes a clause

H :� G1; : : : ; Gn

with a (pseudo)instruction sequence

allocate; unify(H ); call(G1); : : : ; call(Gn); deallocate; proceed :

In section 4 we analyze the representation of terms and substitutions. Correctness and com-

pleteness are �rst proved for a simpli�ed model, in which all variables are permanent, getting

initialized to unbound as soon as they are allocated. The �ne points of the WAM|environment

trimming, local and unsafe values, last call optimization, Warren's classi�cation of variables and

their on-the-
y initialization|are then introduced as local optimizations and related correctness

preserving devices. The notion of a variable being needed at a body goal turns out to be the crucial

hidden concept which clari�es them all.

We thus arrive at the full WAM of [Warren 83], and at a proof of its correctness and com-

pleteness wrt Prolog trees (Main Theorem in 4.3). There was no need to prescribe a speci�c

compiler|the cumulative assumptions, that we explicitly introduce along the way, provide a set

of su�cient conditions for a compiler to be correct. The assumptions might be most useful in the
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role of a clear prescription for the compiler writer, of what he must do to create a correct compiler.

They can be useful in very much the same way when trying to extend and/or modify the WAM.

The proof provides a clear scheme to such designers for proving their WAM to be correct, without

need for extensive testing of all components, including the well known ones.

We feel that the mathematical beauty of the WAM gets revealed in the process. We join

[Ait-Kaci 91] in saying, from a di�erent context, that

...this understanding can make one appreciate all the more David H.D.Warren's

feat, as he conceived this architecture in his mind as one whole.

The approach would have been impossible without a methodology allowing for stepwise re-

�nement of abstraction level, yet retaining full mathematical rigour at all levels, without however

imposing heavy methodological overhead. It is the straightjacket of �xed abstraction level, and the

induced combinatorial explosion of formalismand/or mathematics, which usually makes semantical

investigation of real situations so di�cult.

The method of evolving algebras of [Gurevich 88,91], see also [Glavan,Rosenzweig 93], that

we have adopted (here and in [Boerger,Rosenzweig 91a-d,93], continuing the work in [Boerger

90a,90b]), allows precisely the kind of �ne-tuning of abstraction level to the problem at hand, and

natural modelling of dynamics at all levels, that is required here. Evolving algebra descriptions

may be easily read as `pseudocode over abstract data'. We indeed do encourage the reader,

who is (maybe on �rst reading) primarily interested in analysis rather than proof, to read the

paper precisely from such an intuitive viewpoint, without worrying much about evolving algebras

(skipping to the next subsection as soon as we start talking about proof or `proof-maps'). A glance

at Evolving Algebras section should su�ce for such a reading.

The reader who is interested in checking the proof should study that section more carefully.

Appendici 1{4 might assist a proof checking reader by summarizing the transition rule systems

of some Prolog models constructed at di�erent abstraction levels. It may need stressing that we

provide a proof in the usual sense of (informal) mathematics, and not a derivation in any formal

deductive system. Our attitude here is preformal rather than antiformal|useful deductive systems

for evolving algebras have yet to be developed.

All we assume of the reader is general understanding of Prolog as a programming language.

Although the paper is technically self{contained, familiarity with the WAM might help. For

extended discussion of basic concepts of the WAM we refer the reader to [Ait-Kaci 91]. For more

background on evolving algebra methodology the reader is referred to [Gurevich 91].

There have been other attempts at analysis and correctness proof of the WAM in the literature.

The book [Ait-Kaci 91] provides a penetrating but informal tutorial analysis, without any preten-

sion to proof, proceeding by elaborating successive partial Prologs at the same level of abstraction

(unlike our successive partial elaborations of full Prolog). [Russino� 92] proves correctness of a

partial (simpli�ed) WAM wrt a form of SLD-resolution, relying on ad hoc arithmetical encoding

and a speci�c compiler. His formidable proof can hardly be understood as conceptual analysis,

and does not seem to be easily extendible either to richer (in built-in predicates and constructs)

or to similar languages. We feel that a convincing analysis and a proof should go together, i.e. be

essentially the same thing, and that similarity of `similar languages' should be explicitly captured.

The paper is a synthesis and a revision of [Boerger,Rosenzweig 91a,c], using [Boerger,Rosenzweig

93]. It simpli�ed a lot to deal with the or{structure before the and{structure, and to base the

or{structure treatment on trees instead of stacks. Semantics and implementation of dynamic

code and database operations have been analyzed in [Boerger,Rosenzweig 91b], by extending

some of the models used here. The work of [Beierle,Boerger 92] on Protos-L, a Prolog with

types, and [B�orger,Salamone 94] on constraint propagation language CLP(R), where the con-

struction and the proofs were smoothly ported to the `PAM' [Beierle,Boerger 92] and the `CLAM'
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[B�orger,Salamone 94], con�rms the conjecture from [Boerger,Rosenzweig 91a], that `: : :our expli-

cation should essentially apply to WAM-based implementation of other logic languages with the

same and-or structure as Prolog.'

Acknowledgements. We are indebted to Yuri Gurevich for permanent discussion on the whole

evolving algebra framework. Many people have helped us with useful comments on various early

versions of this work|we thank them all, mentioning here just, with apologies to omissions, Chris

Beierle, Michael Hanus, Davorin Ru�sevljan, J�org S�uggel and the Ph.D. students of Dipartimento

di Informatica in Pisa 1992|Agostino Dovier, Stefano Guerrini, Angelo Monti, Corrado Priami,

Paola Quaglia, Alessandro Roncato, Luca Roversi|who have, after two weeks of initiation to the

framework and to the WAM, cheerfully checked all the proofs, caught some slips and raised several

good points. Special thanks go to J�org S�uggel also for very careful reading of the �nal version and

valuable detailed comments.

Evolving Algebras

All Prolog models, constructed in this paper by stepwise re�nement, are evolving algebras, which

is a notion introduced by [Gurevich 91]. Since this notion is a mathematically rigorous form of

fundamental operational intuitions of computing, the paper can be followed without any particular

theoretical prerequisites. The reader who is not interested in foundational issues, might read our

rules as `pseudocode over abstract data'. However, remarkably little is needed for full rigour|the

de�nitions listed in this section su�ce.

The abstract data come as elements of sets (domains, universes). The operations allowed on

universes will be represented by partial functions.

We shall allow the setup to evolve in time, by executing function updates of form

f(t1; : : : ; tn) : = t

whose execution is to be understood as changing (or de�ning, if there was none) the value of

function f at given arguments. The 0-ary functions will then be something like variable quantities

of ancient mathematics or variables of programming, which explains why we are reluctant to call

them constants.

The precise way our `abstract machines' (evolving algebras) may evolve in time will be deter-

mined by a �nite set of transition rules of form

if R? then R!

where R? (condition or guard) is a boolean, the truth of which triggers simultaneous execution

of all updates in the �nite set of updates R!. Simultaneous execution helps us avoid fussing and

coding to, say, interchange two values. Since functions may be partial, equality in the guards is to

be interpreted in the sense of `partial algebras' [Wirsing 90], as implying that both arguments are

de�ned (see also [Glavan,Rosenzweig 93]).

More precisely,

De�nition. An evolving algebra is given by a �nite set of transition rules.

The signature of a rule, or that of an evolving algebra, can always be reconstructed, as the set

of function symbols occurring there.

De�nition. Let A be an evolving algebra. A static algebra of A is any algebra of �(A), i.e. a

pair (U; I) where U is a set and I is an interpretation of �(A) with partial functions over U .
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In applications an evolving algebra usually comes together with a set of integrity constraints,

i.e. extralogical axioms and/or rules of inference, specifying the intended domains. We tacitly

understand the notion of interpretation as validating any integrity constraints imposed.

Our rules will always be constructed so that the guards imply consistency of updates, for

discussion cf. [Glavan,Rosenzweig 93]. While the e�ect of executing a rule in a static algebra is

intuitively clear, it is given precisely by

De�nition. The e�ect of updates R! = ffi(~si) : = ti j i = 1; : : : ; ng, consistent in an algebra

(U; I), is to transform it to (U; IR!), where

IR!(f)(~y) �

�
I(ti) if f

:
= fi; ~y = I(~si); i = 1; : : : ; n

I(f)(~y) otherwise

where ~y is any tuple of values in U of f 's arity, and
:
= denotes syntactical identity.

The assumption of consistency ensures that IR! is well de�ned.

We have now laid down precisely the way in which transition rules transform �rst order struc-

tures. Evolving algebras can then be understood as transition systems (directed graphs) whose

states (nodes) are �rst order structures, and the transition relation (set of arrows) is given by

applicable rules.

De�nition. A
R
�! AR whenever A j= R? (`R is applicable in A').

The rules are to be thought of as containing only closed, variable{free terms. We shall nev-

ertheless display rules containing variables, but only as an abbreviational device which enhances

readability, and is otherwise eliminable. Say,

if : : :a =< X; Y > : : :

then : : :X : : :Y : : :

abbreviates
if : : : ispair(a) : : :

then : : : fst(a) : : : snd(a) : : : ;

sparing us the need to write explicitly the recognizers and the selectors.

In applications of evolving algebras (including the present one) one usually encounters a hete-

rogenous signature with several universes, which may in general grow and shrink in time|update

forms are provided to extend a universe:

extend A by t1; : : : ; tn with updates endextend

where updates may (and should) depend on ti's, setting the values of some functions on newly

created elements ti of A.

[Gurevich 91] has however shown how to reduce such setups to the above basic model of a homo-

genous signature (with one universe) and function updates only (see also [Glavan,Rosenzweig 93]).

As Prolog is a sequential language, our rules are organized in such a way that at every moment

at most one rule is applicable.

The forms obviously reducible to the above basic syntax, which we shall freely use as abbrevi-

ations, are where and if then else.

We shall assume that we have the standard mathematical universes of booleans, integers, lists

of whatever etc (as well as the standard operations on them) at our disposal without further

mention. We use usual notations, in particular Prolog notation for lists.
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An evolving algebra, as given above, determines the dynamics of a very large transition system.

We are usually (in particular here) only interested in states reachable from some designated initial

states, which may be, orthogonally, speci�ed in various ways. We can use an informalmathematical

description, like in model theory; we can devise special intitializing evolving algebra rules which,

starting form a canonical `empty' state, produce the initial states we need; we may use any formal

methods, such as those of algebraic speci�cation.

As the set of updates executed in a rule is to be understood as executed simultaneously, we

shall at several points explicitly indicate that sequential execution of updates is intended, by an

update form

seq i = 1; : : : ; n update(i) endseq

where n is a numerical term and update(i) is an update (with parameter i). We intend an update

sequence to trigger sequential execution of update(i) (for i = 1; : : : ; n) so that the overall system

does not attempt another rule application before update(n) has been executed. This construct,

which does not appear in Gurevich's original de�nition in [Gurevich 91] is reducible to rules with

function updates, as the reader might verify as an exercise.

In our re�nement steps we shall typically construct a `more concrete' evolving algebra B and

relate it to a `more abstract' evolving algebra A by a (partial) proof map F mapping states B of B

to states F(B) of A, and rule sequences R of B to rule sequences F(R) of A, so that the following

diagram commutes:

A -
F(R)

A0

F

6

B - B0

6

F

R

We shall consider such a proof map to establish correctness of (B;S) with respect to (A;R) if

F preserves initiality, success and failure (value of stop) of states, since in that case we may view

successful (failing) concrete computations as implementing successful (failing) abstract computa-

tions.

We shall consider such a proof map to establish completeness of (B;S) with respect to (A;R) if

every terminating computation in (A;R) is image under F of a terminating computation in (B;S),

since in that case we may view every successful (failing) abstract computation as implemented by

a successful (failing) concrete computation.

In case we establish both correctness and completeness in the above sense, as we do on every

of our re�nement steps, we may speak of operational equivalence of evolving algebras (in this

restricted context, where only deterministic terminating computations are of interest). Since this

last notion is symmetric, it does not matter any more which way F goes. The reader will notice

that we indeed have, in a few places, found it more convenient to reverse the direction of F ,

mapping the ` abstract' algebra into the `concrete' one.

1 Prolog|Tree and Stack Models

In this section we de�ne Prolog trees, the abstract Prolog model with respect to which we will

prove the WAM to be correct. This mathematical model captures the usual intuitive operational
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understanding of Prolog, what justi�es its use as basis for our correctness proof. It is also close to

SLD-resolution proof trees, (and allows a simple correctness proof with respect to the latter, for

pure Prolog programs, [Boerger,Rosenzweig 93]). We then show how to lay out these trees linearly,

thus transforming the tree into a stack model which is closer to what is needed for a mathematical

analysis of the stack based WAM.

1.1 Prolog Tree

A Prolog computation can be seen as systematic search of a space of possible solutions to initially

given query. The set of computation states (resolution states or con�gurations or instantaneous

descriptions) is often viewed as carrying a tree structure, with initial state at the root, and son

relation representing alternative (single) resolution steps. We then represent Prolog computation

states in a set NODE with its two distinguished elements root and currnode, with the latter rep-

resenting the (dynamically) current state. Each element of NODE has to carry all information

relevant|at the desired abstraction level|for the computation state it represents. This informa-

tion consists in the sequence of goals still to be executed, the substitution computed so far, and

possibly the sequence of alternative resolvent states still to be tried, as we will explain below.

The tree structure over the universe NODE is realized by a total function

father : NODE � frootg ! NODE

such that from each node there is a unique father path towards root . We do not assume the tree

algebra

(NODE ; root; currnode; father)

to be platonically given as a static, possibly in�nite, object representing the whole search space;

we rather create it dynamically as the computation proceeds, out of the initial state (determined

by given program and query) as the value of currnode, fathered by the empty root .

When at a given node n the selected literal (activator) act is called for execution, for each

possible immediate resolvent state a son of n will be created, to control the alternative computation

thread. Each son is determined by a corresponding candidate clause of the program, i.e. one of

those clauses whose head might unify with act . All such candidate sons are attached to n as a list

cands(n), in the order re
ecting the ordering of corresponding candidate clauses in the program.

We require of course the cands-lists to be consistent with father , i.e. whenever Son is among

cands(Father), then father(Son) = Father .

This action of augmenting the tree with cands(n) takes place at most once, when n gets �rst

visited (in Call mode). The mode then turns to Select , and the �rst unifying son from cands(n)

gets visited (i.e. becomes the value of currnode), again in Call mode. The selected son is

simultaneously deleted >from the cands (n) list. If control ever returns to n, (by backtracking ,

cf. below), it will be in Select mode, and the next candidate son will be selected, if any.

If none, that is if in Select mode cands (n) = [ ], all attempts at resolution from the state

represented by n will have failed, and n will be abandoned by returning control to its father . This

action is usually called backtracking . The father function then may be seen as representing the

structure of Prolog's backtracking behaviour .

What remains for this section is to complete a precise description of the signature (statics)

and transition rules (dynamics). We assume the universes of Prolog literals (predications), goals

(sequences of literals), terms and clauses

LIT; GOAL = LIT �; TERM; CLAUSE

The information relevant for determining a computation state will be associated to nodes by

appropriate (in general partial) functions on the universe NODE .
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For each state we have to know the sequence of goals still to be executed. In view of the cut oper-

ator ! , however, this sequence will not be represented linearly, but structured into subsequences|

clause bodies decorated with appropriate cutpoints, i.e. backtracking states current when the

clause was called. We therefore introduce a universe and a function

DECGOAL = GOAL�NODE

decglseq : NODE ! DECGOAL�

associating the relevant sequence of (decorated) goals to each node.

The substitution current at a state is represented by a function

s : NODE ! SUBST

where SUBST is a universe of substitutions, coming together with functions

unify : TERM � TERM ! SUBST [ fnilg

subres : DECGOAL�
� SUBST ! DECGOAL�

where unify is an abstract uni�cation function associating to two terms either their unifying

substitution or the answer that there is none 1; subres is a substitution applying function yielding

the result of applying the given substitution to all goals in the sequence; we further assume the

substitution concatenating function �.

We represent renaming of variables abstractly, without going into details of term and variable

representation, by introducing a function

rename : TERM �N ! TERM

renaming all variables in the given term at the given index (renaming level). The current renaming

index|the one to be used for the next renaming|is indicated by a 0-ary function vi.

The above mentioned switching of modes will be represented using a distinguished element

mode 2 fCall; Selectg indicating the action to be taken at currnode: creating the resolvent states,

or selecting among them. To be able to speak about termination we will use a distinguished

element stop 2 f0; 1;�1g, to indicate respectively running of the system, halting with success and

�nal failure. In a similar manner we could (but shall not in this paper) handle error conditions by a

distinguished element error , taking values in a set of error messages. Besides this we will use (and

consider as part of Prolog tree algebras) all the usual list operations for which we adopt standard

notation. In the same way we shall use hd and bdy to select heads and bodies of clauses, allowing

ourselves the freedom to confuse a list of literals with their iterated conjunction, suppressing the

obvious translation. Codomain of bdy will thus be taken to be TERM�.

We shall keep the above mentioned notion of candidate clause (for executing a literal) abstract

(regarding it as implementation de�ned), assuming only the following integrity constraints: every

candidate clause for a given literal

� has the proper predicate (symbol), i.e. the same predicate as the literal (correctness); and

� every clause whose head uni�es with the given literal is candidate clause for this literal

(completeness).

The reader might think of considering any clause occurrence whose head is formed with the given

predicate, or the clause occurrences selected by an indexing scheme, or just all occurences of

unifying clauses, like in SLD resolution.

1We don't have, at this point, to be more explicit about our notion of uni�cation|for more careful discussion
see 4.2 and 4.3

7



Wishing to allow for dynamic code and related operations, we have to speak explicitly about

di�erent occurrences of clauses in a program. We hence introduce an abstract universe CODE of

clause occurrences (or pointers), coming with functions

clause : CODE ! CLAUSE

cll : NODE ! CODE

where cll(n) is the candidate clause occurrence (`clauseline') corresponding to a candidate son n

of a computation state, and clause(p) is the clause `pointed at' by p. Note that we do not assume

any ordering on CODE . We instead assume an abstract function

procdef : LIT � PROGRAM ! CODE�;

of which we assume to yield the (properly ordered) list of the candidate clause occurrences for the

given literal in the given program. The current program is represented by a distinguished element

db of PROGRAM (the database). Note that existence of procdef is all that we assume of the

abstract universe PROGRAM .

This concludes the de�nition of the signature of Prolog tree algebras. Notationally, we usually

suppress the parameter currnode by writing simply

father � father(currnode)

cands � cands(currnode)

s � s(currnode)

decglseq � decglseq(currnode)

Components of decorated goal sequence will be accessed as

goal � fst(fst(decglseq))

cutpt � snd (fst(decglseq))

act � fst(goal)

cont � [ h rest(goal ); cutpt i j rest(decglseq) ]

with act standing for the selected literal (activator), and cont for continuation.

Now to dynamics. We assume the following initialization of Prolog tree algebras: root

is supposed to be the nil element|on which no function is de�ned|and father of currnode; the

latter has a one element list [ h query ; root i ] as decorated goal sequence, and empty substitution;

the mode is Call , stop has value 0; db has the given program as value. The list cands of resolvent

states is not (yet) de�ned at currnode.

We now de�ne the four basic rules by which the system attempts to reach a state with stop = 1

(due to �rst successful execution of the query) or with stop = �1 (due to its �nal failure by

backtracking all the way to root). We introduce the following abbreviation for backtracking to

father:

backtrack � if father = root

then stop := �1

else currnode := father

mode := Select

We take the stop value of 1 or �1 to represent abstractly the �nal success or failure of the query,

outputting the substitution or providing a `no (more) solutions' answer respectively. No transition
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rule will be applicable in such a case, which is a natural notion of `terminating state'. All transition

rules will thus be tacitly assumed to stand under the guard

OK � stop = 0

The following query success rule|for succesful halt|will then lead to successful termination

when all goals have been executed:
if all done

then stop : = 1

where all done abbreviates decglseq = [ ]. 2 The following goal success rule describes success of

a clause body, when the system continues to execute the rest of its goal sequence.

if goal = [ ]

then decglseq := rest(decglseq)

The existence of goal , assumed in the guard, is understood as excluding all done, cf. above

abbreviations. Likewise, the existence of act , assumed in rules to follow, is understood as excluding

both all done and goal = [ ] conditions|we shall, in general, tacitly understand guards, relying on

existence of some objects, as excluding all conditions under which these objects could be unde�ned,

suppressing the obvious boolean conditions which would formally ensure such exclusion. In goal

success rule e.g. the suppressed conditions is NOT (all done), and in rules mentioning act below

it is NOT (all done) & goal 6= [ ].

The crucial resolution step, applicable to a user de�ned predicate, is split into calling the

activator (to create new candidate nodes for alternative resolvents of currnode), to be followed by

selecting one of them. We will correspondingly have two rules. The following call rule, invoked

by having a user de�ned activator in Call mode, will create as many sons of currnode as there are

candidate clauses in the procedure de�nition of its activator, to each of which the corresponding

clause(line) will be associated.

if is user de�ned (act)

&mode = Call

then

extendNODE by temp
1
; : : : ; temp

n
with

father(temp
i
) := currnode

cll(temp
i
) := nth(procdef (act ; db); i)

cands := [temp
1
; : : : ; temp

n
]

endextend

mode := Select

where n = length(procdef (act ; db))

where is user de�ned is a boolean function recognizing those literals whose predicate symbols

are user de�ned (as opposed to built-in predicates and language constructs). Note that goals

and substitutions, attached to candidate sons, are at this point unde�ned, and that the value of

currnode does not change. 3

The following selection rule, applicable to (visited) nodes with user de�ned activator in

Select mode, attempts to select a candidate resolvent state (selecting thereby the associated clause

occurrence). If there is none, the system backtracks. If the renamed head of selected clause does

2If the reader wants to view Prolog as returning all solutions, all he has to do is to modify this rule so as to
trigger backtracking.

3The expert will notice that given database operations of full Prolog this rule would commit us to the so-called

logical view.
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not unify with the activator, the corresponding son is erased from the list of candidates. Otherwise

the selected clause is activated: the corresponding son becomes the value of currnode in Call mode

(and, getting thus visited, gets erased from its father's cands list), its decorated goal sequence is

de�ned by executing the resolution step|replacing the activator by clause body (decorated with

appropriate cutpoint) and applying the unifying substitution to both s and (new) decglseq . The

current value of father gets stored as cutpt , since this is the value father should resume were cut

to be executed within that body, cf. cut rule below. A technicality: since the current variable

renaming index vi has now been used, it should be updated to a fresh value for subsequent use.

if is user de�ned (act)

&mode = Select

thenif cands = [ ]

then backtrack

elsif unify = nil

then cands := rest(cands )

else currnode := fst(cands )

decglseq(fst(cands)) :=

subres([ hbdy(clause); fatheri j cont ]; unify)

s(fst(cands)) := s � unify

cands := rest(cands)

mode := Call

vi := vi + 1

where clause = rename(clause(cll(fst(cands))); vi)

unify = unify(act ; hd (clause))

The rules for true, fail are self explaining:

if act = true

then succeed

if act = fail

then backtrack

where succeed stands for decglseq := cont .

The cut is usually explained by the metaphor of cutting away a part of the tree, which would,

in our framework, amount to recursively resetting the cands lists to [ ] all the way from currnode

to cutpt . We shall instead, even more simply, bypass the tree section becoming redundant, by

updating father to cutpt :
if act = !

then father := cutpt

succeed

This concludes the list of rules for our model of `pure Prolog with cut '. The model could be

extended to cover various built-in predicates and language constructs simply by adding appropriate

rules, like in [Boerger,Rosenzweig 93]. The reader might have noticed that the guards for rules

goal success, cut, true, fail never mention mode. It is however easy to see (by induction) that

these rules can only be invoked in Call mode|current decglseq is namely changed only by rules

which preserve the mode, or by Select rule, which switches it to Call . It is also easy to see that

our model is deterministic: at most one rule is applicable in any given situation, i.e. the guards

are, under our conventions, pairwise exclusive. This is only a natural re
ection of Prolog (unlike

SLD resolution) being a deterministic language.

Our dynamic notion of computation tree naturally classi�es the nodes: a node n is

� visited if it is or has already been the value of currnode;

� active if it is currnode or on the father path from currnode to root ;
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� abandoned if it is visited but not active, i.e. has been backtracked from;

� candidate if it belongs to cands list of an active node.

There will in general be other nodes, created as candidates but never visited, which play no role

in the computation.

Example 1. Given the Prolog program

p :� q; !; r:

p:

q :� s; fail :

q: r: s:

and query p, with clauselines Ci; i = 1; : : : ; 6, associated in order, we would, in a few steps, arrive

at the following Prolog tree.

root

n0 : [ h[p]; rooti ]

���
HHH

n1 : [ h[q; !; r]; rooti j c1 ] C2

���
HHH

n2 : [ h[s; fail]; n0i j c2 ] C4

n3 : [ h[fail];n0i j c2 ]

Only the active nodes are shown in the picture|for visited nodes we display a label and decglseq ,

while candidate nodes are displayed just with cll . The reader should be able to reconstruct the

continuations c1; c2 himself. Executing further fail , then backtracking (twice), call, selection and

query success, we arrive to execution of cut , for which we show the tree (of active nodes) before

and after :

root

n0 : [ h[p]; rooti ]

���
HHH

n1 : [ h[q; !; r]; rooti j c1 ] C2

n4 : [ h[!; r]; rooti j c1 ]

root

n4 : [ h[r]; rooti j c1 ]

Executing another call, selection and thrice goal success would �nally invoke query success.

The classi�cation of nodes suggests connections both to SLD-tree [Apt 90, Lloyd 84] and to

stack models of Prolog, to be elaborated in subsequent sections. In [Boerger,Rosenzweig 93] its

correctness wrt SLD-resolution was established.
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1.2 From Tree to Stack

Classi�cation of Prolog tree nodes suggests a straightforward stack representation: disregarding

the abandoned nodes (since they, once abandoned, play no further role in the computation), we

may view the path of active nodes as a stack|if cands lists are represented elsewhere.

We already have the CODE universe, which, given some additional structure, may easily rep-

resent sequencing of clauses in a Prolog program: it will be provided with a successor function +,

modelling the linear structure of all cands lists, and codomain of clause will obtain a special nil

value to indicate end of list. Thus, CODE gets re�ned to, say, CODEAREA, with

+ : CODEAREA ! CODEAREA

cll : NODE ! CODEAREA

clause : CODEAREA ! CLAUSE + fnilg

procdef : LIT � PROGRAM ! CODEAREA

Note that procdef now yields an element of CODEAREA, i.e. a pointer, instead of a list; the old

list can easily be reconstructed using a function clls : CODEAREA! CODEAREA� such that

clls(Ptr) = if clause(Ptr ) = nil

then [ ]

else [Ptr j clls(Ptr+) ]

assuming now that clls(procdef (G;Db)) yields the same as procdef (G;Db) of previous section, i.e.

the list of (pointers to) all candidate clause(occurrence)s, in proper ordering.

We shall further separate the information contained in currnode >from other active nodes, its

backtracking points or choicepoints, by recording the former in 0-ary functions (`registers' of an

abstract machine)

decglseq s cll

typed like homonymous abbreviations of previous sections. It may then be (stylistically) appro-

priate to rename NODE to STATE , root to bottom, father(currnode) and father to 0�ary and

unary b (for backtracking),

b 2 STATE b : STATE ! STATE

replacing our tree algebra

(NODE ; root; currnode; father)

by three `registers' above and stack algebra

(STATE ; bottom; b; b)

More formally, we will have a mapping F which maps stack elements to tree nodes as:

(decglseq ; s; cll ; b; bottom; vi) ! (currnode; root; vi)

where the node decorations in the tree are recovered from the registers and the decorations of

stack elements as follows:

decglseq(currnode) = decglseq

s(currnode) = s

cands(currnode) = mk cands(currnode; cll)

father(currnode) = F (b)
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with F : STATE ! NODE an auxiliary function such that

decglseq(F (n)) = decglseq(n)

s(F (n)) = s(n)

cands(F (n)) = mk cands (F (n); cll(n))

father(F (n)) = F (b(n))

F (bottom) = root

where

mk cands(Node;Cll) � if clause(Cll) = nil

then [ ]

else [ hNode;Cll i j mk cands(Node;Cll+) ];

keeping in mind that candidate nodes of the previous section can be thought of as h father ; cll i

pairs, since these are their only decorations.

Rules goal and query success, true, fail, cut of the previous section may be retained in the

present setup (translated to our stack algebra signature); the backtrack update will now take the

form

backtrack � if b = bottom

then stop := �1

else fetch state from(b)

b := b(b)

cll : = cll(b)

mode := Select

where

fetch state from(l) � decglseq := decglseq(l)

s := s(l)

The backtrack update may then be thought of as `popping' the stack, unloading the `contents' of

its top to `registers'. 4

Rules call and selection should be slightly modi�ed to allow for new data representation. Call

rule will now, instead of creating candidate sons, simply set cll , taking the form

if is user de�ned (act )

&mode = Call

then cll := procdef (act ; db)

mode := Select

4The updates of cll and b are not included in fetch state from update just in order to allow the latter to survive

till compilation of predicate structure in 2.2.
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Selection rule will now do the creating, pushing a single new choicepoint:

if is user de�ned (act )

&mode = Select

thenif clause(cll) = nil

then backtrack

elsif unify = nil

then cll : = cll+

else push temp with

store state in(temp)

cll(temp) : = cll+

endpush

decglseq :=

subres([ hbdy(clause); bi j cont ]; unify)

s := s � unify

mode := Call

vi := vi + 1

where clause = rename(clause(cll); vi)

unify = unify(act ; hd(clause))

where we use the mnemonic abbreviations:

push t with

updates(t)

endpush

� extend STATE by t with

b := t

b(t) := b

updates(t)

endextend

store state in(t) = decglseq(t) := decglseq

s(t) := s

The reader might care to simulate Example 1 on the current stack model.

Note that our `stack' still carries a tree structure: when we `pop' it on backtracking, we don't

discard the popped states in any `physical' sense; they are still there5 and may be used when

needed. We need them now to establish a complete correspondence to the tree of previous section,

using F . The structure of visited nodes is then completely preserved. De�ning further F on rules

as homonymy, it is now straightforward to verify that rule execution commutes with F , yielding

Proposition 1.2. The stack model of 1.2. is correct and complete wrt Prolog trees.

Remark. As explained in detail in the section on evolving algebras, all our correctness proofs are

of this form: a map F will be de�ned which maps re�ned data structures into the more abstract

data structures, and (sequences of) re�ned rules into (sequences of) more abstract rules in such

a way that the execution of these rule sequences commutes with F . Once the right functor F is

found, the commutativity of the corresponding diagram is usually easy to prove.

1.3 Reusing Choicepoints

A natural step of `optimizing' our model will direct us �rmly towards the WAM representation of

disjunctive structure of Prolog.

5Talking about a `stack' here is then just a shift of emphasis. This situation will change only in section 4.
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The stack model, derived in the previous section by a straightforward representation of Prolog

trees, is, when viewed as a model for implementation, not very realistic. It namely separates

the uni�ability test from actual update of computation state, pushing a choicepoint, in selection

rule, only on successful uni�cation. This choicepoint is later, if the selected unifying clause fails,

popped, just to push another, very similar (di�ering just in the value of cll) choicepoint for the

next unifying clause etc.

In an implementation, however, an attempt at uni�cation involves massive side e�ects, mod-

ifying the whole computation state. Old state, to be restored on backtracking, should then be

stored somewhere, before any test of uni�ability. A choicepoint had then better be pushed before

uni�cation (if it is to be pushed at all, cf. discussion of determinacy detection in the next section),

and simply reused for all alternative clauses for the same call, by updating its cll value.

We shall then, retaining essentially the signature (`data types') of the previous section, de-

compose the action of selection rule into more primitive steps, attempting to reorganize them in

a more `e�cient' way. The sequencing of these steps will be controlled by 0-ary function mode,

which will now take more values, by decomposing old Select mode.

Pushing a choicepoint is, at this level of abstraction, one primitive action, invoked by mode

value of Try . Attempting uni�cation and updating decglseq, s on success is our second primitive,

invoked by mode value of Enter . Reusing the choicepoint by invoking an alternative clause is the

third primitive, invoked by Retry mode. Old Call mode will retain its role, taking over the �rst

clause of Select mode as well, i.e. triggering immediate backtracking in case of no clauses.

Minding that Enter mode should update decglseq with the old value of b as cutpoint, while Try ,

to be executed before Enter , modi�es b by pushing, we introduce a new 0-ary function (`cutpoint

register') ct 2 STATE which will, in call mode, store b's old value for Enter to �nd.

The rules, then.

if is user de�ned (act)

&mode = Call

thenif clause(procdef (act ; db)) = nil

then backtrack

else cll : = procdef (act ; db)

mode : = Try

ct : = b

if mode = Try

then push temp with

store state in(temp)

cll(temp) : = cll+

endpush

mode : = Enter

if mode = Enter

thenifunify = nil

then backtrack

else

decglseq :=

subres( [h bdy(clause); ct i j cont ];

unify )

s := s � unify

mode := Call

vi := vi + 1

where clause = rename(clause(cll); vi)

unify = unify(act ; hd(clause))

We shall have to distinguish two forms of backtracking now|reusing the choicepoint by acti-

vating the stored alternative clause (we shall call such an update backtrack), and popping it, when

there is no alternative clause (the update will be called deep backtrack).

backtrack � if b = bottom

then stop : = �1

else mode := Retry

deep backtrack � if b(b) = bottom

then stop := �1

else b := b(b)

The choicepoint gets thus popped by deep backtrack ; reusing it, with `unloading' of its contents,
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will be e�ected in Retry mode.

if mode = Retry

thenif clause(cll(b)) = nil

then deep backtrack

else fetch state from(b)

cll := cll(b)

cll(b) := cll(b)+

ct := b(b)

mode := Enter

Note that, since a choicepoint is pushed for every call (by Try), the correct cutpoint is always at

b(b). It is namely the value b held when the current choicepoint was pushed.

The reader might care to see, simulating Example 1 on the current model, how a choicepoint

gets reused.

For sake of proof of correctness of this re�ned stack model, we shall distinguish between dif-

ferent actions formulated within a single rule. We shall accordingly talk about Retry1 referring to

deep backtrack update of the �rst clause of Retry rule, and about Retry2 referring to the composite

update of the second clause. Likewise, we shall use Enter1 , Enter2 , Call1 , Call2 , and, referring to

the previous section, Selection1 , Selection2 , Selection3 .

The state map F will be de�ned on all states in Call and Retry modes. This will obviously

su�ce, since, by inspection of the rules, after a Call another Call or Retry must come in at most

three steps (after Try followed by Enter), while after a Retry another Retry or Call comes in at

most two steps (after Enter). Note also that all initial and terminal states are included|�nal

failure can occur only in Call or Retry mode. The map will however be di�erently de�ned for the

two modes: for Call mode F is simply the identity, while for Retry mode F(St) will be obtained

by popping the top of stack into `registers'|more formally

h decglseq ; s; cll ; b i(F(St)) = h decglseq(b(St)); s(b(St)); cll(b(St)); b(b(St)) i;

retaining vi and setting mode to Select .

The rule map will, in addition to being homonymous on query and goal success, true, fail, cut ,

be de�ned by

F([Call1 ]) = [Call; Selection1 ]

F([Call2 ;Try;Enter1 ]) = [Call; Selection2 ]

F([Call2 ;Try;Enter2 ]) = [Call; Selection3 ]

F([Retry1 ]) = [ Selection1 ]

F([Retry2 ;Enter1 ]) = [ Selection2 ]

F([Retry2 ;Enter2 ]) = [ Selection3 ]

It is now straightforward to verify that F commutes with execution of respective rule sequences,

proving

Proposition 1.3. The Prolog stack model of 1.3. is correct and complete wrt that of 1.2.

Here we have decomposed the action of Select rule into four more primitive actions, which will

pave the way for separate re�nement, in the sequel, of predicate structure|as represented here by

Try, Retry modes, from that of clause structure|as represented by Call, Enter modes.
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2 Predicate Structure

In this section we analyse the way the disjunctive structure of predicates (the selection of clauses)

in a Prolog program is to be compiled for the WAM. We introduce switching instructions but with

an abstract indexing scheme.The structure of Prolog clauses and terms is not relevant for this

analysis and is therefore kept abstract here.

2.1 Determinacy Detection (look-ahead optimization)

Pushing (by Try rule of previous section) a choicepoint St with clause(cll(St)) = nil , or updating

(by Retry) its cll in such a way, has obviously the e�ect of creating a useless, silly choicepoint:

were it ever Retried, it would be immediately popped by deep backtracking . A simple modi�cation

would avoid pushing silly choicepoints at all:

Rules Try and Retry obtain additional look-ahead guards,

clause(cll+) 6= nil clause(cll(b)+) 6= nil

respectively, preventing them from making silly choicepoints and making choicepoints silly. The

modi�ed rules are then

if mode = Try if mode = Retry

then mode := Enter

if clause(cll+) 6= nil

then

push temp with

store state in(temp)

cll(temp) := cll+

endpush

then fetch state from(b)

cll := cll(b)

cll(b) := cll(b)+

ct := b(b)

mode := Enter

if clause(cll(b)+) = nil

then b := b(b)

Note that, with the look-ahead, a nil clause will never get to cll(b), so that the old guard

clause(cll(b)) 6= nil could be dropped, together with the deep backtrack update.

Since recognizing the (potentially) current choicepoint as becoming silly amounts to detecting

the current call to be determinate (i.e. to have no (more) alternative clauses), the look-ahead

optimization is sometimes called `determinacy detection', eg. [Lindholm,O'Keefe 87].

The reader might care to see, by simulating Example 1 on the current model, how creation of

silly choicepoints is prevented.

The proof map F , mapping now the algebra of 1.3. to that of 2.1, is rather obvious: the

rule map is identity, while the state map skips all silly choicepoints, those with clause(cll) = nil ,

recursively down the stack. More formally, we can use functions F : STATE ! STATE and

G : DECGOAL�
! DECGOAL� such that

F (St) = if St = bottom then bottom

elsif clause(cll(St)) = nil thenF (b(St))

else hG(decglseq(St)); s(St); cll(St);F (b(St)) i

G([ ]) = [ ]

G([hgoal ; cutpti j rest ]) = ifcutpt = bottomthen[hgoal ; cutpti j G(rest)]

elsifclause(cll(cutpt)) = nilthenG([hgoal ; b(cutpt)i j rest ])

else[hgoal ; cutpti j G(rest)]

setting then

h decglseq ; s; cll ; bi(F(St)) = h decglseq(St); s(St); cll(St);F (b(St)) i;
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retaining vi and mode. Straightforward veri�cation now yields

Proposition 2.1. Determinacy detection preserves correctness, i.e. the model of 2.1. is correct

and complete wrt that of 1.3.

2.2 Compilation of Predicate Structure

We are now ready for a detailed analysis of the way the disjunctive structure of Prolog predicates is

to be compiled into code for the WAM. A predicate will be represented as (a pointer to) a sequence

of dedicated instructions which will determine creation, reuse and discarding of choicepoints. Since

it is largely independent of the exact way how the structure of Prolog clauses and terms is compiled,

we may, for the time being, abstract the latter away, assuming that CODEAREA stores indexing

instructions [Warren 83, Ait-Kaci 91] interspersed with proper clauses. The resulting model may

be seen as elaborating only the disjunctive, predicate structure of a Prolog program, providing

thus a splendid example of freedom, inherent to the evolving algebra approach, of �ne-tuning the

level of abstraction to the problem at hand.

We thus have to modify slightly our signature. Stylistically, we replace cll,clause with p (for

`program pointer') and code, assuming temporarily, for technical reasons, a special `location' start .

We thus have

p; start 2 CODEAREA

code : CODEAREA ! INSTR + CLAUSE + fnilg+ fcode(start)g

where

INSTR = f try me else(N ); retry me else(N ); trust me(N );

try(N ); retry(N ); trust(N ) j N 2 CODEAREA g

The INSTR universe will be tacitly enlarged in the sequel, as we introduce moreWAM instructions.

Changing from clause; cll to code; p may be seen as largely cosmetic. What is however impor-

tant is that the operation of our old algebras in Try, Retry modes will now be simulated by executing

instructions, try me else or try in case of mode = Try, retry me else; retry ; trust me; trust in case

of mode = Retry. Execution will be controlled by setting the program pointer p. The modes may

be entirely dispensed with, using p = start; code(p) 2 CLAUSE as replacements for Call, Enter

modes, respectively.

The backtracking updates will hence reset the program pointer, instead of the mode:

backtrack � if b = bottom

then stop := �1

else p := p(b)

Of procdef (G;Db) we shall now assume to return a pointer either to a single clause or to a program

section looking like

N1 : try me else(N2 ) or N1 : try(C1)
...

...

N2 : retry me else(N3 ) N2 : retry(C2)
...

...

Nn : trust me Nn : trust(Cn)
...

18



for n � 2; code(Ci ) 2 CLAUSE , so that every instruction from the �rst column is immediately

followed either by a clause proper, or by a nested chain6 of the same form, while a try or retry

instruction is always immediately followed by a retry or trust. We thus allow for switching|see

next section, and [Warren 83, Ait-Kaci 91]| but do not assume any speci�c indexing method. A

preferred method may be thought of as being abstractly encoded by the function procdef .

More precisely, our assumption may be expressed by using an auxiliary function chain :

CODEAREA! CODEAREA� such that

chain(Ptr) = if ( code(Ptr ) = try me else(N )

or code(Ptr ) = retry me else(N ) )

then 
atten([ chain(Ptr+); chain(N ) ])

elsif code(Ptr ) = trust me

then chain(Ptr+)

elsif ( code(Ptr ) = try(C ) or code(Ptr ) = retry(C ) )

then 
atten([ chain(C); chain(Ptr+) ])

elsif code(Ptr ) = trust(C )

then chain(C)

else [Ptr ]

Then our assumption may be exactly stated as

Compiler Assumption 1. The list chain(procdef (G;Db)) contains pointers to (code for) all

candidate clauses for G in Db, in the right ordering.

The notion of `code for' a clause means, for the time being, just the clause itself. The notions

of chain and of `code for' a clause will get re�ned in the sequel, leaving though the formulation of

Compiler Assumption 1 valid, under a new interpretation.

Now the rules. Goal and query success, cut, true, fail are same as before, if mode = Call

is replaced in guards by p = start. The Call and Enter rules will also be of same form, if we

additionally rewrite mode := Call as p := start, and mode = Enter as code(p) 2 CLAUSE7.

The interesting changes are to Try and Retry rules. It is now the task of the compiler to emit

code which will avoid creating silly choicepoints, making the look-ahead guards of the previous

section super
uous.
if code(p) = try me else(N ) j try(C )

then push temp with

store state in(temp)

p(temp) := N j p(temp) := p+

endpush

p := p+ j p := C

where j is the obvious notation for a pair of similar rules (with at most one alternative in the

condition). It is now the task of the compiler to emit code which will not make existing choicepoints

silly, replacing a retry instruction by the corresponding trust version.

if code(p) = retry me else(N ) j retry(C )

then fetch state from(b)

restore cutpoint

p(b) := N j p(b) := p+

p := p+ j p := C

if code(p) = trust me j trust(C )

then fetch state from(b)

restore cutpoint

b := b(b)

p := p+ j p := C

6If the reader doesn't know the WAM, the next section might provide some idea of how nested chains can arise.
7The rules are spelled out in full in Appendix 2.
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The proof of equivalence to the model of previous section would consist in straightforward

veri�cation, given Compiler Assumption 1, had we further assumed that the chains of indexing

instructions are not nested, i.e. that procdef always points either to a 
at chain of try me else,

retry me else, trust me instructions, each of them followed immediately by a single proper clause,

or to a simple chain of try ; retry ; trust instructions.

We have however allowed for nested chains of indexing instructions as well. Note the new

update restore cutpoint . Of it we assume to restore somehow (magically) the value ct had when

the current choicepoint was created, say by fetching the value having been stored on try . In case

of 
at chains, with at most one choicepoint per clause, our old update ct := b(b) would do; with

nested chains however there might be multiple choicepoints for a single clause, and b(b) might be

just one of them. Not wanting to commit ourselves to any speci�c way of `implementing the cut ',

we shall rather rely on an abstract update, under

WAM Assumption 1. The e�ect of restore cutpoint update is restoring ct to the value it had

when the current choicepoint was created.

In case of nested chains the stack-to-stack component of the proof map should recognize mul-

tiple choicepoints and compress them to a single one (to be popped only when the outermost level

gets popped). It would be straightforward to set up, for sake of proof, an intermediate model

with additional colored indexing instructions used only for handling internal choicepoints, color-

ing the latter as well as internal, not unlike internal dynamic else used, for other purposes, by

[Lindholm,O'Keefe 87]. The map from the intermediate model to the current one should simply

forget the colors|the map to the model of the previous section could collapse colored choicepoints

onto their nearest uncolored ancestors (interpreting colored instructions always as a Retry
2
, ex-

cept at the very beginning of a call, when a try followed by a sequence of colored trys should be

interpreted as a Try, and at the very end, when a sequence of colored trusts followed by a trust

should collapse to a Retry
1
). These remarks should su�ce to establish

Proposition 2.2. The model of 2.2. is, given Compiler Assumption 1 and WAM Assumption 1,

correct and complete wrt that of 2.1.

2.3 Switching

We have so far allowed for indexing [Warren 83, Ait-Kaci 91] encapsulating it in the procdef func-

tion, which in a magical, i.e. abstract way �nds a proper chain (see Compiler Assumption 1).

Here we introduce the switching instructions [Warren 83, Ait-Kaci 91], permitting the compiler to

arrange for a concrete indexing scheme, without however comitting ourselves (i.e. our correctness

proof for the WAM) to any speci�c one.

The universe of instructions will be augmented by all instructions of form

switch on term(i;Lv ;Lc;Ll ;Ls); switch on constant(i; N; T ); switch on structure(i; N; T )

with i; N 2 N and Lv ;Lc;Ll;Ls; T 2 CODEAREA. The new instructions are `executed' by rules
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if code(p) =

switch on term(i;Lv ;Lc;Ll ;Ls)

thenif is var (xi)

then p : = Lv

elsif is const(xi)

then p : = Lc

elsif is list(xi)

then p : = Ll

elsif is struct(xi)

then p : = Ls

if code(p) = switch on constant (i ;N ;T )

then p : = hashc(T;N; xi)

if code(p) = switch on structure(i ;N ;T )

then p : = hashs (T;N; funct (xi); arity(xi))

where funct, arity, arg are the obvious term-analyzing functions, while is var, is const, is list,

is struct the obvious recognizers of type, and xi � arg(act ; i). Hash table access is modelled by

functions

hashc : CODEAREA� N � ATOM ! CODEAREA

hashs : CODEAREA� N � ATOM � ARITY ! CODEAREA

to be thought of as returning, for hashc(T;N; c) or hashs (T;N; f; a), the codepointer associated to

c or f; a, respectively, in the hash table of size N located at T .

Our Compiler Assumption 1 now pertains to a re�ned chain function

chain(Ptr) = if code(Ptr) = switch on term(i ;Lv ;Lc;Ll;Ls)

then ( if is var(xi)

then chain(Lv )

elsif is const(xi)

then chain(Lc)

elsif is list(xi)

then chain(Ll)

elsif is struct(xi)

then chain(Ls) )

elsif code(Ptr) = switch on constant(i ;N ;T )

then chain(hashc(T;N; xi))

elsif code(Ptr) = switch on structure(i ;N ;T )

then chain(hashs (T;N; funct(xi); arity(xi)))

else old chain(Ptr)

where old chain is the chain function from 2.2.

Compiler Assumption 2. If switching is used, the chain function, occurring in Compiler

Assumption 1, is to be interpreted as given above.

Given Compiler Assumption 2, inspection of rules (compared to de�nition of chain) su�ces to

establish

Switching Lemma. Switching preserves correctness and completeness.

Example 2. Given the Prolog program

p(f1(X)) :� q1(X):

p(f2(X)) :� q2(X):

p(Other) :� default(Other):
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our assumption would allow at least the following two layouts of code (corresponding to the so

called `two{level' and `one{level' indexing respectively), providing the same chain for any activator.

try me else(C3) switch on term(1; C1; C3+; C3+; L)

switch on term(1; C1; fail; fail; L) L : switch on structure(1; 2; T )

L : switch on structure(1; 2; T )

L1 : try(C1+)

C1 : try me else(C2) trust(C3+)

p(f1(X)) :� q1(X):

L2 : try(C2+)

C2 : trust me trust(C3+)

p(f2(X)) :� q2(X):

C1 : try me else(C2)

C3 : trust me p(f1(X)) :� q1(X):

p(Other) :� default(Other):

C2 : retry me else(C3)

p(f2(X)) :� q2(X):

C3 : trust me

p(Other) :� default(Other ):

with with

hashs (T; 2; fi; 1) = Ci+ hashs (T; 2; fi; 1) = Li

3 Clause Structure

In this section we analyse the compilation of clause structure into the WAM. Since the structure

of clauses is largely independent of how terms and substitutions are represented, we keep the

latter as abstract as possible, thus dealing with a simpli�ed clause compilation scheme using only

instructions for environment (de-)allocation, uni�cation and calling.

3.1 Sharing the Continuation Stack

If the sequence of decorated goals, stored in decglseq and in choicepoints, is viewed as a stack, our

model may be seen as a `stack of stacks'. These stacks will necessarily contain plenty of common,

copied structure.

Example 3. Take a Prolog program fragment

p :� r; s; t:

p :� u; v:

r :� w; x:

r:

with the initial query [ p; q ]. As the reader can easily verify, after three calls we shall have

p = procdef (w; db)

decglseq = [ h [w; x ]; : i; h [ s; t ]; : i; h [ q ]; : i ]

decglseq(b) = [ h [ r; s; t ]; : i; h [ q ]; : i ]
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where the (here irrelevant) cutpoints are all shown as dots.

Such wasteful copying of continuations can be (partially) avoided by sharing common pieces

in a new data structure, the environments. In general, whenever a clause is entered, focusing, so

to say, the attention on its body, a new environment is allocated, holding all the data necessary

to continue the computation once all goals of that body are resolved. Parts (endsegments) of the

environment chain will in general be shared between di�erent choicepoints.

We then have no need to store the entire decglseq in a register (and in choicepoints)|the

current goal will su�ce. Once the activator is resolved with a clause, the rest of goal will be stored

in a new environment as `continuation goal' cg, and current goal will get the clause body. If the

enviroments are properly stacked, once the body is exhausted, we just unload the stored goal and

pop the environment. Since environments as well as cutpoints come with clause bodies, they are

the logical place to store current cutpt .

What we need then is a universe ENV with functions

cg : ENV ! GOAL

cutpt : ENV ! STATE

ce : ENV ! ENV

where cg is the continuation goal , and ce links the enviroment stack (for continuation environment).

The role of (0�ary and unary) decglseq will now be taken over by

goal 2 GOAL goal : STATE ! GOAL

e 2 ENV e : STATE ! ENV

with goal being the goal component of the �rst decorated goal of decglseq , while its cutpoint and

continuation are contained in e.

Example 4. The sharing of continuation structure can already be seen if we redo the pre-

vious example. As the reader will soon be able to verify, we have, at the corresponding stage of

computation,

p = procdef (w; db)

goal = [w; x ]

cg(e) = [ s; t ]

goal(b) = [ r; s; t ]

cg(ce(e)) = cg(e(b)) = [ q ]

We would then have two stacks|of choicepoints and environments. For reasons to be explained

below, they are usually represented in the WAM as interleaved on a single stack. To model this

interleaving, we need a new superuniverse of both states and environments, with a stack-linking

function and a common bottom

STACK � STATE ;ENV

� : STACK ! STACK

bottom 2 STATE \ ENV

The old stack of choicepoints will always be reconstructible by following the b chain|as the stack

of environments can be extracted by following the ce chain from e. The top of STACK , denoted
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as tos(b; e), is their maximum (in sense of the ordering induced on STACK by the linking function

�).

In view of continuation sharing, we cannot instantiate the entire continuation with every uni-

fying substitution. We shall instead keep all the goals properly renamed but uninstantiated|the

current substitution will be applied to a literal only when it is to be resolved. We have then some

new abbreviations:

act � subres(fst(goal); s)

cont(l) � if l = bottom then [ ]

else append (cg(l); cont(ce(l)))

all done � goal = [ ] & cont (e) = [ ]

succeed � goal := rest(goal )

cutpt � cutpt(e)

push t with

updates(t)

endpush

� extend STATE by t with

b := t

b(t) := b

t� := tos(b; e)

updates(t)

endextend

allocate t with

updates(t)

endalloc

� extend ENV by t with

e := t

ce(t) := e

t� := tos(b; e)

updates(t)

endextend

while the updates store state in and fetch state from now a�ect goal, s, e (minding that the old

decglseq is now represented by goal and e). Under such a reading of abbreviations, all the rules

except for goal success and Enter may be retained. The latter will take the form

if goal = [ ]

&NOT (all done)

then goal := cg(e)

e := ce(e)

if code(p) 2 CLAUSE

thenif unify = nil then backtrack

else allocate temp with

cg(temp) := rest(goal)

cutpt(temp) := ct

endalloc

goal := bdy(clause)

s := s � unify

p := start

vi := vi + 1

where clause = rename(code(p); vi)

unify = unify(act ; hd(clause))

Initial state will have goal = query and e = h [ ]; bottom; bottom i. The reader may now verify the

above example.

The proof map to the model of section 2.2 will be de�ned using two auxiliary functions (if all

universes and functions of section 2 are marked with index 2)

F : STATE ! STATE2
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G : ENV � SUBST ! (GOAL� STATE2 )
�

such that

F (bottom) = bottom

G(bottom; S) = []

decglseq(F (St)) = [ h subres(goal(St); s(St )); F (cutpt(e(St ))) i j G(e(St); s(St)) ]

p(F (St)) = p(St)

b(F (St)) = b(St)

for St 6= bottom

G(E; S) = [ h subres(cg(E ); S );F (cutpt(ce(E ))) i j G(ce(E ); S ) ]

for E 6= bottom

The proof map F is then de�ned as leaving db, stop, error, vi, s as they are, reconstructing ct2
as F (ct), while decglseq

2
, p2 and b2 are de�ned as components of F (h g; p; s; e; b i). On rules F is

the obvious homonymy, and its commutativity with execution of the rules is now straightforward

to verify, yielding

Proposition 3.1. The model of 3.1. is correct and complete wrt that of 2.2.

Had we not interleaved the two stacks, of choicepoints and environments, we would sooner

or later have to face the following problem. Due to the possibility of multiple choicepoints for

the same call, and to some optimizations to be introduced later, it is quite possible for more

than one choicepoint to rely on (i.e. to point with e to) the same environment. With a more

realistic representation of stacks, where a `popped' item may get irretrievably lost (discarded or

overwritten), how are we to be sure that the environment is still there whenever a choicepoint

needs it?

If the stacks are interleaved as above, the problem cannot occur as long as the stack disci-

pline is maintained, since every choicepoint hides its environment by being above it on the stack.

Straightforward induction namely establishes

Hiding Lemma. For any choicepoint l 2 STATE , e(l) < l, in terms of the ordering induced on

STACK by �.

3.2 Compilation of Clause Structure

Although much of continuation structure is by now shared in the environment stack, the clause

bodies (and their end-segments), in the role of goal , still get wastefully copied to and from both

environments and choicepoints. We might, more e�ciently, store and copy just `positions in

bodies', since the clauses have to be somehow represented in the program. In other words, we

might represent clauses by code, i.e. compile them. We assume a function

compile : CLAUSE ! INSTR�

compile(H :� G1; : : : ; Gn) � [ allocate; unify(H );

call(G1 ); : : : ; call(Gn);

deallocate; proceed ]
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where the universe INSTR is extended to contain

f allocate; deallocate; unify(G); call(G); proceed j G 2 LIT g

This is still a very abstract notion of compilation|Prolog goals and terms are still present inside

instructions as they are, `unrepresented'. Their representation will be dealt with in section 4.

Our notion of `code for' a clause, from Compiler Assumption 1, has to evolve now. It may be

clearly stated using an auxiliary function

unload : CODEAREA ! INSTR�

unload (Ptr) � if code(Ptr ) = proceed

then [ proceed ]

else [ code(Ptr) j unload (Ptr+) ]

suggesting that sequences of instructions had been loaded into codearea. We shall then say that

Ptr 2 CODEAREA points to code for a clause Cl if

unload (Ptr) = compile(Cl):

Compiler Assumption 3. The notion of `code for' a clause, in Compiler Assumption 1, is to be

interpreted as above.

The wording of the above de�nition will survive, although the de�nition of compile will, in

section 4, evolve.

The structure of clause bodies is represented in CODEAREA by + function. We shall also

need its inverse �. What we shall not need any more is explicit presence of goals in registers,

environments and choicepoints. The cg function will now be replaced by a continuation pointer

cp, with two homonyms representing current and backtracking goal,

cp : ENV ! CODEAREA

cp 2 CODEAREA

cp : STATE ! CODEAREA

where the value of the last one should be stored and fetched by choicepoint handling updates. We

shall maintain the

Continuation Pointer Constraint. Whenever NOT (all done), code(cp�) is of form call(G).

The literal currently being resolved will then at all times be accessible via cp�. It means

that the current goal will be reconstructible as the sequence of all literals called in unload (cp�),

properly renamed, i.e. by using a function

g : CODEAREA�N ! GOAL

g(Ptr ; i) � if code(Ptr) = proceed then [ ]

elsif code(Ptr) = call(G) then [ rename(G ; i) j g(Ptr+; i) ]

else g(Ptr+; i)

Proper renaming requires some care now. In the last section bodies have been immediately renamed

as soon as they entered the computation. Since (codes for) bodies are now shared between di�erent
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calls, we have to keep the proper renaming index wherever the identity of a call is maintained, and

that is the environment. We need then a function

vi : ENV ! N

Elements of the old signature will then be reconstructible as

goal � g(cp�; vi(e))

act � subres(fst(goal); s)

goal (b) � g(cp(b)�; vi(e(b)))

cg(e) � g(cp(e); vi(ce(e)))

Under this representation, two abbreviations must change.

all done � code(p) = proceed & code(cp) = proceed

succeed � p : = p+

In the initial state with query [G1; : : : ; Gn ] we must assume, in view of Continuation Pointer

Constraint,

unload (p) = [ call(G1 ); : : : ; call(Gn); proceed ]

cp = p+

with the initial environment storing the initial value of vi and bottom cutpoint.

Transcribing further p = start to code(p) = call(G) we can retain all rules except Call, goal

success, Enter . Call rule8 must maintain the Continuation Pointer Constraint, and, in addition

to setting p and ct as before, set cp := p+. The action of goal success, Enter gets decomposed by

new instructions into more primitive steps, and these rules are replaced by

if code(p) = deallocate

then e : = ce(e)

cp : = cp(e)

succeed

if code(p) = proceed

& NOT (all done)

then p : = cp

if code(p) = allocate

then allocate temp with

cp(temp) : = cp

vi(temp) : = vi

cutpt(temp) : = ct

endalloc

succeed

if code(p) = unify(H )

thenif unify = nil

then backtrack

else s := s � unify

vi := vi + 1

succeed

where

unify = unify(act ; rename(H ; vi))

Note that global vi is used for renaming the clause head, while the de�nition of act above uses

vi(e).

Example 5. Reproducing Example 3 in our current model, we would (initially) have the following

8The rules are spelled out in full in Appendix 3.
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layout of code.

p : call(p)

call(q)

proceed

C1 : allocate

unify(p)

call(r)

call(s)

call(t)

deallocate

proceed

C2 : allocate

unify(p)

call(u)

call(v)

deallocate

proceed

C3 : allocate

unify(r)

call(w)

call(x )

deallocate

proceed

C4 : allocate

unify(r)

deallocate

proceed

As the reader can easily verify, after three calls we would have the following situation:

p = procdef (w; db)

cp = C3 + 3

cp(e) = cp(b) = C1 + 3

cp(ce(e)) = cp(e(b)) = pinit + 1

Note that, although e and b have the same value of cp, the values of cg(e) and goal (b) are di�erent,

as they should be.

The state component of the proof map F has essentially been given above. The rule map is

homonymous except for

F([ deallocate; proceed ] = [ goal success ]

F([ allocate; unify(H ) ] = [Enter ]

Maintenance of Continuation Pointer Constraint is straightforward to verify, by inspection of rules.

Commutativity of F with rule execution then proves

Proposition 3.2. The model of 3.2 is correct and complete wrt that of 3.1.

4 Term Structure

In this section we re�ne our model to allow for representation of terms and substitutions. We intro-

duce stepwise the heap, the push-down-list and uni�cation, put- and get-instructions and trailing,

assuming in these steps (for sake of simplicity and analysis) that all variables are permanent and

get initialized to unbound as soon as they are allocated. This allows us to introduce, in a further re-

�nement step, the �ne points of the WAM as local optimizations and related correctness preseving

devices|they are known as environment trimming, local and unsafe values, last call optimization,

Warren's variable classi�cation and on-the-
y-initialization. We conclude with a treatment of the

cut.
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4.1 Representing Terms|Compilation of Term Structure

WAM representation of terms will be modelled by a structure of `locations'

(DATAAREA; +;�; val);

where

+;� : DATAAREA ! DATAAREA

are mutually inverse functions which may be viewed as `organizing the locations', while their

`contents' are accessible via

val : DATAAREA ! PO +MEMORY

where PO (for Prolog Objects) is a universe supplied with functions

type : PO ! fRef ;Const ;List ; Struct;Functg

ref : PO ! ATOM + DATAAREA+ ATOM�ARITY

where ARITY = f0; : : : ;maxarityg and MEMORY is a universe containing DATAAREA, to be

elaborated and used below. Its role in the codomain of val is to enable storage of pure pointers in

DATAAREA.

We shall abbreviate type(val (l)); ref (val(l)) as type(l); ref (l) respectively, for l 2 DATAAREA.

Assignment of values, (very much) distinct >from assignment of pointers, will be abbreviated as

l1  l2 � val(l1 ) : = val(l2 ):

Further abbreviations that will be used often are

l hT;R i � type(l) : = T

ref (l) : = R

unbound(l) � ( type(l) = Ref & ref (l) = l)

mk ref (l) � hRef ; l i

mk unbound (l) � l mk ref (l):

We shall freely use the (partial) arithmetics and ordering induced on DATAAREA by the successor

function + ; they are partial since we do not assume of DATAAREA to be Archimedean|cf.

discussion in Section 4.2. We shall further assume (partial) functions

deref : DATAAREA ! DATAAREA

term : DATAAREA ! TERM

such that deref (l) follows the reference chain from l (composing possible variable{to{variable

bindings coming from di�erent substitutions), while term(l) reconstructs the term represented at

`location' l. More precisely, we assume

deref (l) =
n
deref (ref (l)) if type(l) = Ref & NOT (unbound(l))

l otherwise

term(l) =

8>>>>>>><
>>>>>>>:

mk var(l) if unbound(l)

term(deref (l)) if type(l) = Ref & NOT (unbound(l))

ref (l) if type(l) = Const

[ term(ref (l)) j term(ref (l)+) ] if type(l) = List

f(a1; : : : ; an) if

8<
:
type(l) = Struct

ref (ref (l)) = hf ; ni

term(ref (l) + i) = ai
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Ofmk var we assume to associate a unique Prolog variable to an arbitrary location inDATAAREA.

Example 6. The term s(Y2; [ c j Y1 ])) would for instance be represented by a location l such that

l = h Struct ; l1 i l1 = hFunct ; hs; 2 i i l1+ = hRef ; l1+ i

l1 ++ = hList ; l2 i l2 = hConst ; c; i l2+ = hRef ; l2+ i

The reader may draw a picture and verify term(l). It might be instructive to forget for a moment

about special representation of constants and lists, and redo the example, viewing constants and

lists as 0�ary and binary structures, respectively.

Remark. The condition term(l) 2 TERM , to be used often below, implies the following proper-

ties.
if type(l) = Const then ref (l) 2 ATOM

if type(l) 2 fRef ;List ; Structg then ref (l) 2 DATAAREA

term(l) 2 TERM

if type(l) = List then term(ref (l)+) 2 TERM

if type(l) = Struct then type(ref (l)) = Funct

ref (ref (l)) = hf; ni

term(ref (l) + i) 2 TERM

where, in the last condition, hf; ni 2 ATOM � ARITY ; i = 1; : : : ; n.

4.1.1 The Heap, the Push-Down List and Uni�cation

Prolog structures will be represented on the HEAP , a subalgebra of DATAAREA

(HEAP ; h; boh ; +;�; val)

to be used as a stack, with h; boh 2 HEAP representing top and bottom, str 2 HEAP the subterm

(or structure) pointer to be used for navigating through substructures. The active part of the

HEAP will be abbreviated as heap � fl 2 HEAP j boh � l < hg (its �niteness follows from boh

being the initial value of h), and locations l 2 heap such that type(l) = Ref will be referred to as

heap variables.

Goal arguments will be represented in another subdomain AREGS of DATAAREA, disjoint

from the HEAP , on which we shall never use +;�; we assume just a function x : N ! AREGS ,

xi � x(i).

For uni�cation we shall use a dedicated stack, the pushdown list , represented by an algebra

(PDL;DATAAREA; pdl; nil ; +;�; ref 0)

which may but need not be seen as embedded in DATAAREA, with left � ref 0(pdl); right �

ref 0(pdl�).

In the uni�cation algorithm below we shall use an abstract update bind(l1 ; l2 ), of which we

assume

WAM Assumption 2. For any l; l1; l2 2 DATAAREA such that

� unbound(l1 )

� the variable mk var(l1) does not occur in term(l2 ),
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if term; term 0 are the values of term(l) before and after the execution of bind(l1 ; l2) respectively,

and s is the substitution associating term(l2) to mk var(l1), then term0 = subres(term; s).

The mathematical (nondeterministic) uni�cation algorithm [Apt 90, Lloyd 84] should fail on

attempt to bind a variable to a term in which it occurs|uni�cation is then said to be STO (subject

to occur-check). Had we chosen to model such uni�cation with occur-check , we would simply

require of bind(l1 ; l2 ) to trigger backtracking whenever the second condition of WAM Assumption

2 is violated, i.e. when mk var (l1) occurs in term(l2).

We choose however to allow for the usual practice of Prolog implementations, which, for prag-

matic reasons, generally skip the occur check, and to adhere to the draft standard proposal

[ISO WG17 93], which refrains from specifying the behaviour of systems upon STO uni�cation

by considering it as `implementation dependent'. Hence we make no assumption whatsoever on

STO binding. This decision is necessarily re
ected in Uni�cation Lemma and Pure Prolog Theorem

below, which must refrain from stating anything for this case.

Uni�cation will be triggered by setting a special 0�ary function what to do to Unify , given

that the terms to be uni�ed have already been pushed to PDL. We then have what to do 2

fRun ;Unify g, and the following Uni�cation Rule, using dl, dr as abbreviations for deref (left);
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deref (right) respectively:

if OK & what to do = Unify

thenif pdl = nil

then what to do : = Run

elsif unbound(dl )

then bind(dl ; dr)

pdl : = pdl � �

elsif unbound(dr )

then bind(dr ; dl)

pdl : = pdl � �

elsif type(dl ) 6= type(dr )

then backtrack

what to do : = Run

elsif type(dl ) = Const

thenif ref (dl) = ref (dr)

then pdl : = pdl � �

else backtrack

what to do : = Run

elsif type(dl ) = List

then ref 0(pdl�) : = ref (dr)

ref 0(pdl) : = ref (dl)

ref 0(pdl+) := ref (dr)+

ref 0(pdl + +) := ref (dl)+

pdl : = pdl + +

elsif same funcs(dl ; dr)

then seq

pdl : = pdl ��

seq i = 1; : : : ; arity(ref (dl))

ref 0(pdl+) := ref (dr ) + i

ref 0(pdl + +) := ref (dl ) + i

pdl : = pdl ++

endseq

endseq

else backtrack

what to do : = Run

where same funcs(l1; l2) stands for ref (ref (l1 )) = ref (ref (l2 )), given that both are of type Struct .

Uni�cation will be invoked exclusively by executing unify update, where

unify(l1 ; l2) � ref 0(nil+) := l2
ref 0(nil ++) := l1
pdl : = nil ++

what to do : = Unify

The above has the 
avour of assembly code for calling a (recursive) subroutine, pushing the argu-

ments to a stack, with setting what to do to Unify playing the role of `jump to subroutine', and

resetting it to Run that of `return from subroutine'. Of other rules in the sequel, `running the

main program', we shall tacitly assume to contain the guard OK & what to do = Run .

In view of WAM Assumption 2, it is straightforward to recognize the above as a deterministic

variant of Herbrand's algorithm [Apt 90, Ait-Kaci 91]|thus
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Uni�cation Lemma. If term(l1 ); term(l2) 2 TERM , then the e�ect of executing unify(l1 ; l2 ),

for any l 2 DATAAREA such that term(l) 2 TERM , is as follows:

� if s is the most general uni�er of term(l1 ); term(l2), the new value of term(l), when what to do

is set to Run again, will be the result of applying s to its old value;

� if the abstract uni�cation algorithm fails without invoking the occur-check, backtrack update

will be executed.

Had we assumed of bind to involve the occur-check, we could drop the non-STO limitations

from our lemma. If the reader prefers a di�erent uni�cation algorithm, and hence �nds our

description to be overspeci�c, he is welcome to consider the Uni�cation Lemma as an additional

WAM Assumption, assuming further that the unify update binds variables by invoking the abstract

bind update|all results (and proofs) below will remain valid.

4.1.2 Putting

Here we develop (almost) WAM code for constructing body goals. We shall use

(CODEAREA; p; bottom; +;�; code);

with MEMORY � DATAAREA+ CODEAREA. The universe INSTR of instructions is assumed

to contain all instructions of form

put value(yn ; xj ); put constant(c; xj ); put list(xj );

put structure(f ; a; xi); unify value(xn ); unify value(yn );

unify constant(c); get value(yn ; xj ); get constant(c; xj );

get list(xj ); get structure(f ; a; xj ); unify variable(xn )

with n; j; i 2 N , c; f 2 ATOM , a 2 ARITY , yn 2 DATAAREA, and will be tacitly extended with

any further instructions occurring below.

To de�ne the sequence of putting instructions corresponding to a body goal, we rely on the

notion of term normal form of �rst order logic, which comes in two variants, corresponding to

analysis and synthesis of terms.

nf (Xi=Yn ) = [Xi=Yn ]

nf (Xi=c) = [Xi=c ]

nf (Yi=Yn ) = nf (c=c) = [ ]

nfs (Xi=[ s1 j s2 ]) = 
atten( [ nfs(Z1 =s1 ); nfs(Z2 =s2 );Xi=[Z1 j Z2 ) ] )

nfs(Xi= f (s1 ; : : : ; sm)) = 
atten( [ nfs(Z1 =s1 ); : : : ; nfs(Zm =sm);

Xi=f(Z1; : : : ; Zm) ] )

nfa(Xi=[ s1 j s2 ]) = 
atten( [Xi=[Z1 j Z2 ]; nfa(Z1 =s1 ); nfa(Z2 =s2 ) ] )

nfa(Xi= f (s1 ; : : : ; sm)) = 
atten( [ Xi=f(Z1; : : : ; Zm);

nfa (Z1 =s1 ); : : : ; nfa(Zm =sm) ] )

where Zi is a fresh X{variable if si is a list or a structure, si otherwise.

By the term normal form theorem of �rst order logic the equation X = t is equivalent to the

set of equations nf (X = t) representing its normal form, which is computationally re
ected by the

(Prolog) e�ect of executing all members of nf (X = t) being the same as that of executing X = t,

both in case of analysis and of synthesis.
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Example 7. For instance, we might have

nfs (X2 =s(Y2 ; [ c j Y1 ]) = 
atten([ [ ]; nfs(X3 =[ c j Y1 ]);X2=s(Y2 ;X3 ) ])

= [X3=[ c j Y1 ]; X2=s(Y2; X3) ]

nfa(X2 =s(Y2 ; [ c j Y1 ]) = 
atten([X2=s(Y2; X3); [ ]; nfa(X3 =[ c j Y1 ]) ])

= [X2=s(Y2; X3); X3=[ c j Y1 ] ]

The put instr of a normalized equation will be according to the following table, where j stands

for an arbitrary `top level' index (corresponding to input Xi = t for term normalization), k for a

`non top level' index (corresponding to an auxiliary variable introduced by normalization itself),

and i for any index whatsoever:

Xj = Yn ! [ put value(yn ; xj ) ]

Xj = c ! [ put constant(c; xj ) ]

Xi = [Z1 j Z2 ] ! [ put list(xi); unify(z1 ); unify(z2 ) ]

Xi = f(Z1; : : : ; Za) ! [ put structure(f ; a; xi);

unify(z1 ); : : : ; unify(za) ]

with yi 2 DATAAREA; xi 2 AREGS , and

unify(zi ) =

8<
:
unify value(yn ) if Zi = Yn
unify value(xk ) if Zi = Xk

unify constant(c) if Zi = c

Note that, by de�nition of nfs , equations of form Xk = Yn or Xk = c can never occur there. For

correspondence between Prolog variables X;Y; Z and x; y; z 2 DATAAREA see Putting Lemma

below.

The function put code is de�ned by 
attening the result of mapping put instr along nfs(Xi= t).

It is auxiliary to put seq , specifying how a body goal is to be compiled:

put seq(g(s1; : : : ; sm)) = 
atten( [ put code(X1=s1); : : : ; put code(Xm=sm) ] )

with `top level' j = 1; : : : ;m. The reader knowledgeable about the WAM will notice that this is

not quite the WAM code, but wait till section 4.3.

Example 8. A body goal of form p(Y1; s(Y2; [ c j Y1 ])) would for instance generate the following

code:

put seq(p(Y1; s(Y2; [ c j Y1 ]))) = [ put value(y1 ; x1 ); put list(x3 ); unify constant(c);

unify value(y1 ); put structure(s; 2 ; x2 ); unify value(y2 );

unify value(x3 ) ]

Putting code will be `executed' by the following rules (ignoring, for now, the value of mode,
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but see the next subsection).

if code(p) = put value(l ; xj )

then xj  l

succeed

if code(p) = unify value(l)

& mode = Write

then h l

h : = h+

succeed

if code(p) = put constant(c; xj )

then xj  hConst; c i

succeed

if code(p) = unify constant(c)

& mode = Write

then h hConst; c i

h : = h+

succeed

if code(p) = put list(xi)

then h hList ; h+ i

xi  hList ; h+ i

h : = h+

mode : = Write

succeed

if code(p) = put structure(f ; a; xi)

then h h Struct ; h+ i

h+ hFunct ; hf ; ai i

xi  h Struct ; h+ i

h : = h++

mode : =Write

succeed

Then we have

Putting Lemma. If all variables occurring in Prolog literal g(t1; : : : ; tm) are among fY1; : : : ; Ylg,

and if, for yn 2 DATAAREA with term(yn ) 2 TERM ; s the substitution associating every Yn
with term(yn); n = 1 ; : : : ; l , and Xi fresh pairwise distinct variables, i = 1; : : : ;m,

then the e�ect of executing (setting p to a value where unload yields) put seq(g(t1; : : : ; tm)) is

that

term(xi) gets value of subres(ti; s), i = 1; : : : ;m.

Proof by induction over cumulative size of terms. Note that substructure representing Xk vari-

ables, generated by nfs, always get `instantiated', i.e. term(xk ) gets a value in TERM , by a put ,

before being `used' by a unify . Uninstantiated variables inside lists and structures get represented

on the heap. In case of unbound Yn, associating it to mk var(yn) amounts to renaming.

The reader might verify the e�ect of executing the code of Example 8.

4.1.3 Getting

The compilation of clause head, compile time uni�cation, will again be speci�ed by an abstract

function get seq , associating a sequence of instructions to a Prolog literal, relying on term normal

forms. The get instr of a normalized equation is de�ned by a table similar to that for put instr ,

under the same conventions.

Xj = Yn ! [ get value(yn ; xj ) ]

Xj = c ! [ get constant(c; xj ) ]

Xi = [Z1 j Z2 ] ! [ get list(xi); unify(z1 ); unify(z2 ) ]

Xi = f(Z1; : : : ; Za) ! [ get structure(f ; a; xi);

unify(z1 ); : : : ; unify(za) ]
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where now

unify(zi) =

8<
:
unify value(yn ) if Zi = Yn
unify variable(xk ) if Zi = Xk

unify constant(c) if Zi = c

By de�nition of nfa , equations of form Xk = Yn or Xk = c can never occur there.

The function get code is de�ned by 
attening the result of mapping get instr along nfa(Xi= t).

It is auxiliary to get seq , specifying how a clause head is to be compiled:

get seq(g(s1; : : : ; sm)) = 
atten( [ get code(X1=s1); : : : ; get code(Xm=sm) ] )

with `top level' j = 1; : : : ;m.

Example 9. A clause head of form p(Y1; s(Y2; [ c j Y1 ])) might generate the following code.

get seq(p(Y1; s(Y2; [ c j Y1 ]))) = [ get value(y1 ; x1 ); get structure(s; 2 ; x2); unify value(y2 );

unify variable(x3 ); get list(x3 ); unify constant(c);

unify value(y1 ) ]

The unify instructions, corresponding to arguments of structures and lists, will now have two

roles to play, depending on whether a structure or a list in clause head has to be constructed on the

heap (when uni�ed with an unbound variable) or just needs to be matched with an existing struc-

ture. The roles will be distinguished by a 0{ary function mode, taking values in fRead, Writeg.

Note that, when used for putting, the unify instructions needed to ful�ll only the �rst role, and

hence only the Write value of mode was present.

The getting code sequence will be then executed by the following (additional) rules.

if code(p) = get value(l ; xj )

then unify(l ; xj )

succeed

if code(p) = unify value(l)

&mode = Read

then unify(l ; str)

str : = str+

succeed

if code(p) = unify variable(l)

&mode = Read

then l  str

str : = str+

succeed

if code(p) = unify variable(l)

&mode =Write

then mk heap var(l)

succeed

if code(p) = get constant(c; xi )

thenif type(deref (xi )) = Ref

then deref (xi) hConst; c i

trail(deref (xi))

succeed

elsif deref (xi) = hConst; c i

then succeed

else backtrack

if code(p) = unify constant(c)

&mode = Read

thenif type(deref (str)) = Ref

then deref (str) hConst; c i

trail(deref (str))

str : = str+

succeed

elsif deref (str) = hConst; c i

then str : = str+

succeed

else backtrack

36



if code(p) = get list(xi)

thenif type(deref (xi )) = Ref

then deref (xi) hList; h+ i

trail(deref (xi ))

h hList ; h+ i

h : = h+

mode : = Write

succeed

elsif type(deref (xi )) = List

then str  ref (deref (xi ))

mode : = Read

succeed

else backtrack

if code(p) = get structure(f ; a; xi)

thenif type(deref (xi )) = Ref

then deref (xi) hStruct; h+ i

trail(deref (xi ))

h h Struct ; h+ i

h+ hFunct ; hf ; a; i i

h : = h+ +

mode : = Write

succeed

elsif type(deref (xi )) = Struct

& ref (ref (deref (xi ))) = hf ; ai

then str : = ref (deref (xi ))+

mode : = Read

succeed

else backtrack

where

mk heap var(l) � mk unbound (h)

l  mk ref (h)

h : = h+

:

Note that unify variable in Write mode has, at present, to allocate a fresh heap variable to be

subsequently bound by a get list or get structure instruction (in 4.3.1. it will assume another role

as well). Then we have

Getting Lemma.If all variables occurring in Prolog literal g(t1; : : : ; tm) are among fY1; : : : ; Ylg,

and if further yn 2 DATAAREA with unbound (yn); n = 1; : : : ; l; Xi fresh pairwise distinct

variables with xi 2 DATAAREA and term(xi) 2 TERM , 1 � i � m, and

a) s is the unifying substitution of ti and term(xi), 1 � i � m, or

b) such uni�cation fails without invoking the occur-check,

then the e�ect of executing (setting program pointer p to) load(get seq(g(t1; : : : ; tm))) for any

l 2 DATAAREA with term(l) = t 2 TERM (before execution), is respectively

a) term(l) gets the value of subres(t; s) (up to renaming of Y 's), or

b) backtracking.

Proof by induction over cumulative size of terms, relying on Uni�cation Lemma. Note that

substructure descriptors Xk, generated by nfa , always get represented on the heap (and term(xk )

gets a value in TERM ) by unify variable, before being `used' by get structure or get list .

The reader might verify the e�ect of executing the code of Example 9.

Since the heap will, in the sequel, turn out to be the most persistent of all data areas (subdo-

mains of DATAAREA), we shall wish to uphold the following constraint:

Heap Variables Constraint. No heap variable points outside the heap, i.e. for any l 2 heap, if

type(l) = Ref , then ref (l) 2 heap.

If we assume that the abstract bind update does not violate the constraint (in case of two

unbound variables, since structures are constructed on the heap anyway), a simple examination of

our rules su�ces to see that the only instruction which might violate it is unify value(yn ) in Write

mode, with yn a reference pointing outside the heap. If we call any such yn (i.e. occurrence of
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Yn) local , we can enforce the constraint by using a special instruction unify local value, triggering

a run-time check for locality, with

if code(p) = unify local value(l)

&mode = Write

then succeed

if local(deref (l))

then mk heap var(deref (l))

trail(deref (l))

else h deref (l)

h : = h+

where

local(l) � unbound(l)&NOT (l 2 heap)

with a rule for Read mode of the same form as that for unify value. The update trail(deref (l))

is of no import for Putting and Getting lemmas (and the Heap Variables lemma below), and thus

can be regarded as a noop here; it will become signi�cant in the next section.

The e�ect of unify local value, in terms of terms and substitutions constructed, is obviously

the same as that of unify value (up to substitution ordering), hence its usage in put code function

preserves the Putting and Getting lemmas. However, it preserves the Heap Variables Constraint

as well, hence, given

Working Assumption. The bind update preserves the Heap Variables Constraint.

we have

Heap Variables Lemma. If put code and get code functions generate unify local value instead

of unify value for all occurrences of local variables, then the execution of put seq ,get seq preserves

the Heap Variables Constraint.

Proof is straightforward, up to the problem of recognizing occurrences of potentially local variables

in Prolog terms. It will have to su�ce to say here that this will include all occurrences of variables

(within structures in body goals) for which the compiler cannot determine to be previously (in the

given clause) allocated on the heap.

Example 10. In the clause a(X) :� b(f(X)) the second occurrence of X is local.

The Heap Variables Constraint will then be preserved under

Compiler Assumption 4. The assumptions of Heap Variables Lemma are satis�ed.

The Working Assumption is temporary, since it will become a theorem when we discuss binding

more carefully, in 4.2.2. below.

4.2 Prolog with Term Representation

Time has come to connect the Prolog model of section 3 to term representing algebras. The STACK

will have to be adapted, with the most notable change being the representation of substitutions,

shared between environments and the TRAIL|a new stack used to record binding history.
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4.2.1 The Stack and the Trail

The STACK of section 3 will now take the form of a subalgebra of DATAAREA

(STACK ; tos(b; e); bos; +;�; val) b; e; ct 2 STACK ;

disjoint from HEAP and AREGS , with the old decorating functions to be de�ned using val ;+;�.

The currently active �nite part of the STACK will be abbreviated as stack � fl 2 STACK j

bos � l � tos(b; e)g (�niteness follows from bos being the initial value of tos(b; e)).

The most notable di�erence from section 3 consists in the environments holding the variables

y1; : : : ; yn, where n is recorded in the code for the last call executed, and accessible via cp� (cf.

Pure Prolog Theorem below). The information stored in the environment (`decorating functions')

will be accessible by the function val applied to �xed o�sets from e. We namely de�ne functions

ce, cp, yi, tos

ce(l) � l + 1

cp(l) � l + 2

yi � e+ 2 + i 1 � i � stack o�set (cp)

yi(l) � l + 2 + i 1 � i � stack o�set (val(cp(l)))

stack o�set(l) � n when code(l�) = call(f ; a; n)

tos(b; e) �
n
e+2+stack o�set(cp) if b � e

b otherwise

providing, so to speak, de�nitions for the abstract decorating functions of section 3|what used to

be say cp(e) is now reconstructible as val(cp(e)). 9 Current environment may then be depicted

as

� � � ce cp y1 � � � yn

with e pointing below ce � ce(e).

The variable{renaming index is not needed any more, since di�erent `instances' of `the same

variable' now correspond two locations belonging to di�erent places on the stack.

Any yi(l) for l in the ce-chain will be called a stack variable in the sequel. Environments

will be created and discarded by the environment-handling rules, i.e. by executing homonymous

instructions.

if code(p) = allocate(n)

then e : = tos(b; e)

val(ce(tos(b; e))) : = e

val(cp(tos(b; e))) : = cp

succeed

seq i = 1; : : : ; n

mk unbound (yi(tos(b; e)))

endseq

if code(p) = deallocate

then e : = val(ce(e))

cp : = val(cp(e))

succeed

Note that executing allocate, temporarily, includes initializing all new variables with unbound .

This is a simplifying hypothesis to be dropped later.

Note also that, on allocate, we don't create a new object any more|the stack is now represented

with pointers, and popped objects may be irretrievably lost, i.e. overwritten. The Hiding Lemma

of 3.1. will now become signi�cant, since its preservation will guarantee that an environment is

still there whenever a choicepoint needs it.

9Note that we have suppressed the dependence on cp in de�nitions of yi; tos.
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The cutpoint cutpt(e) of section 3 has not been represented in the environment. Wishing to

separate our concerns, we concentrate now on pure Prolog programs, i.e. those without any built-

in predicates and constructs, including the cut . Once we have proved the correctness of the `real'

WAM wrt pure Prolog, ignoring all cutpoints, we shall, in 4.3.3, reintroduce the code and the data

structures enabling correct execution of the cut, and patch up (the proof of) Pure Prolog Theorem

below.

The decorating functions of a choicepoint will likewise be reconstructible by applying val to

�xed o�sets from b, with the addition of the current goal being represented by its arguments (the

contents of argument registers), since its functor is accessible via val(cp(b))�, pictorially:

� � � xn � � � x1 e cp b p tr h

with b pointing at the top. To be completely formal, we have

h(l) � l tr(l) � l � 1 p(l) � l � 2

b(l) � l � 3 cp(l) � l � 4 e(l) � l � 5

xi(l) � l � 5� i hb � val(h(b))

Other layouts are of course possible, this is the original form of [Warren 83].

The indexing (choicepoint handling) instructions of section 2 (try me else j try, retry me else j

retry, trust me j trust) will now obtain an additional argument|the predicate arity n. Apart from

that, only the try rule changes in signi�cant way|we push not by creating but by overwriting.

if code(p) = try me else(N ; n) j try(C ; n)

then b : = new b

val(b(new b)) : = b

store state in(new b; n)

val(p(new b)) := N j val(p(new b)) := p+

p := p+ j p := C

where new b = tos(b; e) + n + 6

The reader could now easily reconstruct the present form of other indexing (and switching) rules,

and of storing and fetching updates (or look them up in Appendix 4).

4.2.2 Binding, Trailing and Unbinding

Here we take a closer look at how the variables are bound and how these bindings are recorded,

i.e. at the bind update. For the case of variable-to-variable binding, we need explicit assumptions

about `memory layout', in order to avoid the problem of `dangling pointers', as the stack and the

heap are going to grow and shrink at in general di�erent rates.

We shall extend the ordering <, de�ned in terms of + on the heap and the stack (and in terms

of x on AREGS ), assuming

WAM Assumption 3. HEAP < STACK < AREGS .

This assumption forces us to view (the active part of) DATAAREA as an ordered non-

Archimedean structure (remember that heap and stack are �nite at all times). A more realistic

Archimedean DATAAREAwould force us to consider resource limitations and garbage collection at

this level, complicating every correctness statement with a quali�cation `given su�cient resources'.

We prefer to separate our concerns, and leave a treatment of resource limitations to a (possible)

re�nement of the present framework.

Given such an ordering, we further assume
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WAM Assumption 4. If unbound(l1 ) & unbound(l2 ), then the e�ect of bind(l1 ; l2 ) is to bind

the higher location to the lower one.

Note that WAM Assumptions 3,4 imply our Working Assumption from 4.1.3. Further, we

assume of bind to record variable bindings, to be undone in case of backtracking, on the TRAIL,

i.e. on another algebra

(TRAIL;DATAAREA; tr ; botr; +;�; ref 00)

to be used as a stack. More precisely, we assume

WAM Assumption 5. Whenever bind binds a location l, it executes the update

trail(l) � ref 00(tr) : = l

tr : = tr+

The TRAIL essentially records the substitutions, stored previously explicitly in choicepoints.

Since, whenever there is an alternative state of computation, p(b) will point to an instruction of

retry, trust family, the backtrack update must, except for passing control to p(b), reconstruct the

old substitution by undoing all bindings trailed after the current choicepoint was pushed, i.e.

backtrack � if b = bos

then stop : = �1

else p : = val(p(b))

seq l = tr�; : : : ; tr(b)

mk unbound (ref 00(l))

endseq

By shrinking stack to b and heap to hb, the variables residing above these points will become

irrelevant, and recording them on the TRAIL turns out to be spurious. An implementation could

thus optimize by executing trail(l) only under the condition l 2 heap & l < hb or l 2 stack & l < b.

This is however an optimization step without any semantical import, which we may disregard

(simplifying thus somewhat the proof of Pure Prolog Theorem below).

WAM Assumptions 4,5 would become theorems had we de�ned the bind update as

if NOT (unbound(l2 )) or l1 > l2
then l1  l2

trail(l1)

elsif l2 > l1
then l2  l1

trail(l2)

Since we do not wish to exclude other, say occur-checking, implementations, we keep the assump-

tions. They ensure the

Stack Variables Property. Every stack variable l which doesn't point to an AREG containing

a literal constant, points either to the heap or to a lower location of the stack, i.e if l 2 stack and

type(l) = Ref and type(ref (l)) 6= Const , then ref (l) 2 heap or ref (l) 2 stack & ref (l) � l .

Proof by inspection of rules|they all preserve the property, given WAM Assumptions 3,4. In

case of get value(xj ) note that xj should have been put there by an instruction executed before

the current environment was allocated.
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4.2.3 Pure Prolog Theorem

At this point we may collect our assumption about the compiler in

Compiler Assumption 5. Assume functions compile, unload like in section 3, but now

compile(H :� G1; : : : ; Gn) = 
atten( [ allocate(r); get seq(H );

call seq(G1); : : :call seq(Gn);

deallocate; proceed ] )

where call seq(g(s1; : : : ; sk)) � 
atten( [ put seq(g(s1; : : : ; sk)); call(g ; k ; r) ] ), with fY1; : : : ; Yrg

being all variables occurring in the clause.

Function procdef will now be typed by ATOM�ARITY�PROGRAM ! CODEAREA. Mind-

ing that the call instructions now have three arguments as above, it is a straightforward excercise

to rewrite the rules query success, proceed ; call of section 3 in this framework (cf. Appendix 4).

In the initial state with query G1; : : : ; Gn, where all variables occurring in the query are

fY1; : : : ; Yrg, we shall have

unload (p) = 
atten( [call seq(G1); : : :call seq(Gn); proceed ] )

while initial environment, pointed at by e, will have all yi initialized to unbound . Note that the

initial environment makes it possible to introduce a sensible notion of output substitution.

At this point we can describe a mapping F , mapping states of our current algebra to states of

section 3 Prolog model, and (sequences of) our current rules to those of section 3. In view however

of our limitation to non-STO uni�cation only (cf. discussion in 4.1.1.), we have, for the sake of

proof, to constrain the section 3 model by considering its abstract unify function as unde�ned

in case uni�cation is STO. This constraint is not meant as a modi�cation of our model|it just

expresses an attitude: we do not care what happens in that case, and we do not claim anything

about it.

Setting up a correspondence we shall presently ignore cutpoints ct, cutpt (since they are irrel-

evant for pure Prolog) and variable indexes vi , (since their role of unique renaming is obviously

taken over by o�sets on the stack and the heap; if the reader cares about full detail, he can eas-

ily reintroduce them in our framework and extend the rules to handle the indexes like in section

3|they would never be used, except for reconstruction of a full section 3 state).

Since we have an exact correspondence of instructions and rules, a (partial) map of current

instruction sequences to those of section 3.2 will simultaneously provide maps of code pointers

(elements of CODEAREA) and of rule sequences, i.e. the rule component of the proof map F .

Instructions goal and query success, allocate; deallocate; proceed and all indexing and switching

instructions will map to their homonyms. Further we have

get seq(G) ! [ unify(G) ]

call seq(G) ! [ call(G) ]

Marking all names of universes and functions of section 3 with an index 3, we have de�ned a partial

function

codepointer : CODEAREA! CODEAREA3

which may be left unde�ned inside get sequences and call sequences. The rule component of the

proof map F is thus de�ned as well.
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The state component of F will then be de�ned inductively using the partial functions

subst : TRAIL ! SUBST

choicepoint : STACK ! STATE3

env : STACK ! ENV 3

and an auxiliary function

term : DATAAREA� TRAIL! TERM

which can be de�ned as follows, taking an object of STATE or ENV to be given by its s; p; cp; e; b

or cp; e values, respectively.

term(l ; lt) yields the value term(l) would take after having unwound the trail to lt

subst(lt) associates mk var(ref 00(l)) to term(ref 00(l); lt); l < tr

choicepoint(lb) = h subst(val(tr(lb)));

codepointer (val(p(lb)));

codepointer (val(cp(lb)));

env (val(e(lb)));

choicepoint (val(b(lb))) i

env (le) = h codepointer (val(cp(le))); env (val(ce(le))) i

understanding that a section 3.2 choicepoint or environment is given by its s; p; cp; e; b or cp; ce

values, respectively, with inductive basis

choicepoint (bottom) = env (bottom) = bottom:

The 0�ary functions of section 3 are then de�ned as

s3 = subst(tr)

p3 = codepointer (p)

cp3 = codepointer (cp)

e3 = env (e)

b3 = choicepoint (b)

which establishes the state component of the proof map F. Although not required by the signature,

it will be useful to verify maintenance of

act = act3

(up to variable renaming) under execution of corresponding rule sequences, where

act = g(term(x1 ); : : : ; term(xm))

when code(cp�) = call(g ;m; r)

and act3 was de�ned in Proof of 3.2. In fact, commutativity of F with rule execution now reduces

to straightforward, though somewhat tedious, veri�cation, relying on Putting and Getting Lemmas

and (whenever stack gets popped), Heap Variables Lemmaand the Stack Variables Property. Since

F obviously preserves initial and stopping states (with stop value), we have

Proposition 4.1. The WAM version of 4.1. is, given WAM Assumptions 1{5 and Compiler As-

sumptions 1{5, correct and complete for pure Prolog programs wrt Prolog model of 3.2 constrained

to non-STO uni�cation.
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Chaining all our propositions, we obtain

Pure Prolog Theorem. The WAM version of 4.1. is, given WAM Assumptions 1{5 and Compiler

Assumptions 1{5, correct and complete for pure Prolog programs wrt Prolog trees constrained to

non-STO uni�cation.

4.2.4 Environment Trimming and the Last Call Optimization

Wishing to discard (i.e. recycle) stack space as soon as possible, we want any stack variable to

get super
uous as soon as the put seq for the goal containing its last occurrence in the clause is

executed. A compiler could then be clever with variable numbering and trim the environment

on the 
y by generating a decreasing sequence of environment sizes (in third arguments of call

instructions, cf. [Ait-Kaci 91]. According to [Warren 83], `: : : variables are arranged in their

environment in such a way that they can be discarded as soon as they are no longer needed .' (our

italics).

Let us then say, for now, that a variable, occurring before or in a body goal Gi of a clause

H :� G1; : : : ; Gn; 1 � i < n, is needed at Gi if it occurs after it as well, i.e. in some Gl; l > i.

(This de�nition is going to change in Section 3, as we optimize the design extending the

instruction set. The form of other de�nitions below, relying on that of being needed, will however

remain intact.)

Environment trimming will consist in call seq(g(t1; : : : ; tm)) ending in call(g ;m; r), where r

need not be the environment size any more|it will su�ce that all variables needed at or after

corresponding body goal occurrence g(t1; : : : ; tm) are among fY 1; : : : ; Y rg, which is our Compiler

Assumption 6.

Correctness of environment trimming (i.e. preservation of Putting Lemma across indexing

instructions, call ; allocate) would be ensured by the following property.

Argument Registers Property. If Yk is no more needed in a body goal occurrence G, then

after executing put seq(G), for any xi a�ected by that put seq, the computation of term(xi ) does

not meet yk.

In view of the Heap Variables Lemma and Stack Variables Property, examination of the rules

shows that the property could only be violated by put value(yn ; xj ), with Yn no more needed,

and ref (yn ) > e . Corresponding occurences of Yn in the clause are termed unsafe [Warren 83,

Ait-Kaci 91]. The �rst of the two conditions amounts to Yn occurring in an argument position of

a body goal in which it is no more needed.

The second condition would be excluded had Yn occurred in the clause head (yn would then be

set by the get seq to point to a previously existing object, represented below e) or in a structure

(yn would be set to point to the heap, by a unify instruction). Thus the following de�nition.

An occurence of a variable Yn in an argument position of a body goal, in which it is no more

needed, is unsafe if Yn does not previously occur in the clause head or in a structure.

Example 11. The second occurence of Y in the clause has a(X) :� generate(X;Y ); test(Y ): is

unsafe.

Since such an occurrence may nevertheless point below e, by having been previously bound,

a run-time check would be appropriate, replacing deref (yn) by a new heap variable, but only

if strictly necessary. The compile function should thus be modi�ed to emit a new instruction,
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put unsafe value(yn; xj), including such a check, instead of put value(yn ; xj ), for each unsafe oc-

currence of Yn. The new instruction is `executed' by the rule

if code(p) = put unsafe value(yn ; xj )

then succeed

if deref (yn) > e

then mk heap var (deref (yn))

trail(deref (yn ))

xj  mk ref (h)

else xj  deref (yn)

Note that deref (yn) > e condition implies that it is also unbound.

We can thus correctly assume environment trimming, reestablishing the Argument Registers

Property, given

Compiler Assumption 7. The put seq function generates put unsafe value instead of put value

for any unsafe variable occurrence.

Since no variable is needed at the last goal, however, the environment will by then be trimmed

down to continuation pointer. As far as variables are concerned, the environment could then

be deallocated earlier, before the last call. In view of continuation pointer, however, replacing

call(g ; a; 0 ); deallocate; proceed by deallocate; call(g ; a; 0 ); proceed would be wrong|the cp value

restored from the environment by deallocate would be overwritten by call . The last call should

then be replaced by a special instruction, acting just like call(g ; a; 0 ) but without touching cp. It

is usually called execute(g ; a).

if code(p) = execute(g ; a)

& is user de�ned (g; a)

thenif code(procdef (g; a; db)) = nil

then backtrack

else p : = procdef (g; a; db)

ct : = b

Note that appending proceed after execute would be quite spurious|p would never get to point to

it anyway. For the incredulous, induction over the number of nested calls (noting that the basis

means calling a fact, which does execute proceed) proves

Continuation Passing Lemma. Successful execution of deallocate; execute(g ; a) leaves p with

the value cp(e) had before execution.

Replacing call(g ; a; 0 ); deallocate; proceed with deallocate; execute(g ; a) is usually called the last

call optimization. Together with indexing, it allows to execute some determinate tail recursive

calls10 to arbitrary depth on a bounded stack. The same e�ect, achieved here as an automatic

run-time property of the WAM, is in some other contexts realized by sophisticated analysis and

transformation of source code.

We may then safely assume

Compiler Assumption 8. The compile function may perform the last call optimization, i.e.

replace the call seq for the last body goal by its execute seq , where

execute seq(g(t1; : : : ; tm)) = 
atten([ put seq(g(t1; : : : ; tm)); deallocate; execute(g ;m) ])

10A clause of form p :� : : : ; p: is tail recursive if within : : : p is not called, directly or indirectly.
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The discussion of this section may be summed up as

Trimming Lemma. Environment trimming and LCO preserve the Pure Prolog Theorem.

4.3 The WAM

In case of a fact or of a chain-rule, i.e. a void or a singleton body, no variable will ever be needed.

However, we cannot (yet) say that allocate and get seq(H) commute, or that deallocate is inverse

to allocate, which would obviate the need to have an environment at all. Before that we have to

introduce special instructions, enabling us to handle the nowhere needed, temporary , variables,

without accessing an environment.

Temporary variables and related optimizations will be introduced in 4.3.1, 4.3.2, making our

model worthy of the above title. The cut will be rediscussed in 4.3.3.

4.3.1 Temporary Variables

A variable occurring in a clause is temporary if it is not needed in any body goal. A variable which

is not temporary is permanent .

This may seem to be a weird way of saying that a temporary variable `does not occur in more

than one goal in the body, counting the head of the clause as part of the �rst goal' [Warren 83]. In

Example 11, for instance, X is temporary while Y is permanent. Note however that our de�nition

is parameterized by the notion of being needed , which we are going to optimize in 4.3.2, making the

above equivalent to Warren's full de�nition. [Ait-Kaci 91] has also attempted to derive Warren's

original de�nition by optimizing the more naive notion above, but notions of environment trimming

and unsafe variables are not adapted smoothly, what has later to be patched up by a notion of

`delayed trimming' (see the discussion in op.cit. section 5.9). We have the three de�nitions, of

temporary variables, environment trimming and unsafe variables, coupled by the notion of being

needed (and controlled by Argument Registers Property), so that optimizationpreserves correctness

in a quasi automatic way.

The very notion of a temporary variable arises by optimization, intended to allow us not to

allocate it in the environment. The Argument Registers Property tells us that permanent variables

serve as communication channels between goals in the same body, leaving to temporary variables

the role of mere descriptors of goal structure, akin to Xk's generated by term normal forms. The

compiler will thus represent them likewise with AREGS . If we, for temporary variables, replace

Yn; yn everywhere by fresh Xi; xi, all the variable handling instructions (get value, put value,

unify value, unify local value) will work �ne for them, given the Argument Registers Property, if

the xi's are properly initialized to objects on the heap or on the stack .

We shall then initialize each temporary variable on the 
y, at its �rst occurrence, taking care

that it gets the same value a permanent variable (initialized previously to unbound by allocate)

would get in its place. We thus modify the compile function so as to emit get variable(xi; xj);

unify variable(xi); put variable(xi; xj) for the �rst occurrence of a temporary variable Xi in a

head argument, structure argument, body goal argument, respectively, which is our Compiler

Assumption 9. Since temporary variables need (and should) not be trailed, new instructions will

be `executed' by the rules

if code(p) = get variable(l ; xj )

then l xj
succeed

if code(p) = put variable(xi ; xj )

then mk heap var(xi)

xj  mk ref (h)

succeed

46



Note that our old rulesfor unify variable work �ne for fresh xi as well. By inspection of rules we

get

Initialization Lemma. Instructions get variable(l ; xj ), unify variable(l), put variable(l ; xj ) are

equivalent (up to trailing) to, given l > e, initializing l to unbound and executing get value(l ; xj ),

unify local value(l), put unsafe value(l; xj) respectively.

It is usual to note that get variable(xi ; xi) and put value(xi ; xi) have the e�ect of succeed ,

permitting the compiler to be clever about numbering of temporary variables, confusing them

with proper argument registers in order to minimize data movement (`peep-hole optimization',

[Ait-Kaci 91]).

In case of a fact or a chain rule there will be no permanent variables, and allocate would

just store cp on the stack. Now we can say that allocate would commute with get seq and that

deallocate would be its inverse, permitting us not to allocate at all, satisfying

Compiler Assumption 10. A fact or a chain-rule may be compiled to, respectively,


atten( [get seq(Fact); proceed ] )


atten( [get seq(Head); pure execute sequence(Goal )] );

where pure execute sequence is like execute sequence, but without deallocate.

4.3.2 Trading Heap for Stack or What Is Needed

By our de�nitions a temporary variable, �rst occurring as an argument of a body goal, would

always occupy a fresh heap cell. Since the stack, in view of LCO and environment trimming (and

determinacy detection), may retract much more often than the heap, trading in a persistent heap

location for a volatile stack location may be considered as optimization.

A one goal variable �rst occurring as argument of a body goal may thus be better classi�ed as

permanent after all (excluding of course variables occurring in the last goal, if we are to preserve

LCO). Since our treatment of permanent variables would however make it unsafe, nothing would

be gained (and a stack location would be wasted) unless we reconsider that treatment.

A simple solution is not to make it unsafe|i.e. to let it live (be needed) a little longer by

protecting it from being trimmed. A modi�ed de�nition of being needed could adjust everything|-

variable classi�cation, notion of unsafe and environment trimming.

A variable occurring before or in a body goal Gi of a clause H :� G1; : : : ; Gn; 1 � i < n, is

needed there at Gi if it occurs after it as well, i.e. in some Gl; l > i, or if its �rst occurence in the

clause is an argument position of Gi.

With this de�nition of being needed, a one-goal variable which �rst occurs in an argument

position of a body goal (not the last one), will be needed there, hence will not be unsafe, will not

be trimmed till after the goal is called, and will be permanent. The Argument Registers Property

is preserved by de�nition, a heap cell is traded in for a stack cell, and the de�nition of a temporary

variable becomes equivalent to the classical one:

A temporary variable is a variable that has its �rst occurrence in the head or in

a structure or in the last goal, and that does not occur in more than one goal in the

body, where the head of the clause is counted as part of the �rst goal. [Warren 83]

Example 12.[Ait-Kaci 91] In the clause a :� b(X;X); c: the variableX is by the latest de�nition

permanent.
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One �nal step of optimization will bring our model to complete compliance with WAM compi-

lation of clauses: it doesn't make sense (any more) to initialize a permanent variable to unbound

at allocate, just in order to bind it to something else at its �rst occurrence. Permanent variables

can be initialized on the 
y, like temporary ones.

The allocate rule will thus lose its initialization update. The cases of a permanent variable

occurring �rst in the head or in a structure are handled correctly (we have veri�ed that already)

by the existing get variable and unify variable rules. An attentive reader will have noticed that

they bind a permanent variable without trailing it, but this has no semantical consequences (cf.

discussion in 4.2.2). The only consequence would be to our proof of Pure Prolog Theorem, where

the de�nition of subst should now take into account all permanent variables, whether trailed or

not.

A permanent variable �rst occurring in an argument position of a body goal by (the latest)

de�nition cannot be unsafe there, so we still need an instruction equivalent to put value(yn ; xj )

with unbound (yn). It is usually called put variable(yn; xj), enabling us to formulate our Compiler

Assumption 11 by extending Compiler Assumption 9 to permanent variables.

if code(p) = put variable(yn ; xj )

then mk unbound (yn)

xj  mk ref (yn)

succeed

The instruction put variable(xi ; xj ) is now reduced to the role of initializing those variables which

�rst occur in an argument position of the last goal. The above discussion may then be summed

up as

Classi�cation Lemma. Warren's classi�cation of variables and on the 
y initialization preserve

the Pure Prolog Theorem.

We have arrived at the model expressing all aspects of [Warren 83], which we then dare to call

the full WAM . For the record, we might list the �nal code for the clauses of examples 10,11,12.

a(X) :� b(f(X)): has a(X) :� a :� b(X;X); c:

generate(X;Y ); test(Y ):

get variable(x2 ; x1 ) allocate(1 ) allocate(1 )

put structure(f ; 1 ; x1) put variable(y1 ; x2 ) put variable(y1 ; x1 )

unify local value(x2) call(generate; 2 ; 1 ) put value(y1 ; x2 )

execute(b; 1 ) put unsafe value(y1; x1) call(b; 2 ; 1 )

deallocate deallocate

execute(test ; 1 ) execute(c; 0 )

4.3.3 The Cut

It would be straightforward to enable the WAM to execute the cut correctly, by imitating the

treatment of section 3. We shall, like in section 3, maintain a 0-ary ct 2 STATE , to be loaded

from b on call j execute, and restored on backtracking. We could further have a function cutpt

associating a STATE with every ENV , to be loaded from ct on allocate, executing call(!) by

resetting b to cutpt(e). It is a straightforward excercise to patch up the proof of Pure Prolog

Theorem for such an extension, extending thereby the proof of correctness and completeness to

Prolog with cut .

It would however be wasteful to allocate a cutpt in every environment, regardless of whether a

cut could be executed within the corresponding clause body at all. A usual decision [Ait-Kaci 91]
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is to allocate a cutpt only when it could be needed, i.e. when the corresponding body could contain

a cut11.

A neck cut , i.e. one which is the �rst goal of a body, does not need a cutpoint stored in the

environment|ct certainly holds the correct cutpoint (since indexing and allocate don't touch it).

If the compiler emits the appropriate instruction, a neck cut would be correctly executed by the

rule
if code(p) = neck cut

then b : = ct

succeed

A cutpoint should then be allocated in the environment only in case of a deep cut occurrence, i.e.

one which is not the �rst goal in the body. In order to preserve uniformity of data representation,

it is usual to allocate an extra permanent variable to hold the cutpoint. The compiler should

then emit a special instruction, save(yi), immediately after allocate, to store the cutpoint in the

cutpoint variable yi, and, in place of the cut , a special instruction cut(yi), which thus, by its form,

knows where the proper cutpoint is to be found.

if code(p) = save(yi)

then val(yi ) : = ct

succeed

if code(p) = cut(yi )

then b : = val(yi )

succeed

Note that a cutpoint variable is needed at every goal in or after which it occurs, even if it is the

last one|a cut occurring as the last goal of a clause precludes LCO.

Interpreting the cutpoint variable, when it exists, as cutpt(e)12, the proof of Pure Prolog

Theorem extends to pure Prolog with cut, given

Compiler Assumption 12. The compile function emits a neck cut instruction for a neck cut

in a clause body, while, for a deep cut, the instruction cut(yi) is emitted, where yi is a specially

allocated cutpoint variable. The cutpoint variable yi is permanent, needed before and at every

cut(yi). In code for any clause for which a cut variable is allocated, allocate is immediately followed

by the corresponding save(yi).

The Pure Prolog Theorem and subsequent preservation results yield

Main Theorem. The full WAM is, given WAM Assumptions 1{5 and Compiler Assumptions

1{12, correct and complete wrt Prolog trees constrained to non-STO uni�cation.

Corollary. The full WAM is, given WAM Assumptions 1{5 and Compiler Assumptions 1{11,

correct, for pure Prolog programs, wrt SLD-resolution constrained to non-STO uni�cation.

The Corollary follows immediately, given the Prolog Tree Theorem of [Boerger,Rosenzweig 93]

11In view of the metacall construct of full Prolog, i.e. possibility of a variable in place of a body goal, every such
variable could be at run time instantiated to a cut.

12When a cut variable is not allocated, cutpt(e) is not used in the model of section 3 anyway, except for a neck
cut, for which ct su�ces.
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Appendix 1. Rules for the Prolog Tree Model

if all done

then stop := 1
if goal = [ ]
then decglseq := rest(decglseq)

if is user de�ned(act)
&mode = Call

then

extendNODE by temp
1
; : : : ; tempn

with

father(tempi) := currnode

cll(tempi) := nth(procdef (act ;db); i)
cands := [temp

1
; : : : ; tempn]

endextend

mode := Select

where n = length(procdef (act ;db))

if act =!
then father := cutpt

succeed

if is user de�ned(act)
&mode = Select

thenif cands = [ ]

then backtrack

elsif unify = nil

then cands := rest(cands)

else currnode := fst(cands)
decglseq(fst(cands)) :=

subres([ hbdy(clause); fatheri
j cont ];unify)

s(fst(cands)) := s � unify
cands := rest(cands)

mode := Call

vi := vi + 1

where

clause =
rename(clause(cll(fst(cands))); vi)

unify = unify(act;hd(clause))

if act = true

then succeed

if act = fail

then backtrack

under the abbreviations

father � father(currnode) goal � fst(fst(decglseq))

cands � cands(currnode) act � fst(goal)

s � s(currnode) cutpt � snd(fst(decglseq))

decglseq � decglseq(currnode) succeed � decglseq := cont

cont � [ h rest(goal); cutpt i j tail(decglseq) ]

backtrack � if father = root

then stop := �1
else currnode := father

mode := Select

all done � decglseq = [ ]
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Appendix 2. Rules for Compiled Predicate Structure

if all done

then stop : = 1

if goal = [ ]

then decglseq := rest(decglseq)

if p = start

& is user de�ned(act)

thenif code(procdef (act;db)) = nil

then backtrack

else p := procdef (act; db)

ct := b

if act = !

then b := cutpt

succeed

if code(p) 2 CLAUSE
& is user de�ned(act)

thenif unify = nil

then backtrack

else

decglseq :=
subres( [ hbdy(clause); cti j cont ];

unify )

s := s � unify
p := start

vi := vi + 1

where

clause = rename(code(p);vi)

unify = unify(act;hd(clause))

if act = true

then succeed

if act = fail

then backtrack

Indexing and switching rules

if code(p) = try me else(N ) j try(C )

then push temp with

store state in(temp)

p(temp) := N j p(temp) := p+

endpush

p := p+ j p := C

if code(p) = retry me else(N ) j retry(C )

then fetch state from(b)

restore cutpoint

p(b) := N j p(b) := p+

p := p+ j p := C

if code(p) = switch on term(i ;Lv ;Lc;Ll ;Ls)
thenif is var(xi)

then p := Lv

elsif is const(xi))
then p := Lc

elsif is list(xi)

then p := Ll

thenif is struct(xi)

then p := Ls

if code(p) = trust me j trust(C )
then fetch state from(b)

restore cutpoint

b := b(b)
p := p+ j p := C

if code(p) = switch on constant(i ;N ;T )
then p := hashc(T;N;xi)

if code(p) = switch on structure(i ;N ;T )
then p := hashs(T;N; funct(xi);arity(xi))

under all abbreviations of Appendix 1., but for

backtrack � if b = bottom

thenstop := �1
else p := p(b)

xi � arg(act; i)

store state in(t) � decglseq(t) := decglseq

s(t) := s

fetch state from(t) � decglseq := decglseq(t)
s := s(t)
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Appendix 3. Rules for Compiled Clause Structure

if all done

then stop := 1
if code(p) = proceed

& NOT (all done)

then p := cp

if code(p) = allocate

then

allocate temp with

cp(temp) := cp

vi(temp) := vi

cutpt(temp) := ct

endalloc

succeed

if code(p) = deallocate

then e := ce(e)

cp := cp(e)
succeed

if code(p) = call(G)

& is user de�ned(G)

thenif code(procdef (act;db)) = nil

then backtrack

else p := procdef (act;db)

cp := p+
ct := b

if code(p) = unify(H )

thenif unify = nil

then backtrack

else s := s � unify
vi := vi + 1

succeed

where

unify = unify(act; rename(H ;vi))

if code(p) = call(true)

then succeed

if code(p) = call(fail)

then backtrack

if code(p) = call(!)

then b := cutpt

succeed

with indexing and switching rules >from Appendix 2, as well as all abbreviations but for

all done � code(p) = proceed

& code(cp) = proceed

act � subres(rename(G; vi(e)); s)

where code(cp�) = call(G)

store state in(t) � cp(t) := cp

s(t) := s

e(t) := e

fetch state from(t) � cp := cp(t)

s := s(t)

e := e(t)

allocate t with

updates(t)

endalloc

� extend ENV by t with

e := t

ce(t) := e

t� := tos(b;e)

updates(t)

endextend
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Appendix 4. Rules for the WAM

if all done

then stop := 1
if code(p) = proceed

&NOT (all done)

then p := cp

if code(p) = allocate(n)

then e := tos(b; e)

val(ce(tos(b;e))) := e

val(cp(tos(b;e))) := cp

succeed

if code(p) = deallocate

then e := val(ce(e))

cp := val(cp(e))
succeed

if code(p) = call(g;a; r)

& is user de�ned(g; a)

thenif code(procdef (g; a; db)) = nil

then backtrack

else p := procdef (g; a; db)

cp := p+
ct := b

if code(p) = execute(g;a)

& is user de�ned(g; a)

thenif code(procdef (g; a; db)) = nil

then backtrack

else p := procdef (g; a; db)

ct := b

Putting

if code(p) = put variable(yn; xj )

then mk unbound(yn)

xj  mk ref (yn)

succeed

if code(p) = put variable(xi; xj )

then mk heap var(xi)

xj  mk ref (h)

succeed

if code(p) = put value(l ;xj )

then xj  l

succeed

if code(p) = put constant(c;xj )
then xj  hConst; c i

succeed

if code(p) = put unsafe value(yn ; xj )

then

succeed

if deref (yn) > e

then

mk heap var(deref (yn))

trail(deref (yn))

xj  mk ref (h))

else

xj  deref (yn)

if code(p) = put list(xi)

then h hList ;h+ i
xi  hList ;h+ i
h := h+

mode :=Write

succeed

if code(p) = put structure(f ; a;xi)

then h hStruct ;h+ i
h+ hFunct ;hf ;ai i
xi  h Struct ;h+ i
h : = h ++

mode := Write

succeed
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Getting

if code(p) = get variable(l ;xj )
then l  xj

succeed

if code(p) = get value(l ;xj )

then unify(l ;xj )
succeed

if code(p) = get constant(c;xi)
thenif type(deref (xi)) = Ref

then deref (xi) hConst; c i
trail(deref (xi))
succeed

elsif type(deref (xi)) = Const

& ref (deref (xi)) = c

then succeed

else backtrack

if code(p) = get list(xi)

thenif type(deref (xi)) = Ref

then deref (xi) hList; h+ i
trail(deref (xi))

h hList ;h+ i
h := h+
mode :=Write

succeed

elsif type(deref (xi)) = List

then str : = ref (deref (xi))

mode := Read

succeed

else backtrack

if code(p) = get structure(f ;a;xi )

thenif type(deref (xi)) = Ref

then deref (xi) h Struct; h+ i
trail(deref (xi))

h hStruct ;h+ i
h+ hFunct ;hf ;a; i i
h := h++

mode :=Write

succeed

elsif type(deref (xi)) = Struct

& ref (ref (deref (xi))) = hf ;ai
then str := ref (deref (xi))+

mode := Read

succeed

else backtrack

Unifying

if code(p) = unify variable(l)

then succeed

if mode = Read

then l  str

str := str+

else mk heap var(l)

if code(p) = unify value(l)

then succeed

if mode = Read

then unify(l ;str)
str := str+

else h l

h : = h+

if code(p) = unify local value(l)

then succeed

if mode = Read

then unify(l ;str)

str := str+
elsif local(deref (l))

then mk heap var(deref (l))

trail(deref (l))
else h deref (l)

h := h+

if code(p) = unify constant(l)

if mode = Read

then ( if type(deref (str)) = Ref

then deref (str) hConst ;c i
trail(deref (str))
str := str+

succeed

elsif type(deref (str)) = Const

& ref (deref (str)) = c

then str := str+

succeed

else backtrack )

else h hConst; c i
h := h+
succeed
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Indexing and Switching

if code(p) = try me else(N ;n) j try(C ;n)
then b := new b

val(b(new b)) := b

store state in(new b; n)
val(p(new b)) := N j p+
p := p+ j C

where new b = tos(b;e) + n + 6

if code(p) = retry me else(N ;n)
j retry(C ;n)

then fetch state from(b; n)

restore cutpoint

val(p(b)) := N j p+
p := p+ j C

if code(p) = switch on term(i ;Lv ;Lc;Ll;Ls)

thenif type(deref (xi)) = Ref

then p := Lv

elsif type(deref (xi)) = Const

then p := Lc

elsif type(deref (xi)) = List

then p := Ll

elsif type(deref (xi)) = Struct

then p := Ls

if code(p) = trust me(n) j trust(C ;n)

then fetch state from(b; n)
restore cutpoint

b := val(b(b))

p := p+ j C

if code(p) = switch on constant(i ;N ;T )

then p := hashc(T;N; ref (deref (xi)))

if code(p) = switch on structure(i ;N ;T )

then p := hashs(T;N; ref (ref (deref (xi))))

where

store state in(t; n) � seq i = 1; : : : ; n

val(xi(t)) := xi

endseq

val(e(t)) := e

val(cp(t)) := cp

val(tr(t)) := tr

val(h(t)) := h

fetch state from(t; n) � seq i = 1; : : : ; n

xi := val(xi(t))

endseq

e := val(e(t))

cp := val(cp(t))

tr := val(tr(t))

h := val(h(t))

Built-in Constructs

if code(p) = call(true) j execute(true)
then p := p+ j cp

if code(p) = call(fail) j execute(fail)
then backtrack

if code(p) = save(yi)

then val(yi) := ct

succeed

if code(p) = cut(yi)

then b := val(yi)

succeed

if code(p) = neck cut

then b := ct

succeed

where

backtrack � if b = bos

then stop := �1
else p := val(p(b))

seq l = tr�; : : : ; tr(b)
mk unbound(ref 00(l))

endseq
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