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Abstract. We survey the use of Abstract State Machines in the area
of programming languages, namely to define behavioral properties of
programs at source, intermediate and machine levels in a way that is
amenable to mathematical and experimental analysis by practitioners,
like correctness and completeness of compilers, etc. We illustrate how
theorems about such properties can be integrated into a modular de-
velopment of programming languages and programs, using as example a
Java/JVM compilation correctness theorem about defining, interpreting,
compiling, and executing Java/JVM code. We show how programming
features (read: programming constructs) modularize not only the source
programs, but also the program property statements and their proofs.1

1 Introduction

The history of what became The Abstract State Machines Method for Modular
Design and Analysis of Programming Languages starts with simple small ex-
amples of Abstract State Machines (ASMs) from where I learnt the concept2—
which at the time came with various tentative definitions and under various
names: ‘dynamic structures’, ‘dynamic algebras’, ‘evolving algebras’. The exam-
ples specified the semantics of Turing and stack machines [101, Sect. 4, 6] and of
some tiny Pascal programs [100, Sect. 10, 11]. The idea to use ‘dynamic struc-
tures’ for an operational definition of the semantics of imperative programming
constructs was pursued further in Morris’ PhD thesis [131]. Although this model
covers only the core language features of Modula-2, it nevertheless is of large
size, complicated, hard to understand and not scalable, the technical reason
being that it is flat and unstructured.

During the winter of 1988/89 I tried to define a precise, execution-oriented
(‘operational’) yet abstract, ‘dynamic algebra’ model for the dynamic semantics
of the Prolog language that would cover the entire language but nevertheless be

1 This text originates from an invited lecture for the Workshop on Scalable Language
Specification at Microsoft Research Cambridge, June 25–27, 2013.

2 Listening to lectures I had invited Yuri Gurevich to deliver in the years 1986, 1987
and 1991 to the computer science PhD program in Pisa. See [57, Ch.9] or [26] for
historical details and references.



of manageable size and reflect the behavior of Prolog programs in a transparent
way, to be useful to programmers. After an initial failure the goal was achieved
in [19,20,21] by defining the notion of an ASM ground model [27,29] and an ASM-
tailored stepwise refinement [28,29] concept for modeling with ASMs, exploiting
the possibilities for abstraction that are inherent in the ASM concept (which
became essentially stable in 1995 [102]).

As I will explain in Sect. 2.1 and 2.2 stepwise ASM refinements allowed me to
separate orthogonal language features by modules of rule sets (horizontal refine-
ment) and to deal with them at different levels of detail (vertical refinement)3,
leading from the ground model (which in the case of Prolog became the ISO
standard definition of its semantics [114]) to a model of its (in the case of Prolog
the WAM [52]) implementation. This provided a transparent, modular structure
of small, simple ASM component models which are easy to reuse—not only for
the specification of models, but also for the analysis of their properties by both
mathematical proof (verification) and experimental validation (simulation and
testing). Such model structuring was supported furthermore by a classification
of ASM locations and functions into basic and derived, monitored (or input),
output, controlled, and shared ones [24,25].

The early work with ASM ground models and their ASM refinements was
influenced by my interest in Prolog and thereby focussed on logic programming
systems.4 It turned out however that the three involved concepts—ASM, ASM
ground model and ASM refinement—characterize what became known as ASM
method for the design and analysis of any software-based system [57]. In partic-
ular those concepts support the scalability of ASM models for the major pro-
gramming paradigms, providing justified-to-be-correct, reusable hierarchies of
stepwise refined, structured dynamic semantics models, leading from the source
code to a machine code view for full-fledged real-life programming languages.
This is illustrated in Sect. 2.3,2.4 for object-oriented programming languages.
The hierarchy of ASM models for Java (resp. C#) with its JVM (resp. .NET
CLR) implementation exhibits the flexibility the ASM method offers to com-
bine design and verification in a way which supports not only model reuse, but

3 ASM refinement differs from other refinement concepts in the literature by allowing
one to refine in combination both the data structures (which make up the ASM
state) and the computation steps (which are described by the ASM rules). More
precisely, to relate abstract and refined runs for stating and proving the desired run
properties, one can determine five features: a) the targeted refined data structure, b)
appropriate pairs of corresponding abstract and refined states of interest one wants
to relate, c) segments of abstract and refined computation steps leading from one
pair of corresponding states of interest to the next one, d) sets of abstract and refined
locations of interest one wants to compare, e) the equivalence properties or whatever
comparison one wants to establish, see [28,29] for details. Horizontal resp. vertical
ASM refinement includes Java’s “extends” resp. “implements”.

4 The early work on specification and analysis of logic programming systems using
ASMs, carried out in the period 1988–1994, is surveyed in the Proceedings of the
first international ASM workshop which was organized as part of the 13th World
Computer Congress, see [23].



a justifiably correct programming language product line approach, enhancing
feature-driven language composition (as proposed in [11]) by feature verification
(statement and proof of properties). In Sect. 3 we review applications of ASMs to
parallel and domain specific languages, using as example the hierarchy of mod-
els for Occam with its Transputer implementation and for other languages with
specific features for the design of distributed, real-time and massively parallel
systems (including hardware and instruction set architectures) (Sect.3.1), and
last but not least for business process modelling languages (Sect.3.2).5

2 Modular reusable ASMs for language semantics

This section describes the role of what I called vertical resp. horizontal ASM
refinements for defining structured and reusable models for sequential program-
ming languages. For the illustration we use leading logic and object-oriented
programming languages (Prolog, Java, C#) and their implementations.

2.1 Logic programming: Prolog to WAM (vertical refinements)

The (dynamic) semantics problem for programming languages consists in provid-
ing a precise description of the intended behavior (‘meaning’) of programs which
language users (programmers) and compiler developers can understand correctly
and rely upon in the sense that the description can be used as accurate specifi-
cation a) for the compiler writer of the freedom available for the implementation
and b) for the programmer of the program execution, i.e. that the compiled pro-
gram behaves in accordance with the description of its intended behavior; such
descriptions are what I call a ground model. There are numerous well-developed
approaches to mathematically define high-level source program level concepts—
e.g. operational, denotational, axiomatic—but methods for justifiably correct as-
sociations of such concepts to code resulting from their compilation and to runs
of this code on virtual or physical machines (verified compilation methods) were
in the 1990’ies rarely applied to entire real-life programming languages.

To define the Prolog ground model—for a programming language this is
an accurate model (a ‘blueprint’) which expresses the programmer’s view as
intended by the language manual or a standardization document—I used hori-
zontal ASM refinements to split the model into small components for the core
of the logic language [19,22] (with only four ASM rules for the user-defined core
of Prolog) and for various groups of so-called built-in predicates to manipulate
logic programs [20] and specific data structures [21]. After having presented this
model for the dynamic semantics of Prolog I have been challenged by Michael

5 This paper only collects the evidence for the practicality of the ASM method to
engineer software-based (in particular programming language) systems in a justifi-
ably correct and scalable way which intimately links design and analysis all the way
from requirements capture to code development. A comparison to numerous other
approaches adopted by researchers in the communities of programming languages
and formal methods is out-of-scope here and must be left to another occasion.



Hanus to use this model to show the correctness of the Warren Abstract Ma-
chine (WAM), a virtual machine with dedicated instructions to efficiently execute
compiled Prolog programs. The problem could be solved by a series of vertical
ASM refinements. In [49,50,52] a chain of 12 proven-to-be-correct refinement
steps is defined which links via intermediate ASMs the Prolog ground model
ASM (in fact its streamlined version in [51]) to an ASM for its implementation
by Warren Abstract Machine code. The guideline for defining the intermediate
ASMs were practical concerns, namely to successively introduce orthogonal de-
tails of WAM-specific data structures and optimization techniques by modular
ASM components in such a way that we could explain the rationale for War-
ren’s design ideas—an important didactical and documentation purpose—and
find mathematical (objectively checkable) proofs which show their correctness.

These proofs have been successfully checked by the KIV theorem prover6

and from that work [164,165,158] a scheme has been extracted for proving the
correctness of ASM refinements using generalized forward simulation [159].7 It is
worth remarking that to make the proof feasible for the KIV system, in addition
to the 12 refinement steps from [52] one more intermediate ASM model had to be
introduced to split two concerns the mathematical proof treats in a single step.
We happen to know the time needed for the two efforts, namely 6 person months
for defining and mathematically verifying the ASMs for the WAM resp. 12 per-
son months for the KIV specification of those ASM models and the mechanical
verification of the proofs (not counting 3 months to study the models and proofs
in [52] plus 9 months for the needed further development of the prover and the
ASM refinement theory in KIV). Gerhard Schellhorn explained to me some time
ago that today this work could be done in less (he estimated half the) time,
partly due to increased computer performance. It gives some (really ‘anecdotal’)
indication on the cost difference (measured in person months) to be expected
when passing from a traditional mathematical to a machine verification.

The Verifix project [94] of the German Research Council showed—long before
Leroy’s work [127,128,129]—that this use of ASMs for proving the correctness
of compilation schemes scales to verifying the correctness of concrete compilers
(implementations in binary) compiling into real-life machine languages [92]. A
ground model ASM for the DEC-Alpha processor family has been extracted
from the manufacturer’s handbook [81]; compiler front-ends [107] and back-
ends [182,69,70,82,83,84] have been built based on realistic intermediate lan-
guages to prove their correctness, using generic PVS theories developed in [68]
to define ASM refinement relations; in [95] ASMs have been used to describe
verifying compilers (compilers which verify the correctness of the code they gen-
erate).

6 A few refinement steps have also been verified using Isabelle [146].
7 This ASM refinement concept has been analyzed further by Schellhorn

in [160,162,163] for its use in numerous other KIV verifications of ASMs (the
most recent one is a Flash file system verification, see https://swt.informatik.uni-
augsburg.de/swt/projects/flash.html); a version tailored for the KIV verification of
the Mondex protocol [166,106,98,105] appeared in [161].



2.2 Reusing Prolog/WAM models (horizontal refinements)

Building ASM ground models scales: horizontal ASM refinements allow one to
easily extend or adapt a ground model in response to additional or changing
requirements. This was what we first learnt from a series of experiments with
the major extensions and variants of Prolog and their implementations. They
could be realized by horizontal ASM refinements (typically of only some of the
involved ASM rules, functions or predicates) in the corresponding Prolog/WAM
models to express the additional or changed features. The rest of this section
provides details on some of these either purely incremental ASM refinements or
ASM refinements which involve rule replacements (non-incremental changes).

Examples of horizontal Prolog/WAM refinements For purely incremental
(in logic called conservative) extensions we cite the following five examples:

– constraint logic programming:

• a ground model ASM for Colmerauer’s Prolog III could be obtained by
simply adding to the unifiability check of the Prolog ground model ASM
a solvability test for general constraints [54],

• for the CLP(R) language and its implementation on the Constrained
Logic Arithmetical Machine (CLAM)—a development of IBM at York-
town Heights—a hierarchy leading from a CLP(R) ground model ASM to
its proven to be correct CLAM implementation could be obtained from
the Prolog-to-WAM hierarchy by adding rules for solving constraints [53],

– logic programming with polymorphic types, developed at IBM by the Protos-
L language and its implementation on the Protos Abstract Machine (PAM):
it was sufficient to add type constraints and a solvability predicate to the
ASM Prolog/WAM models to obtain a refined hierarchy leading from a
Protos-L ground model ASM to its proven to be correct PAM implemen-
tation model [14,16,15],8

– functional logic programming: a ground model ASM for the functional logic
language Babel and its implementation on the Narrowing Machine [43] could
be obtained by simply adding to the backtracking rules of the Prolog models
rules for the reduction of functional expressions to normal form,

– object-oriented Prolog [136,135]: a ground model ASM could be obtained
by enriching the four ASM rules for the user-defined core of Prolog [22]
with dedicated rules for object creation and deletion, data encapsulation,
inheritance, messages, polymorphism and dynamic binding.

Analogous ASM refinements have been developed in [149] to adapt the Prolog
ground model ASM to logic programming languages with parallelism (Parlog,

8 In [13] this construction has even be turned into a general implementation scheme
for CLP(X) over an unspecified constraint domain X, namely by designing a generic
extension WAM(X) of the Warren Abstract Machine and a corresponding generic
compilation scheme of CLP(X) programs to WAM(X) code.



Concurrent Prolog, Guarded Horn Clauses, Pandora, see [46,47,148]) and in [5]
to the parallel execution of Prolog on distributed memory (see also [139]).

For non-incremental horizontal ASM refinements, where some Prolog ground
model ASM items are replaced by modified ones, we refer to the following vari-
ants of logic programming languages:

– declarative logic programming language Gödel: a ground model ASM could
be defined by abstracting in the Prolog ground model ASM from the deter-
ministic and sequential execution strategy of ISO Prolog [48],

– a ground model for a semi-ring based constraint system (with parallelism) [17]
could be obtained by replacing the two Call and Select Rules of [19] by a
Reduction Rule which activates a child process simultaneously for each al-
ternative of the current process.

A similar adaptation of the Prolog ground model yields a ground model ASM
for a domain-specific scheduler programming language (HERA [157, Chap. 3.3]),
which is tailored for programming scheduling algorithms for business processes
on the basis of given heuristics.

2.3 Object-oriented programming: From Java to JVM

The first application of ASMs to model object-oriented programming constructs
appeared in [96] providing a succinct operational description of typical object-
oriented features like object creation, overriding, dynamic binding and inheri-
tance in the context of data models. In [169] an ASM rule was added to define
cooperative message handling, by describing the run-time search of the most
specific cooperation contract in the inheritance hierarchy which implements a
message involving several objects on the basis of cooperation contracts. Two
projects carried out in Ann Arbor belong here: Blakley’s PhD thesis [18], where
a (still unstructured) ASM model for a subset of Smalltalk is defined, and the
work by Wallace [179], where the ASM refinement method is adopted to extend
an earlier ASM model for a subset of C to one for a subset of C++.9 Zamulin’s
proposal [180] to explicitly extend ASMs to include objects, also in combination
with a type discipline [181], came with an illustration by some examples from
the C++ Standard Template Library, but unfortunately has not been pursued
further.

In [173] we have applied the ASM method to mathematically analyze the
at the time major real-life object-oriented programming language Java together
with its virtual machine implementation (JVM). We illustrate in the rest of this
section how the (1) definition, (2) mathematical verification and (3) experimen-
tal validation of the entire language and its compilation could be obtained by

9 The method of successive ASM refinements had been adopted in Ann Arbor for the
first time in [103] to model the dynamic semantics for a subset of C, structuring
an earlier flat version which had been still in the spirit of the early unstructured
Modula-2 ASM [131] and had inspired a similar project for Cobol (started in [178],
though not continued).



combining ASM ground modeling with horizontal and vertical ASM refinements
and moreover that (4) the ASM refinement method supports a verified language
product line approach. In Sect. 2.4 we explain how the Java/JVM ground models
could be reused to yield a ground model for the ECMA standard of C# and its
.NET CLR implementation.

Definition The ground model ASM provides an accurate programmers’ under-
standing of Java defining rigorously and faithfully the intentions of the manual,
i.e. of what the programmer can expect from the programs when their compi-
lation to bytecode is executed by the JVM. An essential property of a ground
model is that its faithfulness, which relates to a domain-specific natural language
description, can be checked and justified by an inspection procedure, though not
by mathematically proof due to the fact that the intuitive description one has
to start from is not of mathematical rigour. Therefore the Java ground model
constructs (must) follow closely the descriptions and examples in the manual, to
be successfully checkable as correct.

Since an ASM however is mathematically precise, the ground model typically
disambiguates, corrects and completes the descriptions in the manual and makes
them coherent, wherever necessary.10

To cope with the complexity of the language we have structured the ground
model—a language interpreter JavaIntpr—by splitting it into orthogonal com-
ponents, namely interpreters JavaExpf

for expression evaluation and JavaStmf

for statement execution for imperative, static class, object-oriented, exception
handling and concurrency (thread) features f ∈ {I ,C ,O ,E ,T}. Using these
interpreters the JavaIntpr can be defined in steps by a sequence of horizontal
refinements:11

JavaI

JavaI JavaC

JavaI JavaC JavaO

JavaI JavaC JavaO JavaE

JavaI JavaC JavaO JavaE JavaT

where
Javaf = JavaExpf

JavaStmf
for f ∈ {I ,C ,O ,E ,T}

Moreover, each of the ASMs in the sequence is a conservative (i.e. purely
incremental) extension of the previous one, yielding compositional proof tech-
niques to verify properties of the models, as explained in more detail below.

Mathematical Verification As a characteristic example of a property of in-
terest of Java we have used the ground model ASM in [173, Ch.8] to accurately

10 In fact the ground model definitions revealed some dark corners and bugs in the
official descriptions which in the sequel have been repaired by Sun, see e.g. the list
in [173, p.4].

11 We write here M N for the parallel (not sequential) composition of M and N .



formulate and prove under which conditions Java is type safe.12 It is worth
mentioning that both formulation and proof of this property are in terms of
interpreter runs (i.e. of the ASM JavaIntpr) and that the major effort was spent
to rigorously state the precise meaning of type safety, involving in particular a
correct definition of the rules of definite assignment [172]13—which by the way
have also to guarantee that the bytecode generated by a correct Java compiler
is not rejected by the bytecode verifier, as we proved in [173, Thm.16.5.2 and
17.1.2], see also [172].

For proofs relating Java programs to bytecode generated for them, also for the
JVM a ground model ASM (a bytecode interpreter) had to be defined, wherefor
we applied the same horizontal language-driven refinement techniques as de-
scribed above for Java. This allowed us to rigorously state [173, Ch.14.1] the
conditions under which a compiler correctness theorem holds and prove the the-
orem [173, Ch.14.2], linking runs of Java code to runs of their compilation (on
what we called the trustful JVM) to establish that (or better in which sense)
two ‘corresponding’ runs ‘yield the same result’. Our correctness proof includes
the handling of Java exceptions in the JVM, a feature which considerably com-
plicates the bytecode verification, in the presence of embedded subroutines, class
and object initialization and concurrently working threads.14

Further additional vertical ASM refinements were introduced to mathemat-
ically analyze (formulate and verify) soundness and completeness of bytecode
verification for what we called the secure JVM [173, Ch.15-18]. In that machine
also loader and preparator components appear; a switching component allowed
us to separate the treatment of JVM instructions which affect only the current
frame from instructions which manipulate the frame stack (namely upon method
call and return, class initialization and exception capture). This modularization
supports the use of strong induction hypotheses in proving interpreter properties
by nested inductions on ASM runs.

Experimental Validation For testing purposes the high-level Java/JVM mod-
els have been refined to executable models in AsmGofer, an extension of TkGofer
developed by Joachim Schmid [167] to execute ASMs whose external functions
are Haskell definable, a convenient language to program the numerous recursive
static functions which appear in Java/JVM. The three AsmGofer executable ma-
chines Java-ASM, JVM-ASM and Compiler-ASM can be used in various combi-
nations with the Sun-Compiler and the Sun-JVM: comparing a Java-ASM run of
a Java source program with the Java run or with the JVM-ASM or the Sun-JVM
run of the bytecode compiled by either the Compiler-ASM or the Sun-Compiler

12 Such a theorem seems not to hold any more for the generic type system of the current
version of Java, see [99].

13 In the Isabelle verification project [118] the rules adopted for definite assignment
admittedly omit certain cases which appear in Java.

14 Note that in the machine verification project reported in [175,119] exception handling
has not been taken into account for the correctness proof, though it does appear in
the Java sublanguage considered in [118].



(see [173, Appendix A]). Mixing those machines allowed us to isolate whether
incoherences we found were bugs in our models or in Sun’s specifications and
implementations. Contrary to a widely held view we consider it as indispensable
for a practical modeling approach that besides the mathematical (verification
focussed) model analysis also model execution experiments can be performed.15

Verified language product lines It turned out that with ASM refinements
not only the models but also the proofs to verify model properties can be reused
(modified or extended) for the refined model. In [9] we have shown that the
stepwise definition of the Java/JVM models can be linked to a piecemeal formu-
lation and verification of properties of interest, yielding a sort of verified language
product line approach. The figure below (taken from op.cit.) illustrates the ver-
tical refinement levels: a grammar G defines Java programs, which are mapped
by the parser to an Abstract Syntax Tree, which is used by the Java interpreter
JavaIntpr for running the Java programs and by the compiler JavaToJvm to gen-
erate bytecode for them, which is interpreted by the JVM interpreter JvmIntpr .

Java
Program

Java
AST

parser byte
code

compiler

InterpRun

interpreter

JVMRun

JVM
interpreter

proof

The horizontal ASM refinement steps used in [173] to define these compo-
nents can be accompanied at each level also by stating and proving properties
of interest. In [9] this has been checked in detail for the compiler correctness
theorem Thm in [173].

For example consider the set ExpI of imperative Java expressions. The ASMs
describing the evaluation of ExpI expressions come as vertically refined compo-

15 The railway-related software we developed by the ASM method in a project at
Siemens [45] shows an example of an extreme though not rare case where besides
an incomplete set of rather loose informal requirements only a set of (here railway
transportation) scenarios were given to define the intended behavior of the to be
developed software. As a consequence the only thing we could do to calibrate the
ground model ASM and to check and justify it in the inspection process as ‘correct’
was to run the scenarios in the model and check with the experts that the model
executes the scenarios as requested. There was no mathematical property around
to be proved. The ground model was then compiled to C++ using the compiler
developed by J.Schmid [168].



nents for a) the grammar JavaGExpI
generating ExpI , b) the Java interpreter

JavaExpI
evaluating ExpI expressions, c) the JVM instruction set JvmInstrExpI

to which d) the compiler JavaToJvmExpI maps ExpI expressions for execution
by e) the JVM interpreter JvmExpI and last but not least f) the compiler cor-
rectness theorem ThmExpI

which is conveniently split into two parts, ThmSExpI

for the formulation of the statement and ThmPExpI
for the proof. This yields

what following [11] is called a tuple of representations for ExpI :

(JavaGExpI
, JavaExpI

, JvmInstrExpI
, JvmExpI

, JavaToJvmExpI
,ThmExpI

)

Similar components represent the ASM model concerning the set StmI of
imperative Java statements. Combining by a horizontal refinement step ExpI

with StmI yields the vertical refinement hierarchy of models (a tuple of repre-
sentations) at the imperative level and can be viewed as defined componentwise
by composing the corresponding vertical components (tuple composition ◦, we
omit the standard grammar components):16

(JavaStmI
, JvmStmI

, JavaToJvmStmI
,ThmSStmI

,ThmPStmI
)

◦(JavaExpI
, JvmExpI

, JavaToJvmExpI
,ThmSExpI

,ThmPExpI
)

=
(JavaStmI ◦ JavaExpI , JvmStmI ◦ JvmExpI ,

JavaToJvmStmI
◦ JavaToJvmExpI

,
ThmSStmI

◦ ThmSExpI
,ThmPStmI

◦ ThmPExpI
)

A purely incremental model refinement corresponds to what in logic is called
conservative theory extension so that in this case proving the refined theorem
boils down to prove the property in question for the refining features without hav-
ing to redo the proof for the base model. This has been used extensively in [173].
For example, JavaStmI adds nine groups of interpreter rules to the six interpreter
rule groups of JavaExpI (one rule group per grammar clause). The compilation
component JavaToJvmStmI

adds eight recursive equations to the equations of
JavaToJvmExpI

: six (one per grammar clause) plus eleven equations reflecting
the particular compilation of non-strict (Boolean) expressions exploited by the
bytecode verfier. ThmSStmI adds three invariants (concerning the equivalent po-
sitions and computed intermediate values of the two interpreters at the begin
resp. (normal or abrupted) end of statement execution) to the five invariants of
ThmSExpI

which are about the equivalence of the values of local Java variables
and associated JVM registers resp. about the equivalent positions and computed
intermediate values of the two interpreters at the begin/end of an expression eval-
uation (two invariants for strict and two for non-strict expressions). ThmPStmI

adds the verification of 22 new cases to the 13 cases verified by ThmPExpI , where
notably ThmPStmI

uses ThmPExpI
when invoking the induction hypothesis for

expressions occuring in the considered program statement.

16 This corresponds exactly to the componentwise feature composition in [11], where
combining features (read: increments in program functionality) is function composi-
tion [10].



The other horizontal refinement levels mentioned above can be dealt with in
a similar way, where in some cases some invariants and their proofs are refined
(when they are not completely new). See [9, 5.3.,5.4] for the details. Summariz-
ing one sees that the modular character of the ASM models corresponds to a
compositional structure of statements and proofs of run properties; within such
a structure one can locate extension or change points where more structure can
be added. Features exploit such structure variability to link modular design to
statement and proof of run invariants.

2.4 Reusing Java ground model for ECMA standard C#

As part of the Microsoft Research ROTOR project we carried out a challeng-
ing ASM reuse case study. We tried to reuse as much as possible the various
Java/JVM component ASMs and the structure of their combination described
above to provide a ground model for (the ECMA standard of) the richer and
more complex language C# and its .NET CLR implementation, adopting appro-
priate modifications or extensions only where imposed by essential differences
between the two languages. Not surprisingly the model we obtained [38] clarified
a certain number of semantically relevant issues which were not handled by the
ECMA standard (but only in the implementation) and detected a series of bugs
and gaps in the ECMA standard and in its implementation in .NET as well as
some incoherences between the two (see [76] for a detailed account). Also not
surprisingly the correctness of the definite assignment analysis could be proved
for C# [76] in a way similar to the proof developed for Java. In [171] the C#
ground model has been extended by a component for multi-threaded C# and
the .NET memory model, the latter one inspired by the ASM developed in [6] for
Java’s local consistency memory model, and has been used in [170] for a math-
ematical analysis (using Stärk’s AsmTP system, an interactive proof assistant
based on ASM logic) of various thread model properties.

As an afterthought we understood that the abstraction potential of ASMs
allows one to do still better. A common mathematical structure underlying Java
and C# can be made explicit by an ASM which is stepwise refinable to the Java
resp. C# ground model. In fact in [58] we have defined hierarchically structured
ASM components of an interpreter for a general object-oriented programming
language identifying a certain number of static and dynamic parameters that
can be refined (in fact instantiated) in two ways to obtain an interpreter for
Java resp. C#. The main (in particular semantical) differences between the two
languages appear to be localizable by groups of ASM rule sets for clusters of
language constructs. This is very closely related to the incremental semantics
approach in [67] where the semantics of a language is defined by a collection of
individual language construct descriptions.

In his PhD thesis Fruja has continued the comparative analysis between the
two languages at the implementation level, identifying analogous similarities and
differences for the JVM and the .NET CLR [77] models and for mathematical
proofs of their properties, in particular for .NET CLR exception handling [80]
(reusing parts of the Java/JVM analogue [55]) and .NET CIL type safety [78,79].



3 ASMs for parallel and domain specific languages

In a systematic attempt to test the range of applicability of the ASM method,
ASMs have been tried out also for the design and analysis of various domain-
specific languages, ranging from languages with generic support for programming
parallel, distributed and real-time systems (including hardware and instruction
set architectures) (Sect. 3.1) to languages for the specific design of hardware, of
business processes and of event-driven database control (Sect. 3.2).

3.1 Parallel and distributed systems programming

Synchronous parallelism is part of the semantics of ASMs since in one step
all rules of an ASM are executed simultaneously, a feature which is enhanced
by the availability of the forall (together with the symmetric choose) operator
introduced into the final definition of the language in [102]. This directly captures
the parallelism needed to model and analyze computer architectures. We showed
this by constructing, as part of a reverse engineering project for the massively
parallel APE100 architecture [7,8]17, first a programmer’s view ground model of
the APESE high-level programming language [35] and then its refinement to a
register-transfer level model of the control unit processor zCPU [34], a VLSI-
implemented microprocessor with pipelining and VLIW parallelism.18

The synchronous parallelism in ASMs has been exploited further for the
analysis of other pipelining techniques. See for example the series of stepwise
refined ASMs in [44] each of which deals with a standard pipelining technique19,
a technique reused in [110] for an advanced commercial RISC processor (though
with a simpler pipelining scheme) and in [177] to automatically transform register
transfer descriptions of microprocessors into Xasm-executable ASMs [1].20

In [102] a definition of distributed (in [57] called asynchronous) ASM runs
is provided which superseded earlier attempts to introduce true concurrency
into the semantics of ASMs.21 This notion was adopted in all later ASMs that

17 A rather successful dedicated machine at the time built and used by physicists in
Pisa and Rome for floating point intensive numerical simulations in Lattice Gauge
Theory.

18 This instruction set architecture modeling method has been enhanced in [65,64] to
instrument models to collect data for evaluating design alternatives.

19 The first of these refinement steps were checked in [86,174] using the KIV system
and PVS, but an omission of a hazard case in the last refinement step remained
undetected until Hinrichsen discovered it during his work on generating pipelined
systems from sequential processor specifications [108].

20 Remarkably this allowed one to generate a simulator for a processor architecture
from its netlist description or from a graphical description of its data-path, an ap-
proach which was pursued in Teich’s architecture and compiler co-generation project
at the University of Paderborn [176] where ASMs and their Xasm [1] executable ver-
sions were systematically applied to the hierarchical modeling of application specific
instruction set processors.

21 The ASM model in [104] for the parallelism of Occam, presented in Gurevich’s May
1990 lectures in Pisa, inspired the work on modelling the various forms of parallelism



deal with concurrency, including the ones mentioned above to model thread
handling in Java/C#. From the point of view of modeling programming lan-
guages two early uses of the notion are worth to be mentioned here. In [39,40]
an asynchronous ASM is defined as ground model ASM for the Parallel Virtual
Machine [85] (PVM, a general-purpose environment for programming hetero-
geneous distributed processes) at the C-interface level, with an event handling
mechanism and message-passing interface which reflect the uniform (multicast or
point-to-point) asynchronous access PVM agents (called there “daemons”) have
to daemons on other host machines.22 In [37] the semantics of truly concur-
rent non-deterministic Occam programs is defined once more, this time however
using asynchronous ASMs and proceeding by proven to be correct refinement
steps, leading from a programmer level ground model to a processor that runs
a high- and a low-priority queue of Occam processes—which we mapped in [36]
through a hierarchy of furthermore refined ASMs to an ASM at the Transputer
code level. Our guide for these Transputer instruction set architecture refine-
ment steps was the standard Occam-to-Transputer compilation scheme defined
by Inmos [112,113] which thereby was proven to be correct.23

3.2 ASM interpreters for domain specific languages

ASM models have been used for the design of rather different domain-specific
languages. The first example appeared in [157, Chap. 3.3]: the HERA language
for programming scheduling algorithms for business processes, obtained as men-
tioned above by a refinement of the Prolog ground model. In [12] ASMs were
used to describe the semantics of a language tailored to program the control for
event-driven database applications. In [41,42] we defined an asynchronous ground
model ASM for the, at the time new, IEEE standard [111] of the hardware
design language VHDL, including the characteristic signal behavior and time
model (with pulse rejection limits and the various wait and signal assignment
statements involved in the subtle issues related to postponed processes). These
ASM models were reused a) in W. Müller’s PhD thesis [137] for defining the
semantics of a pictorial extension PHDL of VHDL’93, b) by a group of Toshiba
engineers for an extension to analog VHDL and Verilog [155,156,152,154,153],
and c) for an adaptation to SystemC [133,134] and to SpecC [132]. Montages24

in logic programming languages mentioned above [148,46,47,17] and in the Chemical
Abstract Machine and the π-calculus [91].

22 In [140] modeling PVM is reused to define the semantics of grid systems.
23 A correctness proof for executing compiled Occam programs [138] on the Transputer

architecture [97] had been one of the goals of the European ProCoS project on
provably correct systems [125].

24 Montages [123,4] added to ASMs the possibility to combine graphical and textual
elements for the simultaneous specification of the static and dynamic semantics
of programming languages, exploiting the syntax-driven modularity in sequential
languages. See the complete Montages definition of the syntax, static and dynamic
semantics of Oberon in [122] and of C in [109]. The development tool Gem-Mex [3]
which allows one to create Montages has been applied in [2] to provide an executable



has been successfully applied to the design (specification and implementation) of
a driver specification language needed to solve a complex data warehouse prob-
lem at the Union Bank of Switzerland [124]. In [62] an ASM is defined for P3L, a
programming language with task and data parallelism, describing the compiler
generation of a network of processes and their runs.

An outstanding example is the ground model ASM with an AsmL-executable
refinement [71] for SDL2000, a rather expressive language to design distributed
real-time (in particular industrial telecommunication) systems. This modeling
project has been proposed to the SDL Forum in [87] (after a feasibility test
with a ground model ASM for Basic SDL-92 [90]) and then has been carried
out in [88,89,72,145]. In 2000 the international standardization body ITU-T for
telecommunications adopted the ground model as official definition of the stan-
dard [115].

ASM interpreters for BPM and web service languages The ASM method
has been applied also to languages that have been developed for ‘programming
in the large’ business processes and web services, where typically also graphical
design notations are used. A well-kown example is the UML Activity Diagram
language for which (at the time it was version 1.3 [63]) a precise dynamic seman-
tics has been defined by a ground model ASM in [60,32]. In [150] Sarstedt defined
an ASM to interpret the considerably richer version 2.0 of (a token flow view [151]
of) UML activity diagrams and implemented it by a runtime component which is
part of an integrated software development environment where it executes (and
visualizes) activity diagrams directly. Kohlmeyer [120] integrated into this work
ASM models for other UML behavioral diagrams (see [33,142,116,117,61,143])
“by adding new ASM rules and by modifying appropriate parts of the established
ASM specifications” [121, p.217], i.e. by two forms of ASM refinement. The re-
sult is a rather practical, rigorous, ground model driven development approach
for business process design.

BPMN, the recent OMG standard language[144] for business process design,
set out to improve on UML Activity Diagrams. In [56] a ground model ASM has
been developed to rationally reconstruct the core behavioral BPMN (version 2.0)
features, instead of defining only by a reference implementation the many be-
haviorally relevant issues the standard left open.25 Furthermore the ASM model
strives for reducing the great number of interdefinable BPMN concepts, leaving

semantics for Mosses’ Action Notation. In [93] Montages is characterized as a set of
parameterized ASMs.

25 Already for version 1.0 we had developed an ASM [59] where we formulated our
critical remarks and some suggestions how to provide a streamlined (read: mini-
mal), complete and disambiguated (though not a formalized) ASM description of
the essential behavioral constructs of the standard. We have sent this work to the
convenor and some committee members, but the committee decided that also for
version 2.0 ‘The execution semantics are described informally (textually), and this
is based on prior research involving the formalization of execution semantics using
mathematical formalisms.’[144, p.425]



it to ASM refinements (in particular instantiations of appropriate parameters)
to map these concepts to a minimal set of rigorously defined core constructs.26

Earlier work [73,147] has built ASM models for basic features of what became
BPEL [141], an OASIS standard executable language for programming business
process behavior using web services as actions and often used as target language
to compile BPMN diagrams into executable code.

To avoid the difficulties and idiosyncrasies of BPMN an alternative tool sup-
ported high-level business process design language has been proposed under the
name Subject-Oriented Business Process Modeling (S-BPM) [75]. To define the
truly concurrent semantics of S-BPM we have developed a language interpreter
ASM27 combining stepwise ASM refinements with a feature-based approach—
where the meaning of the involved concepts is defined construct by construct.
Currently a workflow engine based on this ASM specification and using Core-
ASM [74] is under development at the University of Linz [126].

4 Conclusion: A challenge

As mentioned above various interactive theorem provers have been used for prov-
ing properties of ASM models, in particular the correctness of ASM refinement
steps; these were mainly KIV, but also PVS, Isabelle, AsmTP. Tool chains have
been developed to support the composition of programming language features,
but without considering property verifications, see for example [130]. A challenge
we see is to support (the reuse of statements and proofs for) theorem refinements
corresponding to ASM refinement steps in such a way that it allows the prac-
titioner to integrate program design and the verification of run-time properties
in a feature-based compositional approach to programming language and more
generally software development. A first step in this direction appeared in [66]:
each of a group of programming language features (namely FeatherweightJava
with generics) is verified independently using Coq and the prover is instrumented
to generate from these proofs for each feature-based defined language variant a
correctness proof by mechanical proof composition.

Acknowledgement I wish to express my thanks to the colleagues who helped
with critical comments on preliminary versions of this paper: Sven Apel, Don
Batory, Fabian Benduhn,Giuseppe Del Castillo, Albert Fleischmann, Alexander
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26 For analogous modeling and critical analysis of the so-called Workflow Patterns—
which have influenced the definition of the BPMN standard—see [30] where four
familiar sequential resp. parallel basic patterns are identified whose ASM refinements
yield all the 43 Workflow Patterns en vogue at the time. For a detailed critical
evaluation of BPMN, Workflow Patterns and the reference implementation YAWL
proposed for them see [31].

27 The software used to transform the pdf-file for Chapter 12 and the Appendix, gen-
erated from latex sources, into a Word document and printer-control-compatible
format produced a certain number of partly annoying, partly misleading mistakes
in [75]. The interested reader can download the pdf-file for the correct text from [183].
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Informationssystemen. PhD thesis, University of Oldenburg, Germany, 1995.

13. C. Beierle. Formal design of an abstract machine for constraint logic program-
ming. In B. Pehrson and I. Simon, editors, IFIP 13th World Computer Congress,
volume I: Technology/Foundations, pages 377–382, Elsevier, Amsterdam, 1994.

14. C. Beierle and E. Börger. Correctness proof for the WAM with types. In E. Börger,
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87. U. Glässer. ASM semantics of SDL: Concepts, methods, tools. In Y. Lahav,
A. Wolisz, J. Fischer, and E. Holz, editors, Proc. 1st Workshop of the SDL Forum
Society on SDL and MSC, volume 104 (ISSN 0863-095) of Informatik-Berichte,
pages 271–280. Humboldt-Universität Berlin, 1998.
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H. Kleine Büning, G. Jäger, S. Martini, and M. M. Richter, editors, Computer
Science Logic, volume 702 of Lecture Notes in Computer Science, pages 182–215.
Springer-Verlag, 1993.

92. W. Goerigk, A. Dold, T. Gaul, G. Goos, A. Heberle, F. W. von Henke, U. Hoff-
mann, H. Langmaack, H. Pfeifer, H. Ruess, and W. Zimmermann. Compiler
correctness and implementation verification: The verifix approach. In P. Fritz-
son, editor, Int. Conf. on Compiler Construction, Proc. Poster Session of CC’96,
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