
High Level System Design and Analysis

using Abstract State Machines

Egon B�orger

Universit�a di Pisa, Dipartimento di Informatica, Corso Italia 40,

I-56125 Pisa, Italy, boerger@di.unipi.it

Abstract. We provide an introduction to a practical method for rigor-

ous system development which has been used successfully, under indus-

trial constraints, for design and analysis of complex hardware/software

systems. The method allows one to start system development with a

trustworthy high level system speci�cation and to link such a \ground

model" in a well documented and inspectable way through intermedi-

ate design steps to its implementation. The method enhances tradi-

tional operational modelling and analysis techniques by incorporating

the most general abstraction, decomposition and re�nement mechanisms

which have become available through Gurevich's Abstract State Ma-

chines. Through its versatility the ASM approach is non-monolithic and

integratable at any development level into current design and analysis

environments. We also collect experimental evidence for the ASM thesis,

a generalization of Turing's thesis.

1 Introduction

In [21] the methodological and epistemological reasons are explained why Gure-

vich's concept of Abstract State Machines (ASMs) allowed us to develop a math-

ematically well founded approach to software and hardware design and analysis

which is nevertheless practical, improving system design practice by a piece of

useful theory. Due to the progress the method and its industrial applications

have made since then, some of the predictions and hopes expressed in [21] have

become reality. It is therefore with pleasure that I accept the invitation to write

a general introduction to the approach.

The �rst section contains the de�nition of ASMs and an illustration of the

main characteristics of the method, namely the most general abstraction mecha-

nism it o�ers together with the corresponding re�nement technique for vertical

structuring of systems and the decomposition technique for horizontal structur-

ing. We de�ne the function classi�cation which the applications have led us

to introduce into ASMs as practical support for abstraction, re�nement and

(de)composition in concise high-level modelling of large systems. We show how

ASMs combine abstraction with rigour|circumventing the omnipresent \for-

mal system straitjacket"|and how their versatility permits one to integrate

0 Part of the material appearing here has been presented to the ASM Workshop held

in Magdeburg, September 21-22, 1998, as part of the Annual GI-Meeting.

them into existing development environments and to apply to them established

analysis (validation and veri�cation) techniques. Since this holds also at high

hardware or software design levels, ASMs help to avoid and to detect errors in

the early stages of development, where reasoning, veri�cation, simulation and

testing are less expensive than in the later stages. In the second section we show

that ASMs encompass in a natural way other well known approaches to system

design and collect experimental evidence for Gurevich's ASM Thesis [76] which

strengthens the Church-Turing thesis. Concluding we point to some directions

for future research and applications.

2 Characteristics of the ASM Method

Gurevich [71{74] discovered the notion of ASM in an attempt to sharpen the

Church-Turing thesis by considerations from complexity theory (bounded re-

sources) and abstract data structures. I tried out ASMs in an attempt to model

in a rigorous but transparent way the dynamic semantics of the programming

language PROLOG (see [18, 19]). This led to the ISO standard de�nition of the

entire language [22, 39, 23] and became the starting point for the de�nition of

a proven to be correct scheme for the implementation of Prolog on the Warren

Abstract Machine [40]. Through this work and its various extensions [15, 16, 41,

34, 37, 42] we realized that on the basis of the most general abstraction mecha-

nism inherent in ASMs, one can build a practical design method which can solve

the fundamental triple problem of system development, namely

{ to elaborate the informally presented requirements of the desired system

turning them into a satisfactory ground model, i.e. a functionally complete

but abstract description of suÆcient but not more than necessary rigor which

a) can be read and understood by and justi�ed to the customer as solving his

problem, b) de�nes every system feature as far as this is semantically relevant

for the work the user expects the system to achieve, c) contains only what

the logic of the problem requires for the system behavior, i.e. does not rely

upon any further design decision belonging to the system implementation,
{ to implement the ground model in a reliable manner by re�ning it step

by step, in a controlled and well documented way, through a hierarchy of

intermediate models each of which reects some major design decision(s),
{ to structure the system horizontally (from the ground model speci�cation

through the entire design process) by building it from components with

abstract but suÆciently detailed de�nitions of the behavior of each single

component and of the interaction of the components through interfaces.

This section contains the de�nition of ASMs and an illustration of this

method through modelling examples taken from the literature. (For a detailed

analysis of the ASM literature see [33] and [2].)

2.1 Abstraction Mechanism and De�nition of ASMs

It has become a common place among computer science theoreticians and prac-

titioners that most general abstraction principles are needed for coping with

the complexity of present day hardware and software systems (for an illuminat-

ing early survey see [119]). The disagreement and the problems with concrete

realizations of this maxime begin with the de�nition of abstraction.

On the one hand the available theories for composing abstract data or actions

(e.g. the sophisticated algebraic speci�cation [133] and action semantics theo-

ries [99]) are not practical for descriptions of complex dynamic real-life systems.

They make it diÆcult to follow the guidance of a given problem for adequately

choosing and formulating the data and the actions, either in combination or

independently of each other, at the abstraction level which is appropriate for

the application under study. On the other hand even the most advanced among

the currently available practical approaches su�er from serious limitations. They

tend to restrict the abstractions provided for data and operations (typically of-

fering basic manipulations of sets, sequences, mappings, etc., as for example in

the VDM approach [60]) or to impose particular forms for de�ning action ab-

stractions (like the syntactic de�nition of atomic actions in the B-Method [3]

by means of substitutions). Such restrictions typically reect design decisions

which have been made a priori for a �xed (conceptual or tool based) frame-

work for re�ning speci�cations to executable implementations. By letting such

implementation concerns creep into the fundamentals of speci�cation, a heavy

tribute is paid to the particular solution, in the underlying framework or tool

environment, of the representation problem for abstract data or actions.

Abstract States. Using ASMs one can (and is advised to) separate the high

level speci�cation concerns from concerns related to further design, without cre-

ating a gap between speci�cation and design. ASMs allow us to produce rigorous

high-level de�nitions which reect in a direct (i.e. coding free) way the applica-

tion domain knowledge and the connotations of the problem as it appears to the

application domain expert. One can tune the formulation of the data and opera-

tions in terms of the concepts (objects and actions) which appear in the problem

domain, freed from having to think about how to represent them through a pri-

ori �xed schemes for de�ning data types and actions. Technically this freedom of

abstraction|meaning freedom of listening to the subject, thinking semantically

in terms of objects and e�ects of actions and not in terms of their representations

or schemes of de�nition|is realized by the concept of machine state and of state

transforming machine instructions.

An ASM state is not an indivisible entity like the control state of a �nite

automaton, it is not a mere set (a collection of values) and also not a function

(an association of values to variables); it is an arbitrarily complex (or simple)

structure in the general sense the term is used in mathematics and has been

de�ned by Tarski [127], i.e. a collection of domains (sets, also called universes,

each of which stands for a particular type of objects) with arbitrary functions

and relations de�ned on them. What a machine \knows" about the elements

of its domains, and about the functions and predicates it uses for manipulat-

ing them, depends on what is there in the particular application for which the

machine has been de�ned. A universe can be completely abstract, meaning that

no restriction is imposed on (and therefore no knowledge is available yet about)

its elements, in particular not on their possible representation in our language

or system. If the domain elements are assumed to have certain properties or to

be in certain relations with other objects or to be subject to certain manipula-

tions, we have to formulate these by corresponding operations, predicates or by

conditions (integrity constraints) which the elements are required to satisfy.

As will become clear below, the ASM approach does not prescribe any par-

ticular notation to formulate constraints on machine states, whether verbally or

formally, in programming, algorithmic, mathematical or any other rigorous or if

necessary formal language. This has a pragmatically important e�ect on the in-

tegration potential of the approach (see section 2.5). Obviously the overall rigor

of a description depends among other things on the degree of precision which is

chosen for expressing such integrity constraints.

Before we illustrate the use of abstract machine states by four examples,

let us say a word to avoid a possible misunderstanding which may come from

the di�erent use of the term \function" in mathematics and in programming.

What we refer to is the mathematical meaning of the word function as a set

of n + 1-tuples with a uniqueness property (the functional dependence of the

n + 1-th element of a tuple from the �rst n elements, its arguments). Such a

function corresponds to an n-dimensional array of programming. In particular

nullary functions are the usual \programming variables", in the object-oriented

spirit \class variables" which do not depend on the class members, whereas a

monadic function f : A! B can be thought of as \instance variable" belonging

to the class A, to be instantiated for each class member.

Computers hosting PVM Processes. Imagine you want to analyse the

PVM [63] communication mechanism between application programs which run

concurrently on physically interconnected heterogeneous machines of various ar-

chitectures (serial, parallel, vector computers). Without going into irrelevant

representation details we can describe the role of the constituting member com-

puters by declaring them to be elements of a dynamically changing set HOST

which comes with three informations. A 0-ary function (class variable)

master : HOST

describes a designated host machine on which PVM is started and which plays

a special role for maintaining the control over the dynamically changing PVM

con�guration. Another function

arch : HOST ! ARCH

de�nes for each host machine its architecture which belongs to an abstract do-

main ARCH (de�nable as the set of possible architectures to be used with PVM

3 as listed in [63]). A third function

daemon : HOST ! DAEMON

dynamically provides each host machine with an abstract daemon process which

acts as a PVM supervisor for the local management of application programs

(which are enrolled as processes into PVM) or for the communication between

such processes (which may reside on di�erent host machines). For the initializa-

tion a 0-ary function

demiurge : DAEMON

provides a distinguished daemon who resides on the master host (expressed by

daemon(master) = demiurge) and is responsible in particular for creation and

deletion of hosts and maintenance of the corresponding communication struc-

ture. These abstract domains and functions are the basis for the ASM model of

PVM in [28, 29]. No further information is needed about what hosts, daemons,

architectures and processes \are" or how they could be \represented".

Avoiding premature object representations. Working with abstract

domains and functions allows us to avoid premature object representation deci-

sions. In a practical modelling approach these should be avoided1 because they

typically enforce dealing with mere formalism (or performance) problems which

carry no conceptual content for the problem under investigation and deviate the

attention from it. This can be illustrated by the modelling example presented

in the chapter on \Constructing a Model" in [60] \to provide some initial guid-

ance on how one can start developing formal models using VDM-SL". A call-out

mechanism has to be designed for a chemical plant alarm system where experts

with di�erent kinds of quali�cation must be called for coping with di�erent kinds

of alarm. The VDM-SL model represents experts by a record type with an ex-

pert identi�er and a quali�cation �eld. It is explained (op.cit.p.18) that \the

representation of ExpertID is important in the �nal implementation, but in this

model none of the functions need to be concerned with its �nal representation.

All that is required at this level of abstraction is for the identi�ers to be values

that can be compared for equality". As a consequence the authors propose Ex-

pertId=token as \the completed type de�nition in VDM-SL", adding that \In

VDM-SL, the special type representation called token is used to indicate that

we are not concerned with the detailed representation of values, and that we

only require a type which consists of some collection of values." All this does not

prevent the authors from having to introduce, see op.cit. page 24, yet another

condition in order \to ensure that : : : one could not erroneously have two experts

with di�erent quali�cations having the same expert identi�cation". In an ASM

model for the alarm system these complications disappear by treating experts

abstractly as elements of a set EXPERT which comes with a function

quali : EXPERT ! QUALIFICATION

associating quali�cations to experts. The doubling of experts and of expert iden-

ti�ers (by the way also the introduction of a special type representation token)

are avoided and the expert identi�cation problem (which does interest our cus-

tomer) is solved free of charge by the underlying classical logic of equality applied

1 \Data in the �rst instance represent abstractions from real phenomena and are prefer-

ably formulated as abstract structures not necessarily realized in common program-

ming languages."[135, p.10]

to elements of sets. Certainly one has to guarantee an appropriate internal rep-

resentation of experts in the implementation (why not by records), but this is a

problem which does not concern the customer any more and which is solved when

the speci�cation is re�ned to excutable code (see the discussion of re�nement

techniques in section 2.3).

Annotated program syntax trees. Typical usage of abstract domains and

functions can be illustrated also through the ASM modelling of the dynamic se-

mantics of various real-life programming languages like PROLOG [39], OCCAM

[27], VHDL [30, 31], JAVA [43] and many others [33]. Here the problem consists

in expressing the static language concepts (objects/operations) and the dynamic

program actions (e�ect of basic instructions) faithfully, the way they appear in

the standard or language reference manual, without introducing any extraneous

encoding due to an a priori �xed abstraction level and avoiding in particular any

a priori imposed static representation of actions-in-time. In [27] we expressed

the canonical (syntactically de�ned) part of the sequential control by a graph2,

i.e. a statically de�ned successor function on an abstract domain NODE . The

nodes are decorated by a function

cmd : NODE ! INSTRUCTION

with atomic commands to be executed. This circumvents the typical encodings

with terms (generated by the underlying context free grammar) or with con-

tinuations (typically appearing in denotational descriptions) or tables and the

like and allows one to formulate the meaning of instructions locally (providing

a modular de�nition of semantics) and such that it directly reects the relevant

language design decisions. In this way the ASM model for Occam [27] lets the

dynamics of the distributed language features stand out explicitly in rules which

govern the local execution of program instructions by daemons. The daemons

are elements of an abstract dynamic set DAEMON ; they are created and deleted

and, carrying along their private environment, walk through the graph (updating

a positioning function loc). They move in a truly concurrent way, independently

from each other (unless they synchronize explicitly by communication), each at

its own pace, with its own notion of time. This model lent itself to an implemen-

tation by Transputer code [26] where the abstract daemons are implemented as

workspace addresses. The workspace encodes, reecting the Transputer layout

for optimized use of memory, all the abstract functions which we introduced for

a transparent de�nition of the semantics of Occam programs. We have used a

similar approach for dealing with threads in a platform independent high-level

de�nition of the dynamic semantics of Java [43]. In [78] this locality principle is

pushed further to obtain a provably correct and reusable compilation scheme,

from source to intermediate code, by orthogonal speci�cation and veri�cation

of the semantics and of the translation of independent language concepts. As

2 Later I discovered that a similar idea has been used before in numerous places in

the literature, the earliest reference I found is [51] where expression evaluation is

described by a processor which \moves through the : : : expression tree making local

transformations in it".

with attribute grammars, abstract syntax tree nodes, representing a syntactical

category, are used to describe the semantics and the compilation of the involved

language construct, together with the relevant context (including the data and

control ow); this is enhanced by introducing generic (parameterized) ASMs to

de�ne frequently occurring and reusable transformations.

ISO PROLOG state de�nition. This example is taken from the ASM

de�nition for the ISO standard of the dynamic semantics of Prolog [22, 23, 39].

The members of the ISO Prolog standardization committee wanted to see Pro-

log computations as depth-�rst left-to-right tree traversal, in search of possible

solutions to the initially given query using the SLD resolution mechanism. We

described therefore Prolog computation states as elements of an abstract set

NODE coming with a static 0-ary function root , a 0-ary dynamic function (i.e.

a function whose value will change during the computation) currnode for posi-

tioning the current node and a function

father : NODE � frootg ! NODE

which keeps track of the originator of the given step. We had to enrich this

tree structure by the information each element of NODE has to carry for the

Prolog computation state it represents, namely the sequence of goals still to

be executed, the substitution computed so far, and the sequence of alternative

states still to be tried. This was accomplished by the introduction of abstract

domains of Prolog literals and goals (sequences of literals), of substitutions and

(for a high-level description of the e�ect of executing the Prolog cut operator)

of a set of goals \decorated" by their cutpoint information:

LIT ; GOAL = LIT
�
; SUBST ; DECGOAL = GOAL�NODE :

The goal and substitution information is associated to nodes by dynamic func-

tions decglseq, s de�ned on NODE . For keeping track of the sequence of alterna-

tive states still to be tried, it suÆced to associate to each node an element of an

abstract domain CODE of instruction lines containing each an occurrence of a

clause which can be retrieved by an abstract clause-line function:

cll : NODE ! CODE ; clause : CODE ! CLAUSE :

For setting cll dynamically (see Figure 1), an auxiliary abstract function

procdef : LIT � PROGRAM ! CODE
�

suÆced of which we assumed to yield the properly ordered list of code, in logic

programming vernacular the candidate clause lines for the given literal in the

given program. (In object-oriented terminology procdef could be interpreted as

an array variable of the class PROGRAM .) Be aware that a considerable part

of the standard virtual machine for implementing Prolog, Warren's Abstract

Machine, is devoted to implementing this function and the representation of

terms and substitutions eÆciently.

This is all one needs to know about the state (the structure de�ned by the

abstract sets and functions) of the ASM which de�nes the ISO standard for the

user-de�ned kernel of Prolog (see the details at the end of 2.1).

Abstract Instructions for Changing States. Up to now we have explained

half of the freedom of abstraction o�ered by ASMs, namely the freedom to choose

the states and thereby their signature, i.e. the number of the universes and of

the operations together with their arity, domains and ranges, and the integrity

constraints. The other half is the freedom to choose the machine instructions

in order to reect explicitly the actions which in the desired abstraction level

are to be designed as basic dynamic actions. Through the signature we can

determine which operations will be considered as given and atomic (either static

or belonging to the environment), whereas the instructions allow us to determine

which operations are decomposed into (multiple) basic machine steps.

What is the most general form of machine instructions to transform struc-

tures? For the sake of simplicity of exposition assume that predicates (properties

and relations) are treated as characteristic (i.e. Boolean valued) functions. If the

signature remains �xed, there is only one thing one can do to change such a struc-

ture3, namely change under certain conditions the value of some functions for

some arguments (usually not for all arguments and not for all functions, see the

discussion of the locality principle below). Therefore the most general structure

transforming machine instructions (called ASM rules) are guarded destructive

assignments to functions at given arguments, expressable in the following form:

if Cond then Updates:

Cond is an arbitrary condition (statement) formulated in the given signature,

Updates consists of �nitely many function updates:

f(t1; : : : ; tn) := t

which are executed simultaneously. f is an arbitrary n{ary function, t1; : : : ; tn are

arguments at which the value of the function is set to t. We thus arrive at

Gurevich's de�nition.

De�nition of ASMs. An ASMM is a �nite set of rules for guarded multiple

function updates, as de�ned above. Applying one step of M to a state (algebra)

A produces as next state another algebra A0, of the same signature, obtained as

follows. First evaluate in A , using the standard interpretation of classical logic,

all the guards of all the rules of M. Then compute in A , for each of the rules of

M whose guard evaluates to true, all the arguments and all the values appearing

in the updates of this rule. Finally replace, simultaneously for each rule and

for all the locations in question, the previous A-function value by the newly

3 structures without predicates, i.e. consisting only of functions, are often called alge-

bras

computed value (if this is possible, i.e. if no two required updates contradict

each other). The algebra A0 thus obtained di�ers from A by the new values for

those functions at those arguments where the values are updated by a rule of M

which could �re in A . The e�ect of an ASM M started in an arbitrary state A is

to apply one step of M as long as possible (until no M-rule can �re any more

because all the guards of M-rules have become false).

It may sound unbelievable, but the preceding de�nition is all the practitioner

has to know about the semantics of ASMs in order to be able to work with

them. The de�nition uses only basic mathematical concepts, no further theory

is needed. It is adequate to use ASMs as abstract (conceptual) code; we avoid

here the word pseudo-code because through Gurevich's more detailed de�nition

[75] the abstract code o�ered by these machines is semantically well founded and

rigorous enough to be applicable by practitioners and to be implementable, as

is, by various support tools, unambiguously, without leaving room for faithful

interpretations to di�er between the tools or between the practitioners, whereas

pseudo-code has never enjoyed this property. The at �rst sight astonishing sim-

plicity of the semantics of ASMs is in part due to the fact that the only pro-

gramming construct o�ered for free is the guarding of function updates. This

explains why also application domain experts with only basic understanding of

algorithmic processes can read and understand such speci�cations without any

problem. When the system design specialist has an advantage to use more com-

plex programming constructs (sequencing, loop, recursion, procedures, etc.), he

can certainly do so, de�ning them in the expected way for ASMs but at the price

of further semantical complications inherent in these concepts. ASMs provide not

a programming, but a design language which supports linking speci�cations to

code in a controlled (well understood and well documented) manner.

Certainly there is something more which can be said about how to use ASMs,

belonging however less to their theoretical foundation than to integrating useful

techniques from current system design practice. We obviously make free use

of all kinds of standard programming notation (nested if-then-else, case, pattern

matching, let, where, etc.) which can be reduced in a canonical way to the

above basic de�nition. But unless there is an important reason which pays for

it, we avoid the use of any more complex or non-standard concept or notation

in order to keep the machines transparent and easy to follow. Usually one is

only interested in states which are reachable, in the machine in question, from a

given collection of initial states; the ASM approach leaves it completely open how

rigorously they are de�ned and also imposes no particular de�nition language

or method. Concentrating on explaining the abstraction mechanism, we have

phrased the discussion in terms of one-agent or sequential ASMs which suÆce

for the purpose and by the way cover already much of practical system design

(see for example how far one can go with Abrial's B-Method [3] or with the

Vienna Development Method [60] which both were developed for modelling,

analysing and designing exclusively sequential software systems). We discuss the

extension to multi-agent (distributed) ASMs|very much needed for present-day

applications|in see section 2.4., the detailed de�nition appears in [75].

The parallel execution model for sequential ASMs, realized by the si-

multaneous execution of all updates in all rules which can �re, turned out to be

particularly useful in many applications. An example par excellence is provided

by speci�cations of synchronous systems where each global clock tick is directly

reected by the application of a single machine step (which may consist in the

�ring of many rules); this has been used with adavantage for modelling pipelin-

ing in RISC architectures [35, 85]. The parallelism incorporated into sequential

ASMs also helps to specify macro steps where one wants to hide the intended im-

plementation by multiple lower level micro steps. It also helps to avoid premature

sequentialization in system design. This is useful when the sequential execution

is either not required by the logic of the problem under study or even hinders

an easy to analyse high-level speci�cation of the problem solution; in the design

of a metal-processing plant [36] the abstraction, in the ground model, from a

certain sequential use of the seven components of the system not only simpli�ed

the system description, but also allowed us to establish by a simple argument the

strongest form of liveness which the problem formulation required to guarantee;

only in the transformation of the �nal model to C++ code [95] became it nec-

essary (and easy) to sequentialize the rules of the di�erent agents. Abstraction

from the sequentialization can also be crucial for achieving a modular system

design when the sequential scheduling problem is diÆcult enough in itself to be

better treated separately from the rest of the system behavior. An example is the

sequential implementation of the parallelism of Occam programs in Transputer

code [26]: the sequence of ASM models which links, in a proven to be correct

way, Occam programs as understood by the programmer to their compilation to

Transputer code, deals with the sequentialization problem separately from the

Transputer details; in this case at a rather high system level where it is easy

to link, in a correct and controlled way, parallel executing processes to abstract

priority queues of processes managed on the basis of a time-slicing procedure.

Locality Principle. ASMs typically describe local changes (of a few func-

tions for selected arguments appearing in the rules), the way it is needed to

naturally reect the overall behaviour of large systems as determined by local

actions of some components. The computation model guarantees that in every

step, everything not a�ected by the updates in the rules �red in this step re-

mains unchanged. This frees the designer from having to worry about the well

known frame problem; often the frame axioms are responsible for the combinato-

rial explosion of formal descriptions relying upon a logical or axiomatic system

(or otherwise global transformation) view, as for example in Z [48], temporal

logic or denotational [98] approaches. Exploiting a locality property often leads

to modular design and supports stepwise re�nement by o�ering a safe way to

concentrate on the parameters which do change while neglecting the others. In

contrast to a widely held view not only the system design, but also the mathe-

matical reasoning about the system behaviour can become considerably simpler

if the locality principle is used.

Consistency of updates is a problem the system designer has to care

about. Obviously an execution tool should (be able to) tell, at the latest at

runtime, if and when an inconsistency does occur, as is the case in [54]. Since in

general the consistency problem is undecidable, as long as we work in the high-

level design area where a truly general speci�cation method is needed, there is

no other choice than to be conscious about and to try to avoid the problem by

transparent design. More we move towards lower levels, more chances we have

to trade expressability for decidability and for error detection by tools.

Nondeterminism can be reected in ASMs in various ways. One can mod-

ify the basic semantical de�nition by �ring in each step one (or some) of all

�rable updates or rules, which yields also a standard way to hide the consis-

tency problem; this was the solution chosen in [74]. If one prefers to let the

nondeterministic choice stand out explicitly as appearing in the signature, it

can be phrased using appropriately speci�ed selection functions. One can also

express the nondeterminism using the so called quali�ed choose construct, in-

troduced into ASMs by rules of the following form (with the obvious meaning)

where Rule is an arbitrary ASM rule, D any domain of the given signature and

� an arbitrary (the qualifying) condition on the choice:

Choose x in D s.t. �(x)

Rule

Given an ASM M , i.e. a set of rules, we can express its nondeterministic

variant N(M) by the following ASM:

Choose Rule in M s.t. �rable(Rule)

Rule

Fine tuning without formal overkill. The following real-life example

is taken from an ISO standardization endeavour and illustrates �ne tuning of

models to the level of abstraction adequate for their intended use, meeting the

desired rigor and conciseness without having to pay a tribute to formal overkill.

The example de�nes the kernel of the ISO standard of Prolog [22, 23, 39]

dealing with the so called user-de�ned predicates P of a given program. Pred-

icates of logic programming represent procedures which are invoqued by basic

Prolog statements P (s1; : : : ; sm), called literals. They are computed (in logic

programming vernacular: checked to be satis�able for the arguments s1; : : : ; sn)

by trying to execute at least one of the \instructions" (called clauses) c1; : : : ; cn
which de�ne the procedure code, in the order they appear in the current program

prog. The fundamental abstraction we had to provide for the ISO de�nition was

a mechanism to extract from the current program, for the currently examined

literal (the activator act), this properly ordered list of candidate clauses without

mentioning any detail for the implementation of this mechanism (and of the

related representation of terms, substitutions, literals and clauses in the WAM).

The problem is not as innocuous as it appears because Prolog programs are

dynamic, modi�able at runtime. Nevertheless it is easily solved by the dynamic

function procdef introduced above whose behavior is determined referring only

to the current activator act and the current program (and indirectly also to the

dynamic abstract association clause of clauses to lines of code).

Using procdef, the entire Prolog kernel for user-de�ned predicates is easily

de�ned by adaptating, to the Prolog environment, the depth-�rst left-to-right

tree creation and traversal, see Figure 1. The Success rule terminates the com-

putation when the current goal sequence has been emptied. The Continuation

rule makes the computation proceed, upon successful computation of the current

procedure body (read: satisfaction of all the literals of the leading goal attached

to the current node), by updating the goal sequence. The Call rule calls the pro-

cedure for the currently computed literal act by attaching to the current node

the sequence of candidate nodes for the possible procedure body subcomputation

trees, one tree root ti for each alternative clause ci found for the activator in the

current program, and passes control to the Select rule for trying these children

in the indicated order for execution (read: logic programming resolution).

Success

if decglseq (currnode) = []

then stop : = Success

Continuation

if goal(currnode) = []

then proceed

Call

if is user de�ned(act)

&mode = Call

then extend NODE by

t1; : : : ; tn with

father (ti) : = currnode

cll(ti) := ci

cands(currnode) : = [t1; : : : ; tn]

mode := Select

where [c1; : : : ; cn]

= procdef (act ; prog)

Select

if is user de�ned(act)

&mode = Select

thenif cands(currnode) = []

then backtrack

else resolve

where backtrack �

if father (currnode) = root

then stop : = Failure

else currnode : = father (currnode)

mode : = Select

Fig. 1. ISO Prolog kernel (for user-de�ned predicates)

The function goal yielding the leading goal of a Prolog state is a derived

function, i.e. a function which can be de�ned in terms of other functions, here

explicitly in terms of decglseq and of list functions. Similarly for act where the

de�nition incorporates the scheduling optimization for determining which one

of the literals in the leading goal is selected for the next execution step. Even

at the level of abstraction we are considering here, namely of the semantics of

the language, the de�nition of the abstract action resolve is a matter of fur-

ther re�nement. It provides the really logical ingredients of Prolog computation

steps, involving the logical structure of terms and the logical concepts of substi-

tution and uni�cation. Similarly the de�nition of proceed provides further insight

into the tree pruning and the error handling mechanisms which enter ISO Pro-

log through the extra-logical built-in predicates cut and throw (see[22, 39] for

details).

The four rules of Figure 1 de�ne the abstractions which turned out to be

appropriate to clarify the database update problem which has intrigued for a

long time the ISO standardization e�ort [25, 38].

2.2 Building Ground Models

In the introduction to [3] Jean-Raymond Abrial states \that the precise math-

ematical de�nition of what a program does must be present at the origin of

its construction" with the understanding that the concept of program incorpo-

rates that of speci�cation. For epistemological reasons the most diÆcult and by

statistical evidence4 the most error prone part of the thus understood program

construction is at the origin because it is there that we have to relate the part

of the real-world under study to the models we have for it in our language (rep-

resenting the models in our mind). Since there is no in�nite reduction chain

between models, as discussed already by Aristotle5 criticising Plato [8], this link

itself cannot be justi�ed theoretically, by mere logico-mathematical means of

de�nition or proof. But still, in order to gain con�dence in the models which

are the basis for the entire program construction leading to executable code, we

must justify their appropriateness by connecting somehow their basic objects

and operations to the basic entities and actions we observe in the real world.

Pragmatic foundation is the best we can achieve, exploiting conceptual

and experimental features of the models. A conceptual justi�cation can be given

by grasping the adequacy of the ground model 6 with respect to the informal de-

scription of the world, through direct comparison. This requires that the ground

model is tailored at the level of abstraction at which we conceive the part of

the real world to be modelled, i.e. in such a way that its mathematical objects,

predicates, functions, transformations correspond in a simple way, possibly one-

to-one, to the entities, properties, relations, processes appearing in the informal

\system requirements" to be captured. An experimental justi�cation can be pro-

vided for the ground model by accompanying it with clearly stated system test

and veri�cation conditions (system acceptance plan), i.e. falsi�ability criteria in

the Popperian sense [109] which lay the ground for objectively analyzable and

repeatable experiments. This too requires an easily inspectable, comprehensi-

ble and transparent link between the formal ground model and the informal

problem description, the outcome of the experiments having to be confronted

4 80% of the errors in system programming do occur at the level of requirement spec-

i�cations.
5 \Every theory and in general every deductive knowledge has a certain wisdom as

premise."[6]
6 In [20, 39] they were called primary models to stress that they are not in any way

absolute or unique but simply starting points for a series of mathematical transfor-

mations.

with the informally described real-world situation (see below the discussion of

the oracle problem of testing and more generally of validating high-level models

by simulation). In comparison to the conceptual and experimental justi�cation

of a ground model, the mathematical justi�cation of its internal consistency is

the smaller although not negligible problem, essentially a problem of high-level

reasoning and (where possible machine assisted) proof checking.

Finding the right abstraction level is the main problem the de�nition

of appropriate ground models has to face. One must discern the aspects of the

desired system which have to be included in the mathematical model, for its

being semantically complete, satisfying both the customer and the designer, and

relegate the ones not relevant for the logic of the problem to further design deci-

sions, as belonging to the implementation. This choice can be made and justi�ed

appropriately only on the basis of the related application domain knowledge,

typically in close cooperation between the system designer and the application

domain expert who brings in the informal requirements. Usually these initial

requirements are neither complete nor minimal and it needs engineering and

conceptual skill to distill the relevant features, �nding those which are lacking

in the informal description (because implicitly assumed by the domain expert)

and hiding the dispensable ones, reserving them for further re�nement steps.

The need for cooperation between the user and the designer to construct the

ground model reveals yet another diÆculty, namely to have a common language

for suÆciently unambiguous communication between the two parties, as is con-

�rmed by statistical data: two thirds of the software development time are spent

for communication between user and designer; one quarter of software project

failures is due to user/designer communication problems; mismatch in system

requirements understanding between user and designer is recognized as the most

frequent cause of user dissatisfaction with the �nal product.

ASMs solve the language problem, for communication between customer and

designer, by using only common mathematical and algorithmic concepts and

notation for the description of real world phenomena. They also contribute to

satisfactory and practically viable solutions of the formalization problem. The

freedom of abstraction allows the system designer to model the informal re-

quirements by expressing them directly7, in application domain terms, without

having to think about formal encoding matters which are extraneous to the prob-

lem. In the VDM approach, before starting the modelling work, one �rst has to

learn \the most basic kinds of data value availabe to the modeller and : : : how

values can be manipulated through operators and functions" [60, p.72] and is

then forced to formalize everything in terms of these �xed data abstraction pos-

sibilities, inventing encodings if they don't �t directly. With ASMs the designer

can freely choose the basic data values (objects of abstract domains) and their

manipulations (through functions or updates), looking only at what is showing

up in the application domain and in the problem explanation given by the cus-

7 \A signi�cant engineering project begins with a speci�cation describing as directly

as possible the observable properties and behaviour of the desired product".[81, p.

4]

tomer. Similarly the freedom to separate modelling from justi�cation concerns

and, when it comes to proving, to choose the appropriate level of proof, solves

also the justi�cation problem. Mathematical experience as well as experience with

machine assisted proof systems show that for the purpose of proving, one often

has to strengthen the claim and to provide more details than what appears in

the property to be proved. Speci�cation tout court, or coming with a high-level

instead of a formalized and machine checked reasoning, also represents a form of

abstraction. True, \when the proof is cumbersome, there are serious chances that

the program will be too" [3, p.XI]; but equally well too many details imposed

by the proof system may unnecessarily complicate the design.

Thus an ASM ground model has the chance to serve equally well the cus-

tomer and the designer. It can be understandable for the customer who typically

is not thinking in terms of data representation and usually is not trained to un-

derstand proofs. The designer can show to his team of software experts that it

is consistent and satis�es the required high-level system properties. In addition

it can be suÆciently rigorous and complete for the design team to proceed with

mathematical analysis and transformation into an implementation.

Supporting practical design activity. ASMs enable the designer to make

his intuitive ideas explicit by turning them into a rigorous de�nition which, far

from being an \add-on", documents the result of his \normal" activity and

thereby provides the possibility of an objective assessment of the properties of

his design. The abstraction freedom does not provide the intuitions needed for

building a good ground model, but it permits to smoothly accompany their

natural formulation, turning them into a concise de�nition, with an amount of

writing and notation proportional to the complexity of the task to be speci�ed;

di�erently from most other formal methods, ASMs enable us not to complicate

matters by formal overhead, simply because no (linguistic or computational)

modelling restriction forces us to include (encoding or scheduling) details which

belong only to the speci�cation framework and not to the problem to be solved.

As with every freedom, the abstraction freedom puts on the designer the full

responsibility for justifying, to his team of programmers and to the application

domain expert, the choices made for the basic data (domains with predicates

and functions) and actions (rules). This leads him naturally to state and collect

along the way all the assumptions made either by the customer, for the system

to work as desired, or by the designer, for laying out the software architecture

in the ground model. This helps not to depend, at least not inadvertedly, upon

any bias to particular implementation schemes and has the important practical

e�ect to make relevant application domain knowledge explicitly available in the

ground model documentation.

These features of ground model development can be illustrated by two ex-

amples in the literature [36, 17] where an informal requirement speci�cation has

been turned into a ground model and implemented, going through stepwise re-

�ned models, by C++ code which has been validated through extensive experi-

mentation with the provided simulators. The robot control example [36] exploits

the ground model abstractions for guaranteeing, in a straightforward manner,

all the required safety properties, under explicitly stated high-level assumptions

which could easily be established to be true for the subsequent re�nements; sim-

ilarly the ground model abstractions allowed us to establish the strongest form

of the required liveness (that \every blank inserted into the system will eventu-

ally have been forged") and the maximal performance property for the system.

All these properties could be veri�ed by a standard analysis of the ASM runs,

carried out in terms of traditional mathematical arguments and later also me-

chanically con�rmed by a model checking translation in [132]. In both examples

the ground model re�nements have been developed up to a point from where the

executable C++ code could be obtained through an almost mechanical transla-

tion of ASM rules into C++ procedures which are executed in a context of basic

routines implementing the ASM semantics. This illustrates the role of interme-

diate models for documenting the structure of the executable code as well as the

design decisions which have led to it; these formally inspectable intermediate

models can serve as starting point for possible modi�cations coming up in the

code maintenance process (optimizations, extensions, etc.).

The freedom of linguistic and computational abstraction makes ASMs also

adaptable to di�erent application areas and yields easily modi�able and in par-

ticular extendable models. See for example the ease and naturalness with which

the models for Prolog and its implementation on the Warren Abstract Machine

[39, 40] could be extended post festam for including polymorphic types or con-

straints and their implementation on corresponding WAM extensions [15, 16, 41,

42], see also the WAM extension by parallel execution with distributed memory

in [5] and the adaptation to the implementation of scoping of procedure de�ni-

tions in a sublanguage of Lambda-Prolog where implications are allowed in the

goals [90]. Some students in my speci�cation methods course in Pisa in the Fall

of 1998 have produced an almost straightforward after the fact extension of the

production cell ASM in [36] to the fault-tolerant and to the exible real time

production cells proposed in [93, 94], another group has adapted the high-level

steam-boiler ASM [17] for a modelling of the emergency closure system for the

storm surge barrier in the Eastern Scheldt in the Netherlands [97].

2.3 Re�nement Technique

It is nowadays a common place that software design has to be hierarchical and

has to be based on techniques for crossing the abstraction levels encountered on

the long way from the understanding of the problem to the validation of its �nal

solution. There are numerous proposals for de�ning and relating these levels as

support for the separation of di�erent software development concerns: separating

program design from its implementation, from its veri�cation, from its domain

dependence[11], from hardware/software-partitioning [91], system design from

software design from coding and similarly for testing (Sommerville's V-model

[121]), functionality from communication, etc. Numerous vertical structuring

principles have been de�ned in terms of abstraction and re�nement.

Semantical re�nement is what ASMs add to this, due to their freedom of

abstraction, re�nement being the reverse of abstraction. Therefore the designer

can follow the needs for vertical structuring and separation of concerns (including

modularization and information hiding) as suggested by the semantics of the

system to be developed, without being directed by any a priori �xed syntactical

or computational boundary condition one would have to comply with. He is

also not forced to �rst learn one of the many complicated but typically rather

specialized and not easily applicable re�nement theories in the literature. Since

the abstraction mechanism incorporated into the de�nition of ASMs is as general

as the present day scienti�c knowledge enables us to conceive (see section 3.),

the corresponding ASM re�nement method permits to push Dijkstra's [57] and

Wirth's [134] re�nement program to its most general consequences. ASMs allow

us to realize it independently from the restrictions which necessarily come with

every concrete programming language for executable code, producing maximal

practical e�ect for hierarchical and ideally provably correct system design.

Various practical re�nement notions have been developed by us, through

real-life case studies, in an attempt to close, in a controllable manner, the gap

between the design levels involved. They can all be put into the form of the well

known commuting diagram of Figure 2, for a given machine A which is re�ned

to a machine B, where a usually partial abstraction function
8 F serves as proof

map, mapping certain re�ned states B of B to abstract states F(B) of A, and

certain sequences R of B-rules to sequences F(R) of abstract A-rules (in cases

where the proof map is used as re�nement function, F goes from A to B).

A
-

F(R)

A

0

F

6

B
-

B

0

6

F

R

Fig. 2. ASM re�nement scheme

In order to establish the desired equivalence of the two machines, before prov-

ing the commutativity of the diagram, one can (and �rst of all has to) de�ne

the appropriate notions of correctness and/or completeness between re�ned runs

(B;S) and abstract runs (A;R). This de�nition is in terms of the locations (the

\observables") one wants to compare in the related states of the two machines.

The observables could be, for example, the operations the user sees in the ab-

8 Schellhorn [115] generalizes this to relations and provides examples where it is con-

venient to relax the abstraction and re�nement functions to relations.

stract machine, which are implemented through the re�nement step. This case

is characteristic for the re�nement concept of the B-method: \During each such

step, the initial abstract machine is entirely reconstructed. It keeps, however, the

same operations, as viewed by its users, although the corresponding pseudo-code

is certainly modi�ed" [3, p.XVI]. ASMs o�er an a priori not restricted spectrum

for instantiating the re�nement notion, for �ne tuning it each time to the under-

lying implementation idea; this allows one to concentrate on the main problem,

namely to �nd and to describe in an understandable way the appropriate de-

sign idea, i.e. \the right F", the function (or relation) which incorporates and

documents the software engineering experience and implementation skill. The

di�erence of the re�nement concepts for B and ASMs is probably a consequence

of the fact that in B, \in the intermediate re�nement steps, we have a hybrid

construct, which is not a mathematical model any more, but certainly not yet

a programming module" [3, p.XVI], whereas the re�ned ASMs are certainly

mathematical models, the same way as the abstract ones.

We call F a proof map because it guides the justi�cation the designer pro-

vides for the semantical correctness of the re�nement step. Proofwise the ASM

re�nement notions are supported, in their full generality, in PVS [58] and KIV

[115]; Schellhorn de�nes suÆcient conditions for correctness and/or completeness

preserving composition of commutative re�nement diagrams out of subdiagrams,

which yield a modular scheme for provably correct re�nements of �nite or in�-

nite runs. This con�rms our experience that it helps if one provides many and

easily controllable re�nement steps instead of only a few but diÆcult ones; as a

by-product of such re�nement sequences one obtains a detailed documentation

for each single design decision, a feature which supports design-for-reuse, easy

extendability and reliable maintenance of the �nal product.

Numerous case studies illustrate the far reaching practical use of seman-

tically oriented re�nement chains, in so di�erent domains as implementation of

programming languages, architecture design, protocol veri�cation and develop-

ment of control software. The 12 intermediate models created in [40] to link in

an easily justi�able way the ISO Prolog model to its implemementation on the

WAM served to implement the following features: the backtracking structure

(in a stack model with reuse of choicepoints), the predicate structure (intro-

ducing determinacy detection|a look-ahead optimization|and compiling the

selection of alternatives by (re)try/trust code with switching), the clause struc-

ture (implementing continuations by environment (de)allocation and the clause

compilation by unify/call code), the term and substitution structure (introduc-

ing the heap, implementing the uni�cation, compiling clause heads/bodies by

getting/putting instructions and variable binding) and WAM optimizations

(environment trimming, last call optimization, local/unsafe variables, on-the-

y initialization). There is not a single step which has been suggested or guided

by the syntax of Prolog programs. It turned out later that these intermediate

models make it possible to extend without diÆculty both the speci�cation and

the proof steps, from Prolog to Prolog with polymorphic types or constraints

and their implementation on the corresponding WAM extensions PAM [15, 16]

and CLAM [41].

The re�nement hierarchy in [27, 26] led to a provably correct compilation

scheme for Occam programs to Transputer code. It reects standard compilation

techniques, some peculiarities of the communication and parallelism concept of

the language and some characteristic Transputer features. There was only a small

contribution from program syntax to the following chain of 15 models for the

implementation of the following features: channels, sequentialization of parallel

processes (by two priority queues with time-slicing), program control structure,

environment (mapped to memory blocks addressed by daemons), transputer

datapath and workspace (stack and registers, workspace and environment size),

relocatable code (relative instruction addressing and resolving labels), everything

with a high-level notion of expression and expression evaluation which abstracts

from the peculiarities of the Transputer expression evaluation.

The chain of over 15 models leading from Java through its compilation on the

JVM to the full JVM [43, 44, 46] reects two goals. One is related to the language

and its implementation on the JVM, namely to orthogonalize sequential imper-

ative (while program) features, static class features (procedural abstraction and

module variables represented by class methods/initializers and class �elds), ob-

ject oriented features, the error handling mechanism and concurrency (threads).

The other goal is related to the Java Virtual Machine as a Java independent

platform, namely to separate trustful bytecode execution, bytecode veri�cation

and dynamic loading concerns in order to make their interaction transparent.

The equivalence notions de�ned for the commutative diagrams in such compi-

lation scheme correctness proofs prove much more than the traditional equation

[P]source = [compile(P)]target

where the square brackets denote the denotational input/output program mean-

ing. Typically this meaning is de�ned by a �xpoint solution to certain equations

over abstract domains, following the syntactical structure of P . A bitter conse-

quence is that applications of such domain based methods are usually restricted

to relatively simple properties for small classes of programs; the literature is

full of examples: pure versions of various functional programs (pure instead of

common LISP programs [108]), Horn clauses or slight extensions thereof [123]

instead of Prolog programs, structured WHILE programs [100] instead of imper-

ative programs appearing in practice (for example Java programs with not at all

harmful, restricted forms of go to). A remarkable recent exception is the use of

denotational semantics for the functional-imperative language ComLisp in the

Veri�x project [131]. The add on of ASMs with respect to denotational methods

is that properties and proofs can be phrased in terms of abstract runs, thus pro-

viding a mathematical framework for analyzing also runtime properties, e.g. the

initialization of programs, optimizations, communication and concurrency (in

particular scheduling) aspects, conditions which are imposed by implementation

needs (for example concerning resource bounds), exception handling, etc.

The re�nement step in [32] is completely unrelated to program structure. It

is determined by the intention to separate the considerations one has to make for

durative actions from the correctness concern for the mutual exlusion protocol

with atomic actions. This algorithm design in two steps simpli�ed considerably

the analysis of Lamport's protocol in the literature. The �ve design levels in-

troduced in [35] serve to separate and justify the major techniques involved in

pipelining a typical RISC microprocessor, namely parallelization and elimina-

tion of structural, data and control hazards. The re�nement steps in [36, 17] are

guided by the intent to turn the given informal problem description into a well

documented and justi�ed to be correct solution of the problem by C++ code;

each of the intermediate models reects some important design decision.

2.4 Decomposition Technique and Function Classi�cation

(De)Composition provides horizontal structuring of systems as a tissue of sepa-

rate subsystems which interact with each other through well de�ned interfaces.

For decomposing a system one has to recognize, within the global system be-

havior, separate roles and to encapsulate them into the de�nition of subsystems.

Thereby the strength of a decomposition method is related to its abstraction

capabilities for de�ning each component's behavior and its interface for the in-

teraction with other components, with the necessary transparency and precision,

conciseness and completeness, abstracting from internal details. The freedom of

abstraction the designer enjoys with ASMs o�ers the corresponding freedom

to device rigorous system (de)composition techniques which are not limited to

notational (signature) issues, as large parts of UML [130] are, but can handle

problem oriented modularization by reecting abstractly semantical component

content (functionality) and interface behavior (interaction content). We explain

in this section that ASMs not only support best modularization practice, but

also enhance it by lifting it from programming to rigorous high-level design and

extend it to the case of multi-agent systems.

Best modularization practice needs a most exible abstraction mechanism9.

The ASM function classi�cation realizes a rigorous high-level concept of

modularity which leaves more design freedom than (but can be specialized to)

the modularization and compositionality principles in current programming lan-

guages. In an ASM M we distinguish basic functions from derived functions

(which are de�ned in terms of basic ones). Within derived or basic functions we

separate static functions (which remain constant during M -computations) from

dynamic ones; among the dynamic functions we distinguish|using a terminol-

ogy appearing in Parnas' Four Variable Model [107]|the controlled ones, which

are subject to change by an update appearing in a rule ofM , from the monitored

ones which can change only due to the environment or more generally due to

actions of other agents. Last but not least there are shared functions which can

9 \A module achieves program simpli�cation by providing an abstraction. That is,

its function can be understood through its interface de�nition without any need to

understand the internal details."[96]

be written by M and by some other agent and for whose consistency typically a

protocol has to be devised. Shared functions help to naturally reect multi-agent

computations and combined read/write use of locations (like ports in chip design

which are used for both input and output).

Fig. 3. ASM Function Classi�cation

Distinguishing between basic and derived, static and dynamic or controlled

and monitored functions constitutes a rigorous high-level realization of Parnas'

information hiding principle achieving \designer control of the distribution

of information" [103, p.344] through the extent to which the description of ab-

stract non-controlled functions is given to the programmer. A function may be

described by its signature only (conveying only syntactic or type information),

by an implicit axiomatic de�nition (through possibly semantical constraints de-

scribing \the what without the how"), by an explicit or recursive de�nition

(describing the mathematical law which determines the semantical meaning of

the function modulo the occurring basic functions), by a module interface de�ni-

tion, by an algorithm (�xing also the procedure by which the function values are

computed), by another ASM or by a detailed program (giving away all the im-

plementation details). The programmer has full control (read and write access)

only upon the controlled functions, the ones which he is asked to program, but

for accomplishing this task he is freed from the obligation to also care about how

to de�ne the non-controlled functions which he can read without any restriction

when determining the arguments and the new values for updates of controlled

functions, and upon whose e�ect he can rely as much as he has been informed.

Non controlled functions allow the designer to specify and reason about his

system on the basis of what is given through such functions. This is not a phe-

nomenon of underspeci�cation of the system nor does the system become fuzzy

through the possible lack of detailed information on the non controlled func-

tions. Whenever, in a run of an ASM M , a non controlled function e is invoked

in a state S, it appears in S as a given function and thus can be freely used,

although we may not know (or may want to abstract from) how the current

interpretation of e, in S, has become available to us. For example in an update

a : = f(a; g(b)) (with say g declared as a unary monitored function and b as a

static 0-ary function), the term f(a; g(b)) is used to denote an object in state S,

obtainable through a computation (the standard logical interpretation) which

follows the term structure and uses the interpretation of a; b; g in S which is

known once the state is given, never mind how these interpretations have been

de�ned. It is indeed only conceptually that we need to (de)compose our systems,

therefore for determining the value of the complex construct f(a; g(b)) in S we

do abstract from the way the monitored function g and the static function b

have been given in S but nevertheless have the functions available for use.

Numerous examples illustrate the power of information hiding and modu-

larization through non-controlled functions in ASMs. In the model for the IEEE

VHDL'93 standard [30, 31] the details of the propagation of signal values in

zero time are hidden from the de�nition of the VHDL kernel by two derived

functions for the so{called driving and e�ective values (which we de�ne by a

recursion on the signal sources resp. on port association elements from ports to

signals, abstracted from the complex algorithms in the language reference man-

ual [86]); similarly the availability of values in zero time, at certain points in

a circuit, can be described by a static (or derived) function, usually expressing

a combinatorial network. The details of error propagation and handling in the

Java Virtual Machine are separated in [44] from the main machine de�nition by

a derived, recursively de�nable catcher function. The details of the uni�cation

procedure have been encapsulated in [39] into a static function unify. The reac-

tive behaviour of (concurrently operating) PVM daemon processes, in response

to requests coming from local tasks to carry out some PVM instruction or to

the reception of a message from another daemon, is modelled in [28, 29] using

a monitored function event whose values event(daemon) are assumed to remain

stable until daemon has read the function destructively; this abstracts from the

details of a communication scheme. In [43] compilation features are separated

from the dynamic semantical aspects by encapsulating them into static func-

tions; the implementation de�ned scheduling algorithm, which resides on top of

the synchronization of Java threads as required by the language reference man-

ual, is encapsulated into a monitored function. Derived and monitored functions

can also been used for modelling the interface between the discrete and the con-

tinuous world in hybrid systems. An example is the real-valued speed function

appearing in the high-level Falko-ASM, developed at Siemens within a project

for building a tool for train schedule development and validation. Train speed

has been encapsulated there into a derived function which is computed from

monitored data, using the laws of physics and continuous mathematics.

Also syntactical composition principles can be put to fruitful use in ASMs.

An example is the composition of a VLSI implemented microprocessor out of

basic architectural components (sub-ASMs) in [24]; it provided the possibility to

analyse processor properties by reducing them to properties of the components

and has been the key for accomplishing a reverse engineering project for the

microprocessor control of the APE100 massively parallel machine. In [55] this

approach is exploited further for supporting hardware/software-partitioning and

instrumenting of building blocks. Another example is the submachine concept,

illustrated by the replacement in [40] of the above mentioned function unify by

a sub-ASM which implements a uni�cation algorithm. A promising scheme for

composition of ASMs out of generic (parameterized) ASMs, supporting library

building and reuse of components, has recently been de�ned analysing transfor-

mations which occur typically in programming language compilation [78].

The exibility ASMs o�er for rigorous high-level de�nitions of system com-

ponents and their interaction facilitates a transparent component reuse and helps

to master the compatibility problem for the design of heterogeneous systems; a

successful industrial use of this property is reported in this volume [89]. The

abstraction possibilities also help keeping the global understanding of a system

during its entire development, from the ground model and through the re�ne-

ment de�nitions down to the implementation. Statistical evidence and practical

experience reported in [10] con�rm the importance, for a software project to

succeed, of maintaining such a global system view and of the possibility to make

it accessible through an appropriate documentation. We made the same experi-

ence when using ASMs for documenting the basic functionality of a large C++

software package, developed and used successfully at Siemens for the simulation

of railway systems. The problem consisted in specifying the components of the

system at a level of abstraction appropriate to make the constraints about the

component interaction explicit [102].

Distributed (multi-agent) ASMs, where multiple sequential ASMs op-

erate concurrently, support the decomposition in a particularly important way.

Gurevich [75] has de�ned a notion of multi-agent ASM run which avoids any

commitment to particular forms of concurrency, distilling the bare minimum

needed for guaranteeing the global consistency of local states. It says that such

a run is a partially ordered set M of \moves" x of a �nite number of sequential

ASMs (agents) A(x) in which

1. each move has only �nitely many predecessors,

2. the moves of every agent are linearly ordered,

3. each initial segment X corresponds to a state �(X)|the result of executing

all moves in X|which for every maximal element x 2 X is obtainable by

applying move x in state �(X � fxg):

This de�nition guarantees what is needed in applications, namely that the

scheduling of moves which are independent of each other in the given run does

not inuence the (global view of the) state resulting from the run, more for-

mally expressed: given any �nite initial segment of a run, each linearization has

the same �nal (global view of the) state. This provides the freedom needed to

faithfully reect distributed systems as they occur in practical life without be-

ing committed a priori to special synchronization concepts, in particular not to

framework dependent timing conditions.

The most important (large) example one can point to is the forthcoming

distributed real-time model for the to be de�ned SDL-2000 standard [64, 66]

which provides a rigorous but concise and extensible de�nition for the practi-

tioner's intuitive understanding of the functional and timing behavior of SDL.

In addition to the model of Basic SDL-92 in [65] (where the behavior of chan-

nels, processes and timers with respect to signal transfer operations is formalized

following faithfully the International Telecommunication Union T Recommenda-

tion Z.100), it provides structural system decomposition in terms of concurrent

processes (ASM agents) which interact communicating asynchronously through

gates for signal exchange (their interfaces). Another (small) example is the above

mentioned robot controller [36] where the concurrently operating components

(sequential ASMs) are small �nite automata with some additional state struc-

ture and interface conditions. We use there shared functions as interfaces which,

where necessary, make the sequentialization conditions for certain actions (of

the otherwise independent components) explicit and at the same time describe

abstractly the e�ect of these actions. These interfaces simpli�ed considerably the

speci�cation and the amount of work necessary to establish the required safety

and liveness conditions. Our interfaces can be naturally mapped to the CSP-style

synchronization mechanism in [114], a particular communication scheme which

has been encoded in Concurrent ML.

2.5 Analysis and Integration Techniques

In this section we survey the practicability of the method which is due to the

simplicity of ASMs (making them easy to read and to write for the practitioner)

and to the support and enhancement they provide for existing system design

and analysis techniques.

Naturaleness. ASM system design comes as a natural thing for the prac-

titioner. Di�erently from what happens with most academic approaches, the

system programmer is not asked to be converted from the common process and

state oriented model based reasoning. In the contrary the operational view is

enhanced by adding �ne tuning, to whatever abstraction level is appropriate for

the application under hand, and by putting all this on a simple and rigorous

foundation. The reader has seen above the de�nition|which starts from scratch

and is all one needs to understand for applying the method. It is what I had

(see [73]) when, as a logician without any practical experience, I joined Gure-

vich to explore his bold ASM thesis [76]. A frequent critique of formal methods

complains about the need for extensive speci�c training in these methods before

they can be put to fruitful industrial use, if they are applicable at all: \formal

methods cannot be : : : a distinct \add-on" that goes beyond the \normal" things

that software developers already do" [105, p.195]. The ASM approach supports

directly, without need for special training, the software developers' daily work

and improves its quality by enabling the engineer to \produce documents that

are easier to read than the programs that they describe" [105, p.195]. Admit-

tedly there is one diÆculty, something one has to learn, namely to �nd the right

abstractions. But this is a problem in re, of system design, not of the adopted

method. ASMs are di�erent from most other methods in that to this unavoidable

diÆculty they do not add any formalistic complications concerning the design

language, the model of computation, the analysis and reasoning schemes, etc.

The combination of conceptual programming and rigorous reasoning, charac-

teristic for ASM modelling, directly supports engineering skill and experience,

leading from ground models via re�nements to implementations.

Integratability. The ASM approach is not monolithic but provides a well

de�ned semantical basis for integrating other description techniques or synthesis

methods (see section 3.2) and can itself be integrated, at any development level,

into established design ows. The integration potential is technically achieved

through committing to standard mathematical and programming language, con-

cepts and notation and through the use of abstract functions; more speci�cally

through the freedom to choose how and to which degree of precision derived,

static and monitored functions and integrity constraints are determined (ax-

iomatically, algebraically, functionally, algorithmically, etc.). Due to such func-

tions ASMs represent \code with holes", the important point being that the

looseness (desired implementation freedom) of the model is circumscribed by

the description of the holes.

This versatility also facilitates tailoring the general ASM speci�cation mech-

anism to typical data structures and computational patterns which appear again

and again in a given application domain. The semantical simplicity and openness

of ASMs result in their exibility for incorporating special application domain

knowledge, namely by adapting the general method to the particular structures

of that domain. The specialization helps to elaborate the application domain

knowledge in a tool based way, thus making the ASM speci�cations and trans-

formations reusable. An excellent illustration is provided by the Veri�x project

[131] where the use of ASMs and their re�nements|for the semantical de�ni-

tion of source, intermediate and target languages [136]|is coupled with numer-

ous well established or advanced compiler generation and veri�cation techniques

(see for an example [68] in this volume) in order to achieve the overall project

goal, namely to build a correct compiler for a real-life high-level language on a

real-life machine (DEC-Alpha processor).

Veri�cation Techniques. As a consequence of this conceptual openness and

of separating design from veri�cation concerns, the method combines problem

oriented modelling and simple design with the applicability of state-of-the-art

analysis techniques for validation and veri�cation (by \head" or by machine,

interactively or fully automated). Most importantly for the practitioner's daily

work, ASMs support on the y justi�cation by the designer because the intuitions

and reasoning about the system behavior, which indeed guide and accompany

the design, can be turned into rigorous statements about runs and can therefore

be checked objectively (refuting or justifying them exploiting traditional mathe-

matical methods). In this way ASMs not only help to debug the designer's work

from its very beginning, but have also the important practical e�ect of produc-

ing an intersubjective documentation which makes available to the rest of the

world what the designer had in mind when building the system. The key for the

success of this program, which leads much further than purely static analysis

methods, is that ASM models allow us to abstract, to rigorously formulate and

then to verify or validate runtime properties through analysis or simulation.

In certain (theoretical and industrial) circles it has become fashionable to

claim that mathematical proofs are not reliable and have to be replaced by ma-

chine checked proofs. Without reentering this discussion here (see [21]), it should

be pointed out that nothing prevents from verifying standard mathematical rea-

soning about ASMs by interactive or fully automated proof tools which force

us to make explicit, for the checking machine, all the details which good math-

ematical proofs are geared to hide in order to convey to the human reader a

transparent picture of the proof. The additional e�ort needed for proof checking

ASM properties by machines is similar to the additional e�ort needed to im-

plement ASMs: the abstract domains have to be represented by standard data

structures of the prover, the static functions have to be de�ned completely by

equations, axioms, etc.. Delivering our work to the prover forces us to cash the

freedom of the high-level reasoning; for this endeavor it is helpful to �nd and ex-

ploit similarities between the proof structures and the design structures. During

the last years various such investigations have been started and some encourag-

ing results are already reported in the literature. The correctness proof in [40],

for the compilation scheme from Prolog to WAM code, has been veri�ed in KIV

[116] (and for some of the proof steps also in Isabelle [111]). The correctness

proof for the �rst re�nement step in the model for pipelining a RISC machine in

[35] has been checked in KIV [67] and in PVS [124]; the proof checker applied in

[79] has discovered an omission of a hazard case in the last re�nement step. The

properties proved for the production cell ASM [36] have been successfully model

checked in [132]; this work is part of an e�ort to exploit the abstraction possi-

bilities of ASMs to contain the state explosion problem when designing FSMs

for model checking. The ASM proofs used in [136]|showing the correctness

of bottom-up rewriting speci�cations for back-end compilers from intermediate

languages into binary RISC processor code|have been checked using PVS [58].

Validation Techniques. The method enhances current industrial system

design through the possibilities for early and high-level validation of ASMs,

whether of system components, of their interaction through interfaces, of par-

ticular requirements in the ground model, etc.. We do not want to enter the

discussion in the literature [77, 61] whether speci�cations should be executable

or not. There are basically two complementary possibilities to simulate high-

level ASMs. One is through a general purpose simulator which can execute any

given ASM once its non-controlled functions are de�ned (interactively, by in-

putting scenarios, by ad hoc implementations, by using library functions, etc.).

An example is the workbench presented in this volume [54] which has been used

successfully for extensive simulation of various versions of the above mentioned

high-level Falko-ASM. An ASMM can also be made executable by a special pur-

pose interpretation or compilation which exploits the programming environment

of the application domain of M for implementing the non-controlled functions.

The Prolog kernel ASM in Fig.1 has been implemented at Quintus and used

there for various experiments with Quintus Prolog [47]; it took a couple of hours

to write this simulator where the two non-trivial non-controlled functions, unify

and procdef, have been linked to available Quintus code. During our work on the

model for the JVM in [44], Wolfram Schulte has realized and tested successfully

an executable version of it by implementing in Haskell the recursive de�nitions

for the static functions. On the basis of a recent KIV implementation of the

Java-ASM in [43], all the Java programs appearing in [69] have been tested suc-

cessfully [125], except those which lead to compilation errors (due to type check

problems, etc.) or deal with arrays, two features we did not cover in our Java

model. Another group of examples uses a direct encoding of (re�ned) ASMs into

C++, done ad hoc [36] or using a compilation method (see [17] and Joachim

Schmid's recent transformation of the Falko-ASM into C++ code). In between

these two approaches we �nd the special-purpose simulator Gem-Mex developed

by Matthias Anlau� to make ASM interpreters for a class of programming lan-

guages executable [4]. The tool exploits the ASM speci�cation techniques for

the typical structures occurring in the de�nition and compilation of imperative

programming language constructs. This idea has been used and further devel-

oped in the Veri�x project [136, 78] and represents an instructive example for

combining the advantages of the general ASM approach with those coming from

the speci�cs of application domain structures.

3 Universality of ASMs for System Development

In [76] Gurevich gives a penetrating epistemological justi�cation of his strength-

ening of Turing's thesis which stood at the origin of the discovery of the ASM

concept [71, 72], namely that every sequential computational device, on any level

of abstraction, can be simulated in lock-step by a sequential ASM of approxi-

mately the same size. We collect here some empirical evidence that this thesis

is the practical system design analogue of Turing's thesis.

The ASM thesis is con�rmed by the following four experiences. First to be

mentioned is the multitude and diversity of successful complex system design

and analysis projects, carried out using ASMs and covering the de�nition of the

semantics of real-life programming languages and their implementation, real-

time algorithms, protocols, control software, virtual machines and architectures,

see [33, 2]. Second to be mentioned is the adaptability of ASMs to whatever

application domain for solving the ground model problem. Thirdly the ASM

method completes, for practical system design, the ambitious structured pro-

gramming project, synthesizing in a remarkably simple way two fundamental

lines of thought in the history of ideas in computer science; see the historical

details in section 3.1. Last but not least other well known design and computa-

tion models are naturally embedded into ASMs where they can be recognized

by specializing the signature, the rules, the constraints, the runs. We show this

below for VDM [60], Abrial's Abstract Machine Notation [3], Parnas tables [107],

stream X-machines (an important subclass of Eilenberg's X-machines [59]), Petri

nets [113] and Codesign FSMs [91]. ASMs appear to be a truly encompassing

framework for successfully comparing and combining major current design and

analysis techniques, on a rigorous semantical basis which allows one to exploit

their respective advantages by appropriate specializations and restrictions.

3.1 Abstract Machines + Abstract State = ASM

The term abstract machine has been coined in 1968 by Dijkstra [56], in the

context of de�ning the operating system T.H.E., preceded by the class con-

cept of Simula67 which has been interpreted as a form of abstract machine [80,

52]). Numerous variations appear in the literature, like hierarchical systems,

layered architectures, data spaces, virtual machines [106, 137, 84, 126, 51], with

corresponding program development methods like top-down design, multi-level

programming, stepwise program re�nement and data abstraction, etc., which

characterize the structured programming and abstract data type method [134,

53] and have prepared the ground for VDM [60] and for Abrial's sophisticated

combination of Abstract Machine Notation with proof controlled stepwise re-

�nements [3].

Nevertheless nobody has addressed the epistemological and practically im-

portant question of how far the proposed concept of abstract machine can lead

us or whether there is at all a rigorous most general notion of abstraction deter-

mining the underlying states and operations of such machines. This is even more

surprising given that the development of the data abstraction idea in the theory

of abstract data types has led to understand that a most general notion of state

does exist [101, 62], namely Tarski's logical concept of structure [127]. However

in the theory of abstract data types, structures have been encoded into terms so

that equational or axiomatic algebraic speci�cation methods could be applied|

as a bitter consequence state changes, instead of being related to the dynamics of

machine instruction execution, remained static, solutions of �xpoint equations.

This approach has its mathematical beauty but turned out to be impractical.

Although the two ingredients of a satisfactory most general and rigorous but

practical notion of abstract machines|instruction set machines (abstract dy-

namics) and structures as states (abstract statics)|were in the literature for

more than 15 years, ready to complete the longstanding structural program-

ming endeavour (see [53]) by lifting it from particular machine or programming

notation to truly abstract programming on arbitrary structures, nobody per-

formed the natural step to simply combine these two notions and obtain ASMs.

Probably this has to do with the fact that in theoretical computer science (and

apparently not only there [117]), the value of declarative and of compositional

(usually syntax driven) instead of procedural methods has been largely overesti-

mated. In theory circles it still is widely regarded as scienti�cally not qualifying

or rewarding to study the operational, process and machine oriented view of com-

putation10, with the consequence that the proposed pure (functional, algebraic,

axiomatic, logical) methods, impractical as they are for dealing with system dy-

namics, up to now did not really inuence or support the way practitioners work.

It needed a new start, from scratch (in an attempt to sharpen Turing's thesis)

and free from ideo-logical a prioris, which eventually led to the right notion, Ab-

stract State Machines, where static and dynamic methods instead of excluding

each other can be fruitfully combined.

There is an analogy to the discovery of the notion of Turing machine. During

the �rst third of this century numerous de�nitions were proposed to formalize the

intuitive concept of algorithm and computable function, without really capturing

in a convincing way the intuitive notion. The discovery of universal Turing ma-

chines [129] provided a justi�ably general basis for the theory of algorithms and

complexity and laid the conceptual ground for the construction of von Neumann

computers. Gurevich's notion of ASM clari�es the relation between di�erent vir-

tual machines and computation models and has laid the ground upon which a

practical well founded method could be built for design and analysis of complex

real-life hardware/software systems. By the way it has also led to interesting

new developments in logic and complexity theory [13, 70, 14].

It would not come as a surprise to see the historian con�rm in the retrospec-

tive that it was a thorny way which led to ASMs. B�uchi, explaining \an approach

he developed with Jesse B. Wright in the 1950s in the Logic of Computers Group

at the University of Michigan, Ann Arbor"(Sic) (D. Siefkes, op.cit.p.5) speaks

about \an intriguing interpretation : : : of an algebra as a machine" where \the

mathematical structures : : : in our theory are to represent the real objects"[49,

p.76]|to exploit it for an (elegant) algebraic interpretation of �nite automata as

�nite algebras with unary functions. Scott [118] lifted �nite automata to abstract

machines by adding, to the change of the internal control state, the inspection

and transformation of a memory state, but he formulated these memory state

transformations by static functions f :M !M whereby they remain global and

inherit the annoying frame problem, as is the case in numerous followers of this

approach [59, 51, 82, 92, 83]. The ASM machine instructions (guarded function

updates) enable us to distinguish between (and to combine the advantages of) a

global state view and local state transformations, a particularly important fea-

ture for distributed systems, see below the discussion of the concept of Globally

Asynchronous Locally Synchronous (GALS) machines.

3.2 Encompassing Sequential Models of Computation

The VDM approach to system modelling is very carefully explained in [60].

VDM is restricted to sequential runs. The abstraction level is �xed, for sets by

the VDM-SL types (which have to be built from basic types by constructors),

10 Michel Sintzo�, in an e-mail discussion in June 1996, commented: \If the operational

style of dynamical systems is \dirty", then Poincar�e should be removed from the

history of mathematics". See the discussion in [120, section 2.4] of the fundamental

role operational methods play for expert knowledge.

for functions it permits explicit and implicit de�nitions, for operations one is

allowed to use procedures (with possible side e�ects). The notion of state is

restricted to records of variables (sets of 0-ary functions) which are classi�ed

into read/write variables only. The tutorial [60] is biased towards functional

modelling11 although assignments and state based speci�cations are supported

by VDM. It would be interesting to know whether and to what extent the IFAD

tool support for VDM could be enriched to cover the greater semantical freedom

o�ered by ASM modelling, even if restricted to the sequential case.

Abrial's B-Method is the method which in spirit and conceptually comes

closest to the ASM method. The B-method is model oriented, the way also its

predecessors Z and VDM are, but in addition it is based on Abstract Machine

(instead of purely axiomatic or functional) Notation (AMN). A di�erence in

spirit comes out in the way abstract machine programs are related to the justi-

�cation that the program does what it is supposed to do. In B \the idea is to

accompany the technical process of program construction by a similar process

of proof construction, which guarantees that the proposed program agrees with

its intended meaning" and as a consequence the \simultaneous concerns about

the architecture of a program and that of its proof" [3, p.XI] characterize the B-

method. They determine its compositional constructs (guards, sequentialization,

parallelism, non-deterministic choice of actions or objects, inclusion/import, us-

ing/seeing) as well as its re�nement concept and thereby guide the speci�cation

and design process. This is enforced by the supporting proof tools. The ASM

designer has a greater freedom to choose, from case to case and depending on the

design level, the most appropriate and convenient way to proceed; the method

avoids any a priori �xed combination of design language and proof system, invit-

ing the software engineer to use whatever form of mathematical language, pro-

gramming notation and rigorous reasoning may be useful for de�ning the desired

system, for implementing it through further detailing (see above the comparison

of the ASM and B re�nement concepts) and for making one \convinced that the

software system in question is indeed correct" [3, p.XV]. ASMs adhere to the

idea that there are many layers not only for the design, but also for justifying a

design (i.e. of correctness \proofs").

A conceptual di�erence between the B-method and the ASM method stems

from the di�erent epistemological explanation of what \is" an abstract machine.

For Abrial it \is a concept that is very close to certain notions well-known in

programming, under the names of modules, classes or abstract data types" [3,

p.XV] and as a matter of fact is de�ned on the basis of pre- and post-conditions

and speci�cally of Dijkstra's weakest pre-condition theory. ASMs are the prac-

tical hardware/software design analogue of Turing machines, result of a modern

analysis of Turing's thesis [76]; they are based only on standard mathematical

11 because this allows to go, as the authors say, \without the distraction of operation

syntax, side-e�ects and access restrictions to external variables" [60, p.XII]. The

ASM philosophy is as follows. If there is an e�ect which plays a role, it should stand

out explicitly; if it does not play a role, it should be hidden (abstracted away) so it

does not appear not even as side-e�ect.

logic (which includes Thue's [128] nowadays omnipresent notion of transition

system). The natural semantical basis for ASMs protects the notion from cer-

tain complications the B-method has to face due to its conceptual heritage. For

example the fundamental assignment operation, which is used throughout, is not

introduced as semantically basic but has to be de�ned syntactically through the

not completely elementary concept of substitution. The proof method is tailored

for termination proofs, using speci�c re�nement techniques which in certain sit-

uations lead to problems (see [110, 7]). The axiomatic foundation by Dijkstra's

weakest precondition theory is not easy to understand; furthermore it seems to

lead to the tendency to specify machine operations using logical descriptions

instead of expressing the dynamics directly through local state updates. AMN

deals only with sequential machines (although Abrial is working on an extension

of AMN to distributed computations).

There are also some technical di�erences. The state notion in Abrial's AMN

is that of a set of �nitely many variables, instead of arbitrary Tarski structures.

Sets and functions are supposed to be �nite (whereas with ASMs dealing with the

�niteness problem can be postponed to the moment when it comes to implement

the abstract machine into speci�c control and data structures and to worry about

garbage collection). Anchoring ASMs in classical logic avoids the well de�nedness

problem without having to rely upon neither three-valued logic nor any special

proof calculus to circumvent the logic of partial functions [12].

Eilenberg's X-machines [59] are state machines which, in their current

control state, modify their current memory state as indicated by their input,

produce an output and pass to the next control state; di�erently from a �nite

automaton, an X-machine has as input � not a letter, but a partial memory

function � : X ! X which is consumed by applying it to the current memory

state. X-machines are a special form of the abstract machines de�ned by Scott in

1967 [118]. In 1988 Holcombe used X-machines for describing Turing machines,

Petri nets, �nite automata and a small storage system and proposed \to inte-

grate the machine ideas central to the modelling of the control of the processing

together with the data type descriptions of the processing operations in a uni�ed

methodology : : : for dynamic system speci�cation"[82, p.72]. Starting with [92]

a practically important subclass of these machines, called stream X-machines,

has been used to generalize Chow's �nite state machine testing method [50, 83].

X-machines are specializations of what we call control state ASMs, i.e. ASMs

where all the rules have the (usually graphically displayed) form

s
Rule

! s
0

with elements s; s0 of a set of control states (the \internal states" in �nite au-

tomata) and standing for

if currstate = s then currstate : = s
0

Rule

X-machines are sequential control state ASMs where Rule is a single update by

a global memory function f , i.e. of form currmemory : = f(currmemory).

Stream X-machines are a specialization of what we call Mealy-ASMs, i.e.

ASMs with a monitored input function in where all the rules have the (usually

graphically displayed) form

s
Cond(in)

Rule
! s

0

standing for

if currstate = s ^ Cond(in) then currstate : = s
0

Rule

Rule may and usually does include an output update out : = : : :. Mealy-ASMs

provide a uniform semantical basis for event driven machine computation mod-

els, like Message Sequence Charts, Discrete Event Systems [112], etc.. Stream

X-machines are Mealy-ASMs where Rule is restricted as in X-machines, the

output is de�ned as concatenation of the current with the previous output, and

Cond(in) is restricted to � 2 A for the underlying function alphabet A.

The (stream) X-machines, in the form they are de�ned and used in [82, 92,

83], are exposed to the diÆculties of the frame problem. They inherit from their

algebraic origin a global (Cartesian product) memory view, showing up in the

frequent "don't care" and "no change" entries in function de�nitions. This is

di�erent from the combination of global memory view with local update view in

control state ASMs, Mealy-ASMs and ASMs in general. Also in ASMs there is a

global set X , the so called superuniverse [75], which together with the functions

de�ned on X forms the global state (memory and control). But memory changes

can nevertheless be thought of as happening locally, by formulating the intended

updates f(t1; : : : ; tn) := t in rules. The semantical de�nition of ASMs states once

and for all that controlled functions change only due to rule execution, freeing

the designer from having to think about this frame condition and having to

present particular instances of it at each state change. It would be interesting to

know how much of the decomposition, structuring and re�nement principles from

algebraic automata theory can be extended to capture some of the semantical

structuring possibilities for ASM. The same question applies to extensions of

Chow's �nite automata based testing method [50, 83].

Parnas tables [107] exploit the mathematical matrix notation for a con-

cise geometrical layout of multiple case distinctions in predicate and function

de�nitions. Various semantical interpretations of such tables have been intro-

duced for software documentation purposes, see [1, 88] for a survey and [87] for a

formal semantics. We illustrate three frequently used types of Parnas tables by

ASM de�nitions which provide a simple and uniform semantical basis for such

2-dimensional notations.

Normal tables are used to assign a value ti;j to f(x; y) in case the row condition

ri(x) and the column condition cj(y) are both true. The consistency of such

de�nitions usually results from the disjointness of the row conditions and of the

column conditions.

N(f) c1 : : : cn

r1 t1;1 : : : t1;n

...
...

rm tm;1 : : : tm;n

meaning if ri(x) ^ cj(y)

then f(x; y) : = ti;j

where 1 � i � m

1 � j � n

Inverted tables are used to assign a value tj to f(x; y) in case at least one of the

leading conditions ri(x; y) (which usually depend only on one of the variables)

and the corresponding side condition ci;j(x; y) are both true.

I(f) t1 : : : tn

r1 c1;1 : : : c1;n

...
...

rm cm;1 : : : cm;n

meaning if ri(x; y) ^ ci;j(x; y)

then f(x; y) : = tj

where 1 � i � m

1 � j � n

Decision tables are used to trigger an action tj (read: to assign a value tj to

f(x1; : : : ; xk)) in case all the conditions ri;j(x1; : : : ; xk) appearing in column

j are satis�ed, where usually each condition ri;j(x1; : : : ; xk) concerns one term

sequence si which guides the case distinction and is displayed in the leading

column.

D(f) t1 : : : tn

s1 r1;1 : : : r1;n

...
...

sm rm;1 : : : rm;n

meaning if
V

1�i�m
ri;j(si)

then f(x1; : : : ; xk) : = tj

where 1 � j � n

The theory for Parnas tables and the underlying Four Variable Model [107] is

focussed on sequential systems with states consisting of �nitely many variables,

classi�ed into monitored and controlled; recently also shared variables have been

included [104]. The state variables are treated as function of time and thereby

capture system dynamics; this does not work however for distributed features

which are not only a function of time. In applications of Parnas tables we ob-

serve a frequent use of \auxiliary" functions, predicates, data structures, etc.

whose semantical integration is taken for granted. The ASM de�nition of tables

provides a simple rigorous foundation for this natural form of semantical table

modularization and decomposition, in particular through the �ne grained func-

tion classi�cation explained above; it also makes the ASM re�nement techniques

applicable to tables and thus helps to document the system decomposition. The

ASM de�nition of tables also overcomes the limitations of the 2-dimensional geo-

metrical layout due to which the tables typically de�ne functions and predicates

which are viewed as monadic or binary (although in another analysis layer, each

argument may appear as a tuple). Despite their state based dynamic orientation,

Parnas tables are reminiscent of a \declarative" view of computation: the 1-step

transition relation is expressed not by transition rules using destructive updates

(assignments), but by mathematical formulae which use the well known x/x'-

notation of temporal logic and thereby inherit the frame problem|appearing in

the so-called NC-conditions (\No Change") of tables.

3.3 Encompassing Distributed Models of Computation

Petri nets are among the most popular models for distributed computation. We

do not want to go here into the details of the numerous di�erent versions of

Petri nets. Instead we give a de�nition of naturally generalized Petri nets which

covers all cases in the literature. Any �rst-order condition (on markings, colours,

whatever you want) is allowed as precondition, involving not only single but

arbitrary combinations of places; any function update (to change the marking,

the colours, whatever) is allowed for any combination of places a�ected by a

rule. This generalization supports the integration of Petri nets into the ASM

framework and vice versa. Here is the de�nition.

Let P be a set (of so called places). A Petri-ASM (over P) is a multi-agent

ASM where the rules of each agent are of the following (usually graphically

displayed) form:

if �1(p1) ^ : : : ^ �n(pn) then f1(q1) : = t1

...

fm(qm) : = tm

where pi; qj are �nite sequences of elements of P , �i are arbitrary �rst-order

formulae, fj are arbitrary functions on places and tj are arbitrary terms used to

determine values to be associated to functions at places. In Petri nets typically

the pi; qj are sequences of length 1 and some pi are idential to some qj . In the case

of standard marked Petri nets for example, �i � Li � m(pi) where m : P !M

is the dynamic marking function and Li is the static marking precondition (so

called label) attached by the rule to pi; fj describes the intended update of

m(qj) (deleting the precondition marks from qj , if there are any, and adding the

postcondition marksRj attached by the rule to qj , saym(qj) : = m(qj)�Lj+Rj).

By deciding which sequential agent gets which rules to execute, the intended

distributed nature of Petri net computations is realized faithfully. Attributing

transitions to agents can simplify the analysis of runs and the corresponding

proofs. Specializations of Petri nets by particular synchronization mechanisms

are reected by corresponding (order) restrictions on the runs of the Petri-ASM.

Last but not least we want to mention the very interesting concept of Code-

sign Finite State Machines (CFSMs), de�ned with the goal to \combine

the advantages of veri�ability in synchrony and exibility in asynchrony in a

globally asynchronous, locally synchronous (GALS) model" [91, section 4.1] and

synthesizing a detailed analysis of the advantages and drawbacks of the major

models of computation in use for system design. CFSMs can be de�ned as dis-

tributed ASMs whose components are Mealy-ASMs, possibly coming together

with a global scheduler controlling the interaction of the components and/or

with timing conditions in case of durative instead of atomic component actions.

The (in ASM terminology sequential) Mealy-ASM components have a locally

synchronous behavior, whereas the partial order of the distributed ASM reects

the globally asynchronous system character. It should be stressed that also the

data structure capabilities of Mealy-ASMs are exploited for the de�nition of

CFSMs; namely the transitions are allowed to refer to arbitrary combinational

(external and instantaneous) functions. See [91] for further details.

4 Conclusion and Future Research

Various prototypical tools have been developed for designing and executing

ASMs; for an overview see [54] in this volume. More advanced and industrially

satisfactory tool support is needed for de�ning, simulating and visualizing, de-

bugging, transforming (re�ning, implementing, where possible through code gen-

eration), analysing (testing and verifying) ASMs. The tool environment should

support to capture design knowledge in a rigorous and electronically available

way. It should be linked as much as possible to established design ows and

exploit their achievements; for an encouraging successful project in this context

see the description [89] in this volume. Together with an advanced tool envi-

ronment a model and a proof theory of ASMs are needed which in particular

de�ne practical re�nement principles, ideally together with corresponding proof

schemes; see [115] for a good start. The proof theory we need should alleviate

the formalization e�ort encountered in practical applications, instead of making

things more diÆcult; it should support abstraction and re�nement, structuring

and layering in proofs instead of focussing on a single (worse if only machine ori-

ented) level of detailing. The ASM theory should build upon and extend what

has been achieved in more speci�c design approaches which are supported by

a rich tool environment, like CFSMs, B, UML, VDM, Petri nets, etc. This is

a ridge walk between freedom and discipline, creativity and pattern oriented

design, generality and specialization, expressability and limitations by tool sup-

port.

The \codeless form of programming" o�ered by ASMs helps porting ap-

plication programs from one platform or language to another and could lead to

fruitful applications for plug-and-play software technology [9]. Paradigmatic and

parameterized ASM components and (de)composition techniques for construct-

ing them have to be de�ned and to be made available in libraries. ASMs should

also be put to use to enhance current (mostly signature oriented) software ar-

chitecture description techniques by adding semantical content to the structural

de�nitions. This is particularly promising at the levels of what in [122] is called

conceptual architecture and module interconnection architecture. Conceptual ar-

chitecture refers to the ground model level where domain speci�cs play a major

role; the module interconnection architecture level reects implementation de-

cisions which are independent of any particular progamming language, such as

the logical/functional decomposition, layers with allowable import/export rela-

tions, interface constraints, etc.. The integration potential of ASMs, as a uni-

versal model of computation, is crucial in achieving the goal to capture the

overall behavior of a complex system in terms of the behavior of the inter-

acting components, by whatever rigorous descriptions are appropriate (static,

dynamic, functional, state-based, etc.). This will not only improve the reuse and

the recon�guration possibilities for system descriptions, but also contribute to a

satisfactory comparative analysis of di�erent architectural models.

It would be interesting to investigate the possibilities ASMs o�er for a theo-

retical foundation of good testing methods for high-level design. ASMs can help

to solve the crucial and essentially creative part of test case selection, given that

this selection is driven by appplication domain expert knowledge and thus can

be formulated using the ASM ground model. The ground model may allow one

to even generate a test scheme. Furthermore the ground model supports solving

the oracle problem of testing: the expected output, which has to be compared

with the execution output, can be de�ned using the ground model speci�cation

(which is independent of the programming language where the system will be

encoded). A similar remark applies to static testing (code inspection) where one

has to formulate the properties to be checked.

No doubt in this presentation ASMs have received much praise. To �gure out

whether this is only adulation or whether there is a fundamentum in re, there is

only one thing one can do: put ASMs to the test.

Acknowledgment. Thanks for the critical remarks received on drafts of this

paper from Donatella Barnocchi, Don Batory, Jonathan Bowen, Axel Dold, Mike

Holcombe, Jim Huggins, Hans Langmaack, Hanno Nickau, Peter P�appinghaus,

Gerhard Schellhorn, Peter Schmitt, Wolfgang Sch�onfeld, Dilip Soni, Lothar Thiele,

Kirsten Winter, Je� Zucker. To Michel Sintzo� thanks also for the stimulating

discussion on the history of the concept of abstract machines. Last but not least

thanks to my students in the Fall 1998 Speci�cation Methods Course, in particu-

lar Marenco Yari, Fabrizio Sanna, Cristian Gozzi, Tommaso Mangini, Emanuele

Lupi, Andrea Pieroni and Cinzia Ridolfo, for the ASM reuse experiments men-

tioned above.

In: Hutter, D., Stephan, W., Traverso, P., Ullmann, M. (eds): Current Trends

in Applied Formal Methods (FM-Trends 98). Lecture Notes in Computer Science,

Vol. 1641, pp. 1-43. Springer-Verlag, Berlin Heidelberg New York (1999)

References

1. Abraham, R.: Evaluating Generalized Tabular Expressions in Software Documen-

tation. M. Eng. Thesis, CRL Report 346, McMaster University, Hamilton, Ontario,

Canada (1997)

2. http://www.eecs.umich.edu/gasm/, http://www.uni-paderborn.de/cs/asm.html

3. Abrial, J.-R.: The B-Book. Assigning Programs to Meanings. Cambridge University

Press (1996)

4. Anlau�, M., Kutter, P., Pierantonio, A.: Formal Aspects of and Development En-

vironments for Montages. In: Sellink, M. (ed): 2nd International Workshop on the

Theory and Practice of Algebraic Speci�cations. Springer Workshops in Comput-

ing (1997)

5. Araujo, L.: Correctness Proof of a Distributed Implementation of Prolog by Means

of ASMs. J. of Universal Computer Science. Special ASM Issue 3(5) (1997)

6. Aristotle. Analytica Posteriora I,1, 71a,1 sq.

7. Banach, R., Poppleton, M.: Retrenchment: An Engineering Variation on Re�ne-

ment. In: Bert, D. (ed): B'98: Recent Advances in the Development and Use of the

B Method. Lecture Notes in Computer Science, Vol. 1393. Springer-Verlag, Berlin

Heidelberg New York (1998) 129-147

8. Barnocchi, D.: L"Evidenza" nell'assiomatica aristotelica. Proteus II,5 (1971) 133{

144

9. Batory, D., Singhai, V., Sirkin, M., Thomas, J.: Scalable Software Libraries. ACM

SIGSOFT'93: Symposium on the Foundations of Software Engineering. Los Ange-

les/California (1993)

10. Batory, D., Coglianese, L., Goodwin, M., Shafer, S.: Creating Reference Architec-

tures: An Example from Avionics. Symposium on Software Reusability. Seattle/

Washigton (1995)

11. Batory, D., O'Malley, S. : The Design and Implementation of Hierarchical Software

Systems with Reusable Components. ACM Transactions on Software Eng. and

Methodology (October 1992)

12. Behm, P. Burdy, L., Meynadier, J.-M.: Well De�ned B. In: Bert, D. (ed): B'98:

Recent Advances in the Development and Use of the B Method. Lecture Notes in

Computer Science, Vol. 1393. Springer-Verlag, Berlin Heidelberg New York (1998)

29-45

13. Blass, A., Gurevich, Y.: The Linear Time Hierarchy Theorems for Abstract State

Machines. J. of Universal Computer Science. Special ASM Issue, 3(4) (1997) 247-

278

14. Blass, A., Gurevich, Y., Shelah, S. : Choiceless Polynomial Time. EECS Dept.

University of Michigan, Technical Report CSE-TR-338-97 (1997)

15. Beierle, Ch., B�orger, E.: Speci�cation and Correctness Proof of a WAM Extension

with Abstract Type Constraints. Formal Aspects of Computing 8(4) (1996) 428-462

16. Beierle, Ch., B�orger, E.: Re�nement of a Typed WAM Extension by Polymorphic

Order-Sorted Types. Formal Aspects of Computing 8(5) (1996) 539-564

17. Beierle, Ch., B�orger, E., D- urd-anovi�c I., Gl�asser, U., Riccobene,E.: Re�ning Ab-

stract Machine Speci�cations of the Steam Boiler Control to Well Documented Ex-

ecutable Code. In: Abrial, J.-R., B�orger, E., Langmaack, H. (eds.): Formal Meth-

ods for Industrial Applications. Specifying and Programming the Steam-Boiler

Control. Lecture Notes in Computer Science, State{of{the{Art Survey, Vol. 1165.

Springer-Verlag, Berlin Heidelberg New York (1996) 52{78

18. B�orger, E.: A Logical Operational Semantics for Full Prolog. Part I: Selection

Core and Control. CSL'89. Lecture Notes in Computer Science, Vol. 440. Springer-

Verlag, Berlin Heidelberg New York (1990) 36{64

19. B�orger, E.: A Logical Operational Semantics for Full Prolog. Part II: Built-in

Predicates for Database Manipulations. In: Rovan, B. (ed): MFCS'90. Mathemat-

ical Foundations of Computer Science. Lecture Notes in Computer Science, Vol.

452. Springer-Verlag, Berlin Heidelberg New York (1990) 1{14

20. B�orger, E.: Logic Programming: The Evolving Algebra Approach. In: Pehrson, B.,

Simon, I. (eds): IFIP 13th World Computer Congress 1994. Volume I: Technology

and Foundations. Elsevier, Amsterdam (1994) 391{395

21. B�orger, E.: Why Use Evolving Algebras for Hardware and Software Engineering.

In: Bartosek, M., Staudek, J., Wiedermann, J.(eds): SOFSEM'95. 22nd Seminar on

Current Trends in Theory and Practice of Informatics. Lecture Notes in Computer

Science, Vol. 1012. Springer-Verlag, Berlin Heidelberg New York (1995)236{271

22. B�orger, E., D�assler, K.: Prolog: DIN Papers for Discussion. ISO/IEC JTCI SC22

WG17 Prolog standardization document, no. 58,.NPl, Middlesex (1990) 92{114

23. ISO/IEC 13211-1 Information Technology-Programming Languages-Prolog-Part 1:

General Core (1995)

24. B�orger, E., Del Castillo, G.: A Formal Method for Provably Correct Composition

of a Real-Life Processor out of Basic Components (The APE100 Reverse Engi-

neering Project). Proc. of the First IEEE International Conference on Engineering

of Complex Computer Systems (ICECCS'95). Extended version in: Gurevich, Y.,

B�orger, E. (eds): Evolving Algebras. Mini{Course. University of Aarhus. BRICS

NS-95-4 (1995) 195{222

25. B�orger, E., Demoen, B.: A Framework to Specify Database Update Views for

Prolog. In: Maluszynski, M. J. (ed): PLILP'91. Lecture Notes in Computer Science,

Vol. 528. Springer-Verlag, Berlin Heidelberg New York (1991) 147{158. See also:

The View on Database Updates in Standard Prolog: a Proposal and a Rationale.

In: ISO/IEC JTC1 SC22 WG17 Prolog Standardization Report no.74 (February

1991) pp. 3-10

26. B�orger, E., D- urd-anovi�c, I.: Correctness of Compiling Occam to Transputer Code.

Computer Journal 39(1) (1996) 52{92

27. B�orger, E., D- urd-anovi�c, I., Rosenzweig, D.: Occam: Speci�cation and Compiler

Correctness. Part I: The Primary Model. In: Olderog, E.-R. (ed): Proc. of PRO-

COMET'94 (IFIP Working Conference on Programming Concepts, Methods and

Calculi). North-Holland (1994) 489{508

28. B�orger, E., Gl�asser, U.: A Formal Speci�cation of the PVM Architecture. In:

Pehrson, B., Simon, I. (eds): IFIP 13th World Computer Congress 1994. Volume

I: Technology and Foundations. Elsevier, Amsterdam (1994) 402{409

29. B�orger, E., Gl�asser, U.: Modelling and Analysis of Distributed and Reactive Sys-

tems Using Evolving Algebras. In: Gurevich, Y., B�orger, E. (eds): Evolving Alge-

bras. Mini{Course. University of Aarhus. BRICS NS-95-4 (1995) 128{153

30. B�orger, E., Gl�asser, U., Mueller, W.: The Semantics of Behavioral VHDL'93 De-

scriptions. EURO-DAC'94 European Design Automation Conference with EURO-

VHDL'94. Proc. IEEE CS Press, Los Alamitos/CA (1994) 500{505

31. B�orger, E., Gl�asser, U., Mueller, W.: Formal De�nition of an Abstract VHDL'93

Simulator by EA{Machines. In:Delgado Kloos, C., Breuer, P.T. (eds): Semantics

of VHDL. Kluwer (1995) 107{139

32. B�orger, E., Gurevich, E., Y.., Rosenzweig, D.: The Bakery Algorithm: Yet Another

Speci�cation and Veri�cation. In: B�orger, E. (ed): Speci�cation and Validation

Methods. Oxford University Press, (1995) 231{243

33. B�orger, E., Huggins, J.: Annotated Bibliography on Abstract State Machines

(ASMs). EATCS Bulletin (February 1998)

34. B�orger, E., Lopez-Fraguas, F.J., Rodrigues-Artalejo, M.: A Model for Mathemati-

cal Analysis of Functional Logic Programs and their Implementations. In: Pehrson,

B., Simon, I. (eds): IFIP 13th World Computer Congress 1994. Volume I: Technol-

ogy and Foundations. Elsevier, Amsterdam (1994) 410{415. Full version: Towards

a Mathematical Speci�cation of Narrowing Machines. Report DIA 94/5, Dep. In-

form�atica y Autom�atica. Universidad Complutense, Madrid (March 1994) 1{30

35. B�orger, E., Mazzanti. , S.: A Practical Method for Rigorously Controllable Hard-

ware Design. In: Bowen, J.P., Hinchey, M.B., Till, D. (eds): ZUM'97: The Z Formal

Speci�cation Notation. Lecture Notes in Computer Science, Vol. 1212. Springer-

Verlag, Berlin Heidelberg New York (1997) 151{187

36. B�orger, E., Mearelli, L.: Integrating ASMs into the Software Development Life

Cycle. J. of Universal Computer Science, Special ASM Issue, 3 (5) (1997) 603-665

37. B�orger, E., Riccobene, E.: A Formal Speci�cation of Parlog. In: Droste, M., Gure-

vich, Y. (eds): Semantics of Programming Languages and Model Theory. Gordon

and Breach (1993) 1{42

38. B�orger, E., Rosenzweig, D.: An Analysis of Prolog Database Views and their Uni-

form Implementation. In: Prolog. Paris Papers{2. ISO/IEC JTC1 SC22 WG17

Prolog Standardization Report no.80 (July 1991) 87{130

39. B�orger, E., Rosenzweig, D.: A Mathematical De�nition of Full Prolog. Science of

Computer Programming. 24 (1995) 249{286

40. B�orger, E., Rosenzweig, D.: The WAM{De�nition and Compiler Correctness. In:

Beierle, Ch.,Pl�umer, L. (eds): Logic Programming: Formal Methods and Practical

Applications. Elsevier Science B.V./North{Holland (1995) 20{90

41. B�orger, E., Salamone, R.: CLAM Speci�cation for Provably Correct Compilation

of CLP(R) Programs. In: B�orger, E. (ed): Speci�cation and Validation Methods.

Oxford University Press, (1995) 97{130

42. B�orger, E., Schmitt, P.: A Formal Operational Semantics for Languages of Type

Prolog III. Lecture Notes in Computer Science, Vol. 533. Springer-Verlag, Berlin

Heidelberg New York (199) 67{79

43. B�orger, E., Schulte, W.: Programmer Friendly Modular De�nition of the Semantics

of Java. In: Alves-Foss, J. (ed): Formal Syntax and Semantics of Java. Lecture

Notes in Computer Science, Vol. 1523. Springer-Verlag, Berlin Heidelberg New

York (1999) 353 { 404. Extended Abstract in: Berghammer, R., Simon, F. (eds):

Programming Languages and Fundamentals of Programming. University of Kiel

(Germany) TR 9717 (1997) 175{181.

44. B�orger, E., Schulte, W.: De�ning the Java Virtual Machine as Platform for Prov-

ably Correct Java Compilation. In: Brim, L., Gruska, J., Zlatuska, J. (eds): Proc.

MFCS'98. Lecture Notes in Computer Science, Vol. 1450. Springer-Verlag, Berlin

Heidelberg New York (1998) 17{35

45. B�orger, E., Schulte, W.: Initialization Problems for Java. Software|Concepts and

Tools 20 (4) (1999)

46. B�orger, E., Schulte, W.: Modular Design for the Java Virtual Machine Architecture.

In: B�orger, E. (ed): Architecture Design and Validation Methods. Springer Verlag,

Berlin Heidelberg New York 1999

47. Bowen, D. Personal communication. Palo Alto (5.11.1991)

48. Bowen, J.P.: Formal Speci�cation and Documentation Using Z: A Case Study

Approach. Int. Thomson Computer Press (1996)

49. B�uchi, J.R.: Finite Automata, their Algebras and Grammars. Siefkes, D. (ed).

Springer-Verlag (1988)

50. Chow, T.S.: Testing Software Design Modeled by Finite State Machines. IEEE

Trans.Softw.Engineering 4(3) (1978) 178{187

51. Cremers, A.B.C., Hibbard, T.N.: Formal Modeling of Virtual Machines. IEEE

Transactions on Software Engineering SE-4(5) (1987) 426{436

52. Dahl, O.: Discrete Event Simulation Languages. In: F. Genuys (ed): Programming

Languages. Academic Press (1968) 349{395

53. Dahl, O., Dijkstra, E.,Hoare, C.: Structured Programming. Academic Press (1972)

54. Del Castillo, G.: Towards Comprehensive Tool Support for Abstract State Ma-

chines: The ASM Workbench Tool Environment and Architecture. This volume

55. Del Castillo, G., Hardt, W.: Fast Dynamic Analysis of Complex HW/SW-Systems

based on Abstract State Machines. IEEE Proc. 6th. International Workshop on

HW/SW Co-Design (CODES/CASHE'98). Washington (March 1998)

56. Dijkstra, E.W.: Structure of the T.H.E. Multiprogrammming System. Communi-

cations of ACM 11 (1968) 341{346

57. Dijkstra, E.W.: Notes on Structured Programming. In: Structured Programming.

Academic Press, New York (1972) 1{82

58. Dold, A.: A Formal Representation of Abstract State Machines using PVS. Veri�x

Report Ulm/6.2 (July 1998)1{25

59. Eilenberg, S.: Automata, Languages and Machines. Vol.A. Academic Press (1974)

60. Fitzgerald, J., Gorm Larsen, P.: Modelling Systems. Practical Tools and Techniques

in Software Development. Cambridge University Press (1998)

61. Fuchs, N.E.: Speci�cations are (Preferably) Executable.IEE/BCS Software Engi-

neering Journal 7(5) (1992) 323{334

62. Gaudel, M.C.: G�en�eration et Preuve de Compilateurs Bas�ees sur une S�emantique

Formelle des Langages de Programmation. Th�ese, L'Institut National Polytech-

nique de Lorraine (1980)

63. Geist, A., Beguelin, A., Dongarra, J.,Jiang, W., Manchek, B., Sunderam, V.: PVM

3 User's Guide and Reference Manual. Technical Report ORNL/TM-12187. Oak

Ridge National Laboratory, Oak Ridge/Tennessee 37831 (September 1994)

64. Gl�asser, U., Gotzhein, R.: Towards a New Formal SDL Semantics - Outline of

an ASM Behavior Model. Submitted to 9th SDL Forum, Montreal/Quebec (21-25

June 1999) http://www.iro.umontreal.ca/SDL/

65. Gl�asser, U., Karges, R.: Abstract State Machines Semantics of SDL. J. of Universal

Computer Science 3 (12) (1997) 1382{1414

66. Gl�asser, U., Prinz, A.: Abstract State Machines Semantics of SDL. Submitted

(1999)

67. Giese, M., Kempe, D., Sch�onegge, A.: KIV zur Veri�kation von ASM-

Spezi�kationen am Beispiel der DLX-Pipelining Architektur. University of Karl-

sruhe, Institute for Logic, Complexityy and Deduction Systems. Int. Rep. 16/97

(1997) 1{37

68. Goerigk, W., Ho�mann, U.: Rigorous Compiler Implementation Correctness: How

to Prove the Real Thing Correct. This volume

69. Gosling, J., Joy, B., Steele, G.: The Java(tm) Language Speci�cation. Addison

Welsley (1996)

70. Gr�adel, E., Gurevich, Y.: Meta�nite Model Theory. Lecture Notes in Computer

Science, Vol. 960. Springer-Verlag, Berlin Heidelberg New York (1995) 313{366

71. Gurevich, Y: A New Thesis. Abstracts. American Mathematical Society (August

1985) 85T-68-203.

72. Gurevich, Y.: Algorithms in the World of Bounded Resources. In: Herken, R. (ed):

The Universal Turing Machine{A Half-Century Story. Oxford University Press(

1988) 407{416.

73. Gurevich, Y.: Logic and the Challenge of Computer Science. In: B�orger, E. (ed):

Current Trends in Theoretical Computer Science. Computer Science Press (1988)

1{57

74. Gurevich, Y.: Evolving Algebras: An Attempt to Discover Semantics. Bulletin

EATCS 43 (1991) 264{284. Slightly revised in: Rozenberg, G., Salomaa, A. (eds):

Current Trends in Theoretical Computer Science. World Scienti�c (1993) 274{308

75. Gurevich, Y.: Evolving Algebra 1993: Lipari Guide. In: B�orger, E. (ed): Speci�ca-

tion and Validation Methods. Oxford University Press (1995) 9{36

76. Gurevich, Y.: The Sequential ASM Thesis. Bulletin of the EATCS (February 1999)

77. Hayes, I.J., Jones, C.B.: Speci�cations are not (Necessarily) Executable. IEE/BCS

Software Engineering Journal 4(6) (1989) 330{338

78. Heberle, A., L�owe, W., Trapp, M.: Safe Reuse of Source to Intermediate Language

Compilations. In: Chillarege, R. (ed): Proc. 9th. Int. Symp. on Software Reliability

Engineering (1998) http://www.chillarege.com/issre/fastabstracts/98417.html

79. Hinrichsen, H.: Formally Correct Construction of a Pipelined DLX Architecture.

Darmstad University of Technology, Dept. of Electrical and Computer Engineering.

TR 98-5-1 (1998)

80. Hoare, C.A.R.: The Structure of an Operating System. Lecture Notes in Computer

Science, Vol. 46. Springer-Verlag, Berlin Heidelberg New York (1976) 242{265

81. Hoare, C.A.R.: Mathematical Models for Computing Science. Manuscript (August

1994) 1{65

82. Holcombe, M.: X-Machines as a Basis for Dynamic System Speci�cation. Software

Engineering Journal 3(2) (1988) 69{76

83. Holcombe, M., Ipate, F.: Correct Systems. Springer-Verlag, Berlin Heidelberg New

York (1998)

84. Horning, J., Randell, B.: Process Structuring. Computing Surveys 5 (1973) 5{30

85. Huggins, J. K., Van Campenhout, D.: Speci�cation and Veri�cation of Pipelining

in the ARM2 RISC Microprocessor. ACM Transactions on Design Automation of

Electronic Systems 3 (4) (October 1998)

86. IEEE Standard VHDL Language Reference Manual|IEEE Std 1076{1993. The

Institute of Electrical and Electronics Engineering. New York/NY (1994)

87. Janicki, R.: On a Formal Semantics of Tabular Expressions. Faculty of Engineering,

McMaster University. Hamilton/Ontario. CRL Report 355 (1997). Short version

in: Towards a Formal Semantics of Parnas Tables. ACM/IEEE Proceedings of

the 17th International Conference on Software Engineering, Seattle (April 1995)

231{240

88. Janicki, R., Parnas, D.L., Zucker, J.I.: Tabular Representations in Relational Docu-

ments. In: Brink, C., Kahl, W., Schmidt, G.(eds): Relational Methods in Computer

Science. Springer-Verlag, Berlin Heidelberg New York (1997) 184{196

89. Kutter, P.W., Schweitzer, D., Thiele, L.: Integrating Formal Domain Speci�c Lan-

guage Design in the Software Life Cycle. This volume

90. Kwon, K.: A Structured Presentation of a Closure-Based Compilation Method for

a Scoping Notion in Logic Programming. J. of Universal Computer Science, Special

ASM Issue, 3(4)(1997) 341{376

91. Lavagno, L., Sangiovanni-Vincentelli, A., Sentovich, E.M.: Models of Computa-

tion for System Design. In: B�orger, E. (ed): Architecture Design and Validation

Methods. Springer- Verlag, Berlin Heidelberg New York (1999)

92. Laycock, G.T.: The Theory and Practice of Speci�cation Based Testing. PH.D.

Thesis, University of SheÆeld, UK (1992)

93. L�otzbeyer, A.: Task Description of a Fault-Tolerant Production Cell. FZI, Univer-

sity of Karlsruhe/Germany. Version 1.6 (June 17, 1996)

94. L�otzbeyer, A., M�uhlfeld, R.: Task Description of a Flexible Production Cell with

Real Time Properties. FZI, University of Karlsruhe and Siemens ZT SE 1/Ger-

many. Version 2.1 (July 30, 1996)

95. Mearelli,L.: Re�ning an ASM Speci�cation of the Production Cell to C

++ Code.

J. of Universal Computer Science, Special ASM Issue 3(5) (1997) 666{688

96. Marcotty, M., Ledgard, H.F.: The World of Programming Languages. Springer-

Verlag, Berlin Heidelberg New York (1986)

97. Van der Meulen, M., Clement, T.: Formal Methods in the Speci�cation of the

Emergency Closing System of the Eastern Scheldt Storm Surge Barrier. This vol-

ume

98. Mosses, P.D.: Denotational Semantics. In: Van Leeuwen, J.(ed.): Handbook of TCS.

Elsevier (1990)

99. Mosses, P.D.: Action Semantics. Cambridge University Press (1992)

100. Nielson, H.R., Nielson, F.: Semantics with Applications. Wiley (1992)

101. Pair, C.: Types Abstraits et S�emantique Alg�ebrique des Langages de Programma-

tion. Centre de Recherche en Informatique de Nancy. TR 80-R-011 (February/July

1980) 1{46

102. P�appinghaus, P., B�orger, E.: Industrial Use of ASMs for System Documentation.

In: J�ahnichen, S., Loeckx, J., Wirsing, M. (eds): Logic for System Engineering.

Dagstuhl Seminar Report 171 (9710) 26

103. Parnas, D.L.: Information Distribution Aspects of Design Methodology. In:

Freiman, C.V. (ed): Proc. of IFIP Congress 1971. Volume 1: Foundations and

Systems. North-Holland (1972) 339{344

104. Parnas, D.L.: Personal communication (1997)

105. Parnas, D.L.: \Formal Methods" Technology Transfer Will Fail. J. Systems Soft-

ware 40 (1998) 195{198

106. Parnas, D.L., Darringer, J.: SODAS and a Methodology for System Design. Proc.

AFIPS Fall Joint Conf. Vol.31. Academic Press (1967) 449{474

107. Parnas, D.L., Madey, J.: Functional Documents for Computer Systems. Science

of Computer Programming 25 (1995) 41{62

108. Pippenger, N.: Pure versus Impure Lisp. ASM Transactions on Programming

Languages and Systems 19 (1997) 223{238

109. Popper, K.: Logik der Forschung (1935)

110. Potet, M.-L., Rouzaud, Y.: Composition and Re�nement in the B-Method. In:

Bert, D. (ed): B'98: Recent Advances in the Development and Use of the B Method.

Lecture Notes in Computer Science, Vol. 1393. Springer-Verlag, Berlin Heidelberg

New York (1998) 46-65

111. Pusch, C.: Veri�cation of Compiler Correctness for the WAM. In: Von Wright,

J., Grundy, J., Harrison, J.(eds): Theorem Proving in Higher Order Logics

(TPHOLs'96). Lecture Notes in Computer Science, Vol. 1125. Springer-Verlag,

Berlin Heidelberg New York (1996) 347{362

112. Ramadge, P.J.G., Wonham, W.M.: The Control of Discrete Event Systems. Proc.

of the IEEE 77(1) (1989) 81{98

113. Reisig, W.: Elements of Distributed Algorithms. Modeling and Analysis with Petri

Nets. Springer-Verlag, Berlin Heidelberg New York (1998)

114. Rischel, H., Sun, H.: Design and Prototyping of Real-Time Systems using CSP

and CML. 9th Euromicro Workshop on Teal-Time Systems. Toledo (June 11-13,

1997)

115. Schellhorn, G.: Veri�kation abstrakter Zustandsmaschinen. PhD Thesis. Univer-

sity of Ulm (1999)

116. Schellhorn, G., Ahrendt, W.: Reasoning about Abstract State Machines: The

WAM Case Study. J. of Universal Computer Science. Special ASM Issue, 3(4)

(1997) 377{413

117. Schwank, I.: Zur Konzeption pr�adikativer versus funktionaler kognitiver Struk-

turen und ihrer Anwendung. Zentralblatt f�ur Didaktik der Mathematik 6 (1996)

168{183

118. Scott, D.: Some De�nitional Suggestions for Automata Theory. J. of Computer

and System Sciences 1 (1967) 187{212

119. Shaw, M.: The Impact of Abstraction Concerns on Modern Programming Lan-

guages. Proc. IEEE 68 (9) (1980)

120. Shaw, M., Garlan, D.: Formulations and Formalisms in Software Architecture. In:

van Leeuwen, J. (ed): Computer Science Today: Recent Trends and Developments.

Springer-Verlag, Berlin Heidelberg New York (1995) 307{323

121. Sommerville, I.: Software Engineering. Addison-Wesley (1992)

122. Soni, D., North, R.L., Hofmeister, C.: Software Architecture in Industrial Appli-

cations. Proc. 17th ACM Conf. Sw. Engg.. Seattle (1995)

123. St�ark, R.: The Theoretical Foundations of LPTP (A Logic Program Theorem

Prover). The Journal of Logic Programming 36 (1998) 241{269

124. Stegm�uller, M.M.: Formale Veri�kation des DLX RISC-Prozessors: Eine Fallstudie

basierend auf abstrakten Zustandsmaschinen. Diploma Thesis, University of Ulm

(1998)

125. Stenzel, K., Haneberg, D.: Personal communication. KIV Group, University of

Ulm/Germany

126. Tanenbaum, A.S.: Structured Computer Organization (1976)

127. Tarski, A.: Der Wahrheitsbegri� in den formalisierten Sprachen. Studia Philo-

sophica 1 (1936) 261{405

128. Thue, A.: Probleme �uber Ver�anderungen von Zeichenreihen nach gegebenen

Regeln. Skr.Videnks.Sels I (10)1{34

129. Turing, A.: On computable numbers, with an application to the Entschei-

dungsproblem. Proc. London Math. Soc. (2) 42 (1937) 230{265

130. UML|Uni�ed Modeling Language. Rational Software Corporation. Updates via

the worldwide web (http://www.rational.com)

131. Goerigk, W., Dold, A., Gaul, T., Goos, G., Heberle, A., von Henke, F. W., Ho�-

mann, U., Langmaack, H., Pfeifer, H., Ruess, H., Zimmermann, W.: Compiler

Correctness and Implementation Veri�cation: The Veri�x Approach. In: Fritz-

son, P.(ed): Proceedings of the Poster Session of CC'96| International Con-

ference on Compiler Construction. IDA Technical Report LiTH-IDA-R-96-12.

Link�oping/Sweden (1996)

132. Winter, K.: Model Checking for Abstract State Machines. J. of Universal Com-

puter Science. Special ASM Issue, 3(5) (1997)

133. Wirsing, M.: Handbook of Algebraic Speci�cations. In: van Leeuwen, J. (ed):

Handbook of Theoretical Computer Science B. Elsevier (1990) 675{788

134. Wirth, N.: Program Development by Stepwise Re�nement. Comm. ACM 14 (4)

(1971)

135. Wirth, N.: Algorithms & Data Structures. Prentice-Hall (1975)

136. Zimmermann, W., Gaul, T.: On the Construction of Correct Compiler Back-

Ends: An ASM Approach. J. of Universal Computer Science. Special ASM Issue,

3(5) (1997) 504{567

137. Zurcher, F.W., Randell, B.: Iterative Multi-Level Modelling{A Methdology for

Computer System Design. Proc. IFIP Congress 1968. North-Holland, Amsterdam

(1968) 867{871

PS. The paper is going to be published in: Hutter, D., Stephan, W., Traverso,

P., Ullmann, M. (eds): Current Trends in Applied Formal Methods (FM-Trends

98). Lecture Notes in Computer Science, Vol. 1641, pp. 1-43. Springer-Verlag,

Berlin Heidelberg New York (1999)

The copyright for this paper is held by Springer-Verlag Berlin Heidelberg

New York:

http://www.springer.de/comp/lncs/index.html

