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Abstract

In hardware and software design model checkers are nowadays used with success to verify
properties of system components [23]. The limits of the approach to cope with the size and the
complexity of modern computer-based systems are felt when it comes to provide evidence of the
trustworthiness of the entire system that has been built out of verified components. To achieve
this task one has to experimentally validate or to mathematically verify the composition of the
system. This reveals a gap between the finite state machine (FSM) view of model-checkable
components and the architectural system view. In this paper we show how Abstract State
Machines (ASM) can be used to fill this gap for both design and analysis, using a flexible
concept of ASM component.

1 Introduction

Often model-checking and theorem proving are viewed as competing system verification methods,
and as being in contrast to experimental validation methods which are based upon simulation and
testing. However, all these methods are needed to cope with complex hw/sw systems, which need
high-level models to exhibit the behavior that goes beyond what can be defined and analyzed by
looking at the Finite State Machine (FSM) components. We explain in this paper how the frame-
work of Abstract State Machines (ASMs) allows one to smoothly integrate current verification and
validation methods into a design and analysis approach which permits to uniformly link abstract
and detailed system views.

ASMs can be introduced as a natural extension of FSMs, in the form of Mealy-ASMs or of
control-state ASMs as defined in [9], namely by allowing a) states with arbitrarily complex or
abstract data structures and b) runs with transitions where multiple components execute simulta-
neously (synchronous parallellism). Concerning the notion of run, basic synchronous ASMs come
with the classical FSM notion of sequential run, characterized by sequences of successive compu-
tation steps of one machine. However, each single ASM step may involve multiple simultaneous
actions. The example in Fig. 1, which is taken from [36], defines the top-level sequential structure
of the execution semantics of so-called pipe statements in the language SpecC, an extension of
C by system-level features which are used in industrial hardware design. These statements are
parameterized by an Initialization statement, a condition which guards an iterative process, by an
Incrementing statement used to advance the iteration, and by finitely many subprocesses which are
spawned and deleted in a synchronized manner to fill, run and eventually flush the pipe. One finds
numerous applications of such synchronous ASM models in hardware-software co-design, see [22,
Ch.9] for a survey.

Asynchronously interacting FSMs, for example the globally asynchronous, locally synchronous
Codesign-FSMs [35], are captured by asynchronous ASMs where runs are partial orders of moves
of multiple agents. Multiple Mealy-ASM or control-state ASM components of an asynchronous
ASM exhibit locally synchronous behavior, whereas the globally asynchronous system character
is reflected by the generalization of the notion of sequential run to a partial order of execution
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Figure 1: Control state ASM for SpecC pipe statements

steps of the components. For a simple example see the Production Cell ASM with six component
machines in [17].

Concerning the extension of the notion of FSM-state, with ASMs the system designer has
arbitrary structures available to reflect any given notion of state; we call this for short freedom of
abstraction. This freedom of abstraction in combination with the powerful refinement notion offered
by ASMs (see [11]) provide a uniform conceptual framework for effectively relating different system
views and aspects in both design and analysis. In particular the framework supports a rigorous
mediation between the architectural system view and the detailed view of the components out of
which the system is built.

Based upon the extension of FSMs by ASMs built from FSM components, model-checking can
be applied to the FSM components, as has been done using the connection of the SMV model
checker to the ASM Workbench reported in [49, 25, 50]. To the global ASM, which describes the
overall system built from the components, one can apply theorem proving, using as assumptions
the model-checked local component properties. In addition experimental validation by simulation
and testing can be applied to the high-level ASM as well as to its lower level components, due to
the (mental as well as machine supported) executability of ASMs.

In Section 2 we explain how the abstraction and refinement mechanism coming with ASMs
provides the flexibility that is needed for the navigation between different system levels and for a
coherent combination of different system aspects. In Section 3 we show that a powerful component
concept derives from a natural ASM submachine concept that unifies the architectural and the
component level system view. It is based upon submachine replacement and refinement and pro-
vides various widely used composition schemes. For the benefit of the reader who does not know
the notion of ASMs, in Section 2.1 we also provide a working definition which shows how ASMs
capture in a natural and simple way the basic intuition of the concept of Virtual Machine. For
further details, including numerous modeling and verification case studies and complete historical
and bibliographical references, we refer to the AsmBook [22].

2 Relating high-level and component-level system views

To effectively and reliably link the architectural system view to its component-level view, and in
general high-level models to more detailed ones, one needs two things:

= a uniform conceptual framework (read: a sufficiently general language) to express the notions
involved at different levels of abstraction,
» a flexible method to navigate between the multiple levels of detailing.

Concerning the expressivity, from the short review we provide in Section 2.1 for the language of
ASMs it should become clear that its few and simple basic constituents are general enough to inte-
grate a great variety of useful system design and analysis patterns, leading from the requirements
capture level down to the level of executable code. It is crucial that with the ASM method the
same language can be used to define and analyse the various constituents of models, at all levels:

1Some of the material (in particular slides for lectures on the themes treated in the book) can also be downloaded
from the AsmBook website at http://www.di.unipi.it/AsmBook/.
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the rules for the dynamics, whether for the global system or for its components, as well as the
auxiliary procedures or functions on the variety of underlying data structures. In Section 2.2 we
explain how the ASM refinement method allows one to cross those multiple abstraction levels in a
way that coherently and organically links them and makes these connections documentable.

2.1 The language of ASMs

The language of ASMs is the language of mathematics, the language par excellence of any scientific
discourse. It is the same language where ASMs and their constituents are defined and analysed,
using appropriate notational conventions to achieve simplicity. As machines exhibiting dynamic
behavior ASMs are as general as virtual machines and algorithms can be, due to their definition
as transitions systems that transform abstract states. In fact the states of ASMs are arbitrary
mathematical structures: data are abstract objects (read: elements of sets or instances of classes)
equipped with basic operations and predicates (attributes or relations). A familiar view of such
structures is to treat them as given by tables. The entries of such tables are called locations and
come as pairs of a function or predicate name f and an argument (v1, . .., v,), which is formed by a
list of parameter values v; of whatever types. These locations represent the abstract ASM concept
of basic object containers (memory units), which abstracts from any specific memory addressing
and object referencing mechanism.

Location-value pairs (loc, v) are called updates and represent the basic units of state change in
ASM computations. In fact ASMs transform abstract states by multiple simultaneous conditional
updates that represent control-structure-free “If-Then” directives, the most general form of vir-
tual machine instructions. Technically speaking these instructions come as finite set of ordinary
transition rules of the following general form

if Condition then Updates

where the guard Condition under which a rule is applied is an arbitrary expression evaluating to
true or false. Updates is a finite set of assignments of the form

f(tla"'7tn) =1

whose simultaneous execution is to be understood as redefining the values of the indicated func-
tions f at the indicated arguments to the indicated values. More precisely in the given state, for
each rule with true guard, first all parameters ¢;, ¢t are evaluated to their values, say v;, v, then the
location (f, (v1,...,v,)) is updated to v, which represents the value of f(vy,...,v,) in the next
state.

Thus ASMs represent a form of “pseudo-code over abstract data” where the instructions are
guarded function updates. The abstract understanding of memory and memory update allows
the application domain modeler or the system designer to combine the operational nature of the
concepts of location and update with the freedom of tailoring them to the level of detail which is
appropriate for the given design or analysis task. The simultaneous execution of multiple updates
provides a rather useful instrument for high-level design to locally describe a global state change,
namely as obtained in one step through executing a set of updates of some locations. The local
description of global state change implies that by definition the next state differs from the previous
state only at locations which appear in the update set. This basic parallel ASM execution model
easens the specification of macro steps (using refinement and modularization as explained below),
it avoids unnecessary sequentialization of independent actions and it helps to develop parallel
or distributed implementations. The synchronous parallelism is enhanced by a notation for the
simultaneous execution of a rule R for each z satisfying a given condition ¢:

forall z with ¢
R

We illustrate this here by the ASM rule defined in [14] for the Occam instruction that spans
subprocesses: in one step the currently running process a creates k new subprocesses, activates
them and puts itself to sleeping mode, where the process activation provides the current environ-
ment and positions each subagent upon the code it has to execute. In this example we use the
object-oriented notation to denote the instantiation of some of the state functions.



OCCAMPARSPAWN =
if a.mode = running and instr(a.pos) = par(a, k) then
forall 1 < i < klet b = new(Agent) in
AcCTIVATE(D, a, 1)
parent(b) := a
a.mode := idle
a.pos := next(a.pos)
where ACTIVATE(b, a, i) =
{b.env := a.env, b.pos := pos(a, i), b.mode := running}

Similarly, non-determinism as a convenient way to abstract from details of scheduling of rule
executions can be expressed by rules of the form

choose z with ¢
R

where ¢ is a Boolean-valued expression and R is a rule. The meaning of such an ASM rule is to
execute rule R with an arbitrary x chosen among those satisfying the selection property ¢.

In defining an ASM one is free to choose the abstraction level and the complexity and the
means of definition of the auxiliary functions, which are used to compute locations and values in
function updates. The following standard terminology, which is illustrated by Fig. 2 and is known
as classification of ASM functions, names the different roles these functions can assume in a given
machine M and provides a strong support to modular system development.

Static functions never change during any run of M so that their values for given arguments
do not depend on the states of M, whereas dynamic functions may change as a consequence of
updates by M or by the environment, so that their values for given arguments may depend on
the states of M. Defining the static functions is independent from the description of the system
dynamics. This supports to separate the treatment of the statics of a system from that of its
dynamic behavior to reduce the complexity of the overall development task. Furthermore, whether
the meaning of these functions is determined by a mere signature (“interface”) description, or by
axiomatic constraints, or by an abstract specification, or by an explicit or recursive definition, or
by a program module, depends on the degree of information-hiding the specifier wants to realize.

Dynamic functions can be thought of as a generalization of array variables or hash tables. They
are divided into four subclasses, depending on whether the machine or its environment (in general:
other agents) update the function in question. Controlled functions (of M) are dynamic functions
which are directly updatable by and only by M, i.e. functions f which appear in at least one rule
of M as the leftmost function (namely in an update f(s) := ¢ for some s, ¢) and are not updatable
by the environment. These functions are the ones which constitute the internally controlled part
of the dynamic state of M. Monitored functions are dynamic functions which are read but not
updated by M and directly updatable only by the environment. They appear in updates of M,
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Figure 2: Classification of ASM functions, relations, locations



but not as the leftmost function of an update. These monitored functions constitute the externally
controlled part of the dynamic state of M. To describe combinations of internal and external
control of functions, interaction functions are used, also called shared functions and defined as
dynamic functions which are directly updatable by the rules of M and by the environment and
can be read by both. Out functions are dynamic functions which are updated but not read by M
and are monitored by the environment.

The concepts of monitored, shared and out(put) functions allow one to separate in a specifica-
tion the computation concerns from the communication concerns. The definition does not commit
to any particular mechanism (e.g. message passing via channels) to describe the exchange of infor-
mation between an agent and its environment. The only (but crucial) assumption made is that in
a given state the values of all functions are determined.

Another pragmatically important distinction is that between basic and derived functions. Basic
functions are functions which are taken for granted (declared as “given”); derived functions are
functions which even if dynamic are not updatable either by M or by the environment, but may be
read by both and yield values which are defined by a fixed scheme in terms of other functions. Thus
derived functions are a kind of global method with read-only variables; to orthogonalize system
descriptions one can specify and analyze them separately from the main machine.

Many other system design patterns can be conveniently integrated into ASMs via the two
above classifications of functions or analogously locations (see [13] for details). For example if an
object-oriented notation is desired, one can naturally support it by parameterizing functions f(z)
(similarly for rules representing methods) by a parameter a denoting an object (or an agent), thus
creating ‘instances’ Az f,(z) of f. As example see the relativization of the state functions mode,
pos, env in the machine OCCAMPARSPAWN above. An illustration for introducing rule instances
is given below (FIFO-buffer example in Section 3).

It is pragmatically important that the definitions are all phrased in terms of basic mathematical
or algorithmic notions and thus can be grasped by every system engineer, relying only upon
fundamental operational concepts of computing that are familiar from programmming practice,
independently from the knowledge of any specific computational platform or programmming/design
language or underlying logic. However, also a detailed formal definition of the semantics of ASMs,
which is useful as basis for advanced analysis methods and for the development of well-documented
tool support for ASMs, is available in textbook form in the AsmBook [22, Ch.2]. Tt is formulated
there in terms of a first-order-logic-based derivation system.

2.2 Navigation between levels of detail

The method of ASMs exploits various means to provide smooth but rigorous links between different
levels of detail in a system description. As explained in the previous section, already the language of
ASMs via the function classification supports to separately describe the statics of a system and its
dynamics?, similarly to separately specify the internal behavior of a component and its interface to
the environment—and to link them together in the overall ASM model. It also supports to smoothly
incorporate into a system model specific language constructs, e.g. procedural or purely functional
or logico-axiomatic descriptions or even full-fledged programs of a given design or programming
language, all of which can be given separately from the ASM rules where they are used.

The natural companion of abstraction is refinement. Thus it should not come as a surprise that
in the same way in which ASMs provide maximal freedom of abstraction, as explained above, they
also provide a most general notion of refinement, a kind of meta-framework which can be tailored
to given practical needs of componentwise system development. This framework integrates well-
known more specific notions of refinement which have been defined in the literature (see [11, 39] for
details). More importantly it supports to pass in a well-documented and checkable manner from
an abstract model to a more detailed model, in a chain of such models, thus linking the outcome
of the different phases of system design and making these links communicatable to the various
experts involved. Here is a list of the main levels and experts involved.

» Different levels of precision for accurate high-level human understanding of a system. The
language of ASMs allows one to fine-tune the models to the needed degree of rigour. Numer-

2The C-based XASM system [1] has been used in [2, 3, 4] to support a uniform machine-executable ASM-
specification of the static and dynamic semantics of programming languages, and similarly in an architecture and
compiler co-generation project [48].



ous experts are involved who speak different languages, think at different levels of abstraction
and yet have to come to a common understanding of a system:

— Application domain expert and requirements engineer. The natural interpretation of
ASMs as control-structure-free system of “If-Then” directives supports their success-
ful use for building ASM ground models which allow one to rigorously capture system
requirements and help ensuring a correct understanding of the resulting model by all
parties involved. Since some stakeholders, for example the application domain experts,
are usually not familiar with the principles and concepts of software design, it is crucial
that the language of ASMs permits to formulate ground models in terms of the appli-
cation domain so that one can recognize in the model the structure of the real-world
problem. The language of ASMs allows one to combine in a uniform framework data
model features, which are typically of conceptual and application oriented nature, with
functional features defining the system dynamics and with user-interface features defin-
ing the communication between the data and functional model and neighboring systems
or applications. The systematic representation of the requirements in ASM ground mod-
els provides a basis for requirements inspection and thus makes the correctness and the
completeness of the requirements checkable for all the stakeholders. Due to the rigorous
character of ASM models this may include the verification of overall system properties.
Due to the executable character of ASMs, via ASM ground models one also obtains a
possibility for early system validation, typically by simulation of user scenarios or of
components. In addition, the frugal character of the ASM language helps to cope effec-
tively with the continuous change of requirements by adaptations of the ground model
abstractions, see [10].

— Requirements engineer and system designer. Here ground models play the role of an
accurate system blueprint where all the technical essentials of the software system to be
built are layed down and documented as basis for the high-level design decisions.

— System designer and programmer. The component definition in Section 3 shows how
ASMs mediate between the overall system view defined by the designer and the local
view of model-checkable components developed by the programmer.

— System designer or programmer and tester or maintenance expert. The hierarchy of
ASM models leading from the ground model to code allows one to identify the place
where something may or did go wrong or where a desired extension can be realized
appropriately. From the sequence of models and from the descriptions of model-based
runtime assertions appearing in the test reports one can read off the relevant design
features to locate bugs or trace versioning effects.

— System designer and system user. The abstractions built into ASM ground models help
to provide an understanding of the overall functionality of the system, to avoid erroneous
sytem use.

» Human understanding and implementation. These two levels can be linked by an organic,
effectively maintainable refinement chain of rigorous coherent models. At each level the divide
and conquer method can be applied to prove a system property for the detailed model, namely
by proving it from appropriate assumptions in the abstract model and showing that the
refinement is correct and satisfies those assumptions. For this the practicality of the ASM
refinement method is crucial, namely for faithfully reflecting an intended design decision
(or reengineering idea) and for justifying its correct implementation in the refined model.
The practicality stems from the generality and flexibility of the ASM refinement notion, as
explained in [11]. By providing this possibility the ASM method fills a gap in the UML
framework.

» Design and analysis. This well-known separation of different concerns (“You can analyze
only what has been defined already”) helps not to restrict the design space or its structuring
into components by proof principles which are coupled to the design framework in a fixed
a priori defined way. The ASM method permits to apply any appropriate proof principle
(see the discussion below) once the model is defined. A typical class of examples where
this distinction is crucial is the rigorous definition of language or platform standards. An
outstanding ASM model for such a language standard is the one built for SDL-2000 in [31].
Another example is provided by the ASM model for C# defined in [15, 44] to reflect as much
as possible the intuitions and design decisions underlying the language as described in the



ECMA standard [28] and in [33]. An example for the combination of an ASM definition and of
its detailed mathematical analysis has been developed in [46] for Java and its implementation
on the Java Virtual Machine. The model is the basis for a detailed mathematical analysis,
including proofs that Java is type-safe, that the compiler is correct and complete and that
the bytecode verifier is complete and sound.

» Different analysis types and levels. Such a distinction is widely accepted for system design
levels and methods, but only rarely is it realized that it also applies to system analysis. The
language of ASMs allows one to calibrate the degree of precision with respect to the needs of
the application, whether data oriented (e.g. using the entity relationship model) or function
oriented (e.g. using flow diagrams) or control oriented (e.g. using automata of various kinds).
Here are the major levels of analysis the ASM method allows one to treat separately and to
combine their results where needed.

— Experimental validation (system simulation and testing) and mathematical verification.
For example the ASM Workbench [24] has been extensively used in an industrial reengi-
neering project at Siemens [18] for testing and user-scenario simulation in an ASM
ground model. The AsmGofer system [41, 42] has been used in connection with the
ASM models for Java and the JVM in [46] for testing Java/JVM language constructs.
In a similar way the .NET-executable AsmL engine [29] is used at Microsoft Research
for ground model validation purposes. The possibility of combining where appropriate
validation with verification in a uniform framework helps not to be at the mercy of only
testing.

— Different verification levels and the characteristic concerns each of it comes with. Each
verification layer has an established degree of to-be-provided detail, formulated in an
appropriate language. E.g. reasoning for human inspection (design justification by
mathematical proofs) requires different features than using rule-based reasoning sys-
tems (mechanical design justification). Mathematical proofs may come in the form of
proof ideas or proof sketches (e.g. for ground model properties like in [7, 17, 19]) or as
completely carried out mathematical proofs (see for example the stepwise verification
of a mutual exclusion protocol [16] or of the compilation of Occam programs to Trans-
puter code [14] that is split into 16 refinement proofs). Formalized proofs are based on
inference calculi which may be operated by humans (see for example various logics for
ASMs which have been developed in [32, 43, 38, 30, 45, 37]) or as computerized systems
(see for example the KIV verification [40, 39] of the ASM-based WAM-correctness proof
in [20] or the ASM-based PVS-verification of compiler back-ends in [26, 27, 30]). For
mechanical verification one has to distinguish interactive systems (theorem proving sys-
tems like PVS, HOL, Isabelle, KIV) from automatic tools (model checkers and theorem
provers of the Otter type). Each verification or validation technique comes with its
characteristic implications for the degree of detail needed for the underlying specifica-
tion, for the language to be used for its formulation and for the cost of the verification
effort. Importantly, all these techniques are integratable into the ASM framework.

We resume the above explanations by Fig. 3 which is taken from [19] and illustrates the iterative
process to link ASM specifications to code via model-supported stepwise design.

3 Submachine-based component concept

We present in this section a component concept for ASMs that goes beyond the concept of compo-
nents of an asynchronous ASMs. In asynchronous ASMs multiple synchronous ASM components
are put together to a globally asynchronous system with partial order runs or interleaving runs
instead of sequential runs. A simple example is given in Section 3.3, more involved examples
are provided by the class of globally asynchronous, locally synchronous Codesign-FSMs [35] men-
tioned in the introduction. In Section 3.1 we extend this notion of ‘ASM component’ by providing
some widely used operators to compose ASMs out of submachines. These operators maintain the
atomic-action-view which is characteristic for the synchronous parallelism of basic ASMs. Other
operators allow one to build ASMs out of components with structured or durative ‘actions’ and
are surveyed in Section 3.2.
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Figure 3: Models and methods in the development process

3.1 Operators for the Composition of Components

Since the dynamics of ASMs is defined by rules, the most general form of an ASM component is that
of a rule3. Therefore the most general form of composition of a complex ASM out of a simpler one
is by rule replacement, namely of a (simpler) rule occurring as subrule of say M by another (more
complex) rule’. The result of such a substitution of rule’ for rule in M is written M (rule’/rule).
The ASM method leaves the freedom to the designer to impose further restrictions on the form of
the component rules or on their use, guided by the needs of the particular application. We survey
some examples in Section 3.2.

We discuss now some particularly frequent special cases of rule replacement which are used to
build complex machines out of components.
Macro refinement. A typical use of rule replacement is made when in a sequence of stepwise
model refinements it comes to replace a macro definition by a new one. For this case we use the
following special notation where Redef (macro) stands for the underlying new definition of macro.

M (redef macro) = M (Redef (macro)/macro)

Rule refinement. Another frequent use of rule replacement occurs upon the refinement of an
abstract rule by a concrete ASM, a generalization of macro refinement in case the macro is a rule.
For example the abstract submachines which appear in Fig. 1 can be defined in more detail as
independent modules, see [36]. Another example can be found in the sequence of stepwise refined
models for the Java Virtual Machine in [46]. There, one ASM defines a diligent JVM by adding to
a bytecode interpreter component trustful VM a bytecode verifier component, which calls method
per method an abstract rule verify VM, as illustrated in Fig. 4.

The abstract rule verify VM is then refined by a submachine verifyVM which successively
checks every instruction to satisfy the necessary type conditions and in the positive case propagates
them to all successor instructions, using three components check, propagate, succ as illustrated in
Fig. 5. For this form of refinement one can reuse the notation introduced for macros, writing
redef M = Redef (M) where Redef (M) stands for the refinement of M.

Adding/deleting rules. Another common case of submachine replacements is the addition or
deletion of rules. Due to the synchronous parallelism of ASMs no special notation is needed for
adding rules, whereas for the deletion of R from M we write M minus R. Adding new rules is
characteristic of purely incremental (also called conservative) refinements. A recent example is
provided in [15, 44] to structure C# into layered components of by and large orthogonal language
features, similarly to the decomposition in [46] of Java and the JVM into a hierarchy of components,
as illustrated for the components propagate VM, check, succ of the JVM verifier in Fig.5. The model
for the entire language is a parallel composition of all submachines. This incremental system
development allows one to successivly introduce the following language layers, a feature one can

3This is analogous to the situation in TLAY [34] where a specification is given by a formula in which components
are represented by subexpressions.
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exploit not only for a piecemeal validation and verification of the entire language (as done for Java
and its implementation on the JVM in [46]), but also for a systematic approach to teaching a
complex programming language to beginners (see [12]):

imperative core, related to sequential control by while programs, built from statements and
expressions over the simple types of C+#,

static class features realizing procedural abstraction with class initialization and global (mod-
ule) variables,

object-orientation with class instances, instance methods, inheritance,

exception handling,

concurrency,

delegates together with events (including for convenience here also properties, indexers, at-
tributes),

unsafe code with pointer arithmetic.

Adding guards/updates. The refinement of rules is often defined at the level of the two con-
stituents of rules, namely guards and updates. For a machine which executes a given machine M
only if a certain guard condition G is satisfied we write

addGuard G to M = if G then M

For adding a set of updates to the updates of a rule in ‘normal form’ if Cond then Updates
we write as follows:

M addUpd U =

let M = if Cond then Updates in



if Cond then
Updates
U

In Section 3.3 we illustrate the use of these two operators by a small example for a componen-
twise system definition.

3.2 Specific ASM component concepts

In this section we briefly review some more specific component concepts which have been defined
in terms of ASMs and have been implemented using some of the major systems for the execution
of large classes of ASMs.

All the operators defined in Section 3.1 maintain the atomic-action-view which is characteristic
for the synchronous parallelism of basic ASMs. In [21] three fundamental standard operators
are defined for ASMs with non-atomic behavior, namely sequential composition, iteration and
recursive submachines. These three concepts have been implemented in the publicly available
system AsmGofer [41] for executing ASMs. The definitions guarantee that one can build global
ASMs, out of component ASMs, whose synchronous parallel computation may be viewed both in
a global atomic way and in a local non-atomic way. For each of these three operators, the global
view of the complex machine treats the component as a black-box that performs an atomic action.
The global properties can be formulated on the basis of the analysis the local view allows one
to perform, namely by looking in a white-box manner at the internal details of the non-atomic
(iterative or otherwise durative) behavior of the component. This double view allows one to
perform a hierarchical system development, where the model checking of the components is the
basis for a global system analysis by mathematical proof and experimental validation (simulation)
techniques.

In [47] an ASM component concept is defined which treats components in terms of the services
they export or import.

The open source XASM tool [1] for the execution of ASMs is built around a component-based
C-like language. It has been used in [4] for the implementation of component interaction. It
also implements the above mentioned notion of sequential submachines. However, it provides no
support for hierarchical modeling.

An specific ASM component concept that follows the pattern of Mealy automata is defined
in [42, Ch.2] and has been applied for the high-level verification of VHDL-based hardware design.
It comes with a component-based verification technique that has been used in two industrial
projects at Siemens reported in [42]. Roughly speaking, a component is defined there as a basic
ASM whose rule may contain submachine calls and whose interface consists of VHDL-like in/out
functions; they are used for providing input respectively output at successive computation steps
to compute input/output behaviour in the way known from Mealy FSMs. Composition of such
components is defined not by name sharing of input and output functions, but by connecting inputs
and outputs: several inputs may get the same input value; a connected input is connected either
with an ouput or with an input which in the transitive closure is not connected to the original
input (so that one can determine for connected inputs the input value determining source).

The tool AsmL [29] developed at Microsoft is used in [6, 5] to implement on the .NET platform
behavioral interface specifications by ASMs, including component interfaces, and to test COM
components against these specifications.

3.3 Componentwise system development: an example

We illustrate the above two operators for adding guards and updates by a small example taken
from [34, Ch.3]. We use the occasion to also show the above mentioned painless introduction of
object-oriented notation by parameterization of rules. The example deals with a stepwise definition
of a bounded FIFO buffer from a basic component for a 2-phase handshake protocol.

The first step consists in defining this protocol to transmit a data value from a sender to a
receiver who has to acknowledge the receipt before the next data value can be sent. Sending is
possible only if ready = ack (first handshaking), the action includes flipping the boolean variable
ready. An acknowledgement can be made only if ready = ack is false (second handshaking), the
action includes flipping the boolean variable ack. This is expressed by the following ASM which
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defines a channel with rules for sending and receiving data, using a submachine FLIP to flip the
value of a boolean variable. The sending rule is parameterized by the data to be sent.

CHANNEL = {SEND, RECEIVE} where
SEND(d) = if ready = ack then
FLIP(ready)
val :=d
RECEIVE = if ready # ack then FLIP(ack)

The second step consists in parameterizing this handshake protocol machine by an agent self,
which can be instantiated to produce independent copies of the machine. Since the state of
CHANNEL is made out of the three 0-ary functions ready, ack, wval, also these functions have
to be relativized to self. This comes up to replace CHANNEL by self .CHANNEL, which in ordinary
mathematical notation is written CHANNEL(self); similarly for SEND, RECEIVE and the functions
ready, ack, val.

The third step consists in defining an unbounded FIFO-buffer from two instances of CHANNEL
as its components, one for placing an input into the queue and one for emitting an output from
the queue. Since appending an element to the queue and deleting from it an element are largely
independent from each other, we want to avoid a possibly premature design decision about the
particular scheduling for these two operations. As a consequence the FIFO-buffer is formulated by
an asynchronous ASM, which consists of two synchronous ASM components built from instances
of CHANNEL: the instantiation FIFOBUFFERIN by an agent in appends elements to the queue, the
instantiation FIFOBUFFEROUT by an agent out deletes elements from the queue.

When an element is sent that should be put into the buffer, upon acknowledging the receipt
channel agent in has to append the received value to the (tail of the) queue. This is achieved by
extending the set of updates performed by in.RECEIVE.

F1rOBUFFERIN = {in.SEND, BUFRCV} where
BurRcv = in.RECEIVE addUpd APPEND(in.val, queue)

When an element is sent as output from the buffer, channel agent out has also to delete the
head element from the queue. This is achieved by adding an update to out.SEND. In addition this
operation should only be performed when the queue is not empty, so that we also add an additional
guard to out.SEND to check this property.

F1rOBUFFEROUT = {BUFSEND, out. RECEIVE} where
BUFSEND = addGuard queue # empty to
out.SEND(head(q)) addUpd DELETE(head (queue), queue)

These two ASMs may operate asynchronously, forming an asynchronous ASM FIFOBUFFER
whose components share the common data structure queue. They could also be combined by
interleaving, as is done in [34, Ch.3]), resulting in the following interleaved FIFOBUFFER version.

F1FOBUFFER = FIFOBUFFERIN or FIFOBUFFEROUT

The operator or for the non-deterministic choice among rules R(7) is defined as follows*:
R(0)or ...or R(n —1) = choose i < n do R(i)

The fourth and last step of our illustration of stepwise building a machine out of components
consists in refining the unbounded buffer into a bounded one with queue of maximal length N. It
suffices to substitute for the rule BUFRCV its refinement by the additional guard length(queue) <
N, thus preventing its application when the buffer is full.

BOUNDEDFIFOBUFFER(N) =
F1rOBUFFER(addGuard length(queue) < N to BUFRCcV/BUFRCV)

4For further discussion of how to combine process algebra constructs with ASMs see [8].

11



4 Conclusion

We have illustrated how the ASM method can help to bridge the gap between specification and
design by rigorous high-level (hw/sw co-) modeling which is linked seamlessly to executable code,
in a way the practitioner can verify and validate. We have explained how based upon the clear
notions of ASM state and state transition and their refinements, system verification and validation
at different levels of abstraction and rigor can be combined by the ASM method in a uniform way.
We have defined some ASM composition operators which allow one to combine, in design and
analysis, the global system view with the local view of the components. In particular this allows
one to verify overall system features by theorem proving methods which exploit the model-checked
properties of the components.
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