
Modeling with Abstract State Machines:

A support for accurate system design and

analysis

Egon B�orger

Universit�a di Pisa, Dipartimento di Informatica, I-56125 Pisa, Italy
boerger@di.unipi.it

Abstract. We survey applications of the Abstract State Machines (ASM)
method for high-level system modeling and for well-documented re�ne-
ments of abstract models to code.

The outstanding feature of the ASM method is that within a single, precise
yet simple, conceptual framework it naturally supports and uniformly links the
major activities which occur during the typical software life cycle, namely:

{ requirements capture by constructing satisfactory ground models, i.e. ac-
curate high-level system blueprints, serving as precise contract and formu-
lated in a language which is understood by all stakeholders (see [5]),

{ detailed design by stepwise re�nement, bridging the gap between speci�-
cation and code design by piecemeal, systematically documented detailing
of abstract models down to executable code (see [6]),

{ validation of models by their simulation, based upon the notion of ASM run
and supported by numerous tools to execute ASMs (ASM Workbench [18],
AsmGofer [32], C-based XASM [2], .NET-executable AsmL engine [23]),

{ veri�cation of model properties by proof techniques, also tool supported,
e.g. by KIV [31] or PVS [20, 24] or model checkers [37, 19, 26],

{ documentation for inspection, reuse andmaintenance by providing, through
the intermediate models and their analysis, explicit descriptions of the soft-
ware structure and of the major design decisions.

The key to the practicability of ASMs also under industrial constraints
is to be found in the simple and intuitive way in which ASMs support de�n-
ing most general Virtual Machines (VMs) and their re�nements to lower levels
of abstraction. ASMs naturally extend Finite State Machines by allowing a)
states with arbitrarily complex or abstract data structures and b) runs with
transitions where multiple components act either simultaneously (synchronous
parallellism) or asynchronously (like globally asynchronous, locally synchronous
Codesign-FSMs). The exible ASM re�nement notion provides a uniform con-
ceptual framework for e�ectively relating di�erent system views and aspects, in
both design and analysis, �lling a gap in the UML framework.



The general yet frugal character of the ASM language, namely for a rigorous
form of \pseudo-code over abstract data", is the source for the exibility in
modeling and analysis which has been experienced in such di�erent areas as:

{ industrial standardization projects: models for the ITU-T standard for SDL-
2000 [27], the ECMA standard for C# [10], the IEEE-VHDL93 standard [11],
the ISO-Prolog standard [8],

{ programmming languages: de�nition and analysis of the semantics and the
implementation for the major real-life programmming languages, e.g. Sys-
temC [30], Java and its implementation on the Java Virtual Machine [34],
domain-speci�c languages used at the Union Bank of Switzerland [29], etc.

{ architectural design: veri�cation (e.g. of pipelining schemes [12] or of VHDL-
based hardware design at Siemens [33, Ch.2]), architecture/compiler co-
exploration [35, 36],

{ reengineering and design of industrial control systems: software projects at
Siemens related to railway [7, 13] and mobile telephony network compo-
nents [17], debugger speci�cation at Microsoft [3],

{ protocols: for authentication, cryptography, cache-coherence, routing-layers
for distributed mobile ad hoc networks, group-membership etc., focussed on
veri�cation,

{ veri�cation of compilation schemes and compiler back-ends [14, 9, 21, 34],
{ modeling e-commerce [1] and web services [22],
{ simulation and testing: �re detection system in coal mines [16], simulation
of railway scenarios at Siemens [13], implementation of behavioral interface
speci�cations on the .NET platform and conformence test of COM compo-
nents at Microsoft [4], compiler testing [28], test case generation [25].

The AsmBook [15] introduces into the ASM method and illustrates it by
textbook examples, which are extracted from real-life case studies and indus-
trial applications. Additional material, including slide decks for lecturers, can be
downloaded from the AsmBook website http://www.di.unipi.it/AsmBook/.
To appear in: B. Rumpe and W. Hesse (Eds): Modellierung 2004. Proceed-
ings (Marburg 23.-26.3.2004). GI-Edition Lecture Notes in Informatics, Vol.P-45,
pp.235-239.

References

1. S. Abiteboul, V. Vianu, B. Fordham, and Y. Yesha. Relational transducers for
electronic commerce. In Proc. 17th ACM Sympos. Principles of Database Systems
(PODS 1998), pages 179{187. ACM Press, 1998.

2. M. Anlau� and P. Kutter. Xasm Open Source. Web pages at
http://www.xasm.org/, 2001.

3. M. Barnett, E. B�orger, Y. Gurevich, W. Schulte, and M. Veanes. Using Abstract
State Machines at Microsoft: A case study. In Y. Gurevich, P. Kutter, M. Odersky,
and L. Thiele, editors, Abstract State Machines: Theory and Applications, volume
1912 of Lecture Notes in Computer Science, pages 367{380. Springer-Verlag, 2000.



4. M. Barnett and W. Schulte. Contracts, components and their runtime veri�cation
on the .NET platform. J. Systems and Software, Special Issue on Component-
Based Software Engineering, 2002.

5. E. B�orger. The ASM ground model method as a foundation of requirements en-
gineering. In N.Dershowitz, editor, Manna-Symposium, volume 2772 of LNCS.
Springer-Verlag, 2003.

6. E. B�orger. The ASM re�nement method. Formal Aspects of Computing, 15:237{
257, 2003.

7. E. B�orger, H. Busch, J. Cuellar, P. P�appinghaus, E. Tiden, and I. Wildgruber.
Konzept einer hierarchischen Erweiterung von EURIS. Siemens ZFE T SE 1 In-
ternal Report BBCPTW91-1 (pp. 1{43), Summer 1996.

8. E. B�orger and K. D�assler. Prolog: DIN papers for discussion. ISO/IEC JTCI
SC22 WG17 Prolog Standardization Document 58, National Physical Laboratory,
Middlesex, England, 1990.

9. E. B�orger and I. Durdanovi�c. Correctness of compiling Occam to Transputer code.
Computer Journal, 39(1):52{92, 1996.

10. E. B�orger, G. Fruja, V. Gervasi, and R. St�ark. A complete formal de�nition of the
semantics of C#. Theoretical Computer Science, to appear, 2004.

11. E. B�orger, U. Gl�asser, and W. M�uller. The semantics of behavioral VHDL'93
descriptions. In EURO-DAC'94. European Design Automation Conference with
EURO-VHDL'94, pages 500{505, Los Alamitos, California, 1994. IEEE Computer
Society Press.

12. E. B�orger and S. Mazzanti. A practical method for rigorously controllable hardware
design. In J. P. Bowen, M. B. Hinchey, and D. Till, editors, ZUM'97: The Z
Formal Speci�cation Notation, volume 1212 of LNCS, pages 151{187. Springer-
Verlag, 1997.

13. E. B�orger, P. P�appinghaus, and J. Schmid. Report on a practical application of
ASMs in software design. In Y. Gurevich, P. Kutter, M. Odersky, and L. Thiele,
editors, Abstract State Machines: Theory and Applications, volume 1912 of LNCS,
pages 361{366. Springer-Verlag, 2000.

14. E. B�orger and D. Rosenzweig. The WAM { de�nition and compiler correctness.
In C. Beierle and L. Pl�umer, editors, Logic Programming: Formal Methods and
Practical Applications, volume 11 of Studies in Computer Science and Arti�cial
Intelligence, chapter 2, pages 20{90. North-Holland, 1995.

15. E. B�orger and R. F. St�ark. Abstract State Machines. A Method for High-Level
System Design and Analysis. Springer, 2003.

16. W. Burgard, A. B. Cremers, D. Fox, M. Heidelbach, A. M. Kappel, and
S. L�uttringhaus-Kappel. Knowledge-enhanced CO-monitoring in coal mines. In
Proc. Int. Conf. on Industrial and Engineering Applications of Arti�cial Intelli-
gence and Expert Systems (IEA-AIE), pages 511{521, Fukuoka, Japan, 4{7 June
1996. .

17. G. D. Castillo and P. P�appinghaus. Designing software for internet telephony:
experiences in an industrial development process. In A. Blass, E. B�orger, and
Y. Gurevich, editors, Theory and Applications of Abstract State Machines, Schloss
Dagstuhl, Int. Conf. and Research Center for Computer Science, 2002.

18. G. Del Castillo. The ASM Workbench. A Tool Environment for Computer-Aided
Analysis and Validation of Abstract State Machine Models. PhD thesis, Universit�at
Paderborn, Germany, 2001.

19. G. Del Castillo and K. Winter. Model checking support for the ASM high-level
language. In S. Graf and M. Schwartzbach, editors, Proc. 6th Int. Conf. TACAS



2000, volume 1785 of Lecture Notes in Computer Science, pages 331{346. Springer-
Verlag, 2000.

20. A. Dold. A formal representation of Abstract State Machines using PVS. Veri�x
Technical Report Ulm/6.2, Universit�at Ulm, Germany, July 1998.

21. A. Dold, T. Gaul, V. Vialard, and W. Zimmermann. ASM-based mechanized
veri�cation of compiler back-ends. In U. Gl�asser and P. Schmitt, editors, Proc. 5th
Int. Workshop on Abstract State Machines, pages 50{67. Magdeburg University,
1998.

22. R. Farahbod, U. Gl�asser, and M. Vajihollahi. Speci�cation and validation of the
business process execution language for web services. In B. Thalheim and W. Zim-
mermann, editors, Abstract Sate Machines 2004, Lecture Notes in Computer Sci-
ence. Springer-Verlag, 2004.

23. Foundations of Software Engineering Group, Microsoft Research. AsmL. Web
pages at http://research.microsoft.com/foundations/AsmL/, 2001.

24. A. Gargantini and E. Riccobene. Encoding Abstract State Machines in PVS. In
Y. Gurevich, P. Kutter, M. Odersky, and L. Thiele, editors, Abstract State Ma-
chines: Theory and Applications, volume 1912 of LNCS, pages 303{322. Springer-
Verlag, 2000.

25. A. Gargantini and E. Riccobene. Using Spin to generate tests from ASM speci�ca-
tions. In E. B�orger, A. Gargantini, and E. Riccobene, editors, Abstract State Ma-
chines 2003{Advances in Theory and Applications, volume 2589 of Lecture Notes
in Computer Science, pages 263{277. Springer-Verlag, 2003.

26. A. Gawanmeh, S. Tahar, and K. Winter. Interfacing ASMs with the MDG tool. In
E. B�orger, A. Gargantini, and E. Riccobene, editors, Abstract State Machines 2003{
Advances in Theory and Applications, volume 2589 of Lecture Notes in Computer
Science, pages 278{292. Springer-Verlag, 2003.

27. U. Gl�asser, R. Gotzhein, and A. Prinz. Formal semantics of sdl-2000: Status and
perspectives. Computer Networks, 42(3):343{358, June 2003.

28. A. Kalinov, A. Kossatchev, A. Petrenko, M. Posypkin, and V. Shishkov. Using ASM
speci�cations for compiler testing. In E. B�orger, A. Gargantini, and E. Riccobene,
editors, Abstract State Machines 2003{Advances in Theory and Applications, vol-
ume 2589 of Lecture Notes in Computer Science, page 415. Springer-Verlag, 2003.

29. P. Kutter, D. Schweizer, and L. Thiele. Integrating domain speci�c language design
in the software life cycle. In Proc. Int. Workshop on Current Trends in Applied
Formal Methods, volume 1641 of Lecture Notes in Computer Science, pages 196{
212. Springer-Verlag, 1998.

30. W. Mueller, J. Ruf, and W. Rosenstiel. An ASM-based semantics of systemC simu-
lation. In W. Mueller, J. Ruf, and W. Rosenstiel, editors, SystemC - Methodologies
and Applications, pages 97{126. Kluwer Academic Publishers, 2003.

31. G. Schellhorn and W. Ahrendt. Reasoning about Abstract State Machines: The
WAM case study. J. Universal Computer Science, 3(4):377{413, 1997.

32. J. Schmid. Executing ASM speci�cations with AsmGofer. Web pages at
http://www.tydo.de/AsmGofer.

33. J. Schmid. Re�nement and Implementation Techniques for Abstract State Ma-
chines. PhD thesis, University of Ulm, Germany, 2002.

34. R. F. St�ark, J. Schmid, and E. B�orger. Java and the Java Virtual Machine: De�-
nition, Veri�cation, Validation. Springer-Verlag, 2001. .

35. J. Teich. Project Buildabong at University of Paderborn. http://www-
date.upb.de/RESEARCH/BUILDABONG/buildabong.html, 2001.



36. J. Teich, R. Weper, D. Fischer, and S. Trinkert. A joint architecture/compiler
design environment for ASIPs. In Proc. Int. Conf. on Compilers, Architectures
and Synthesis for Embedded Systems (CASES2000), pages 26{33, San Jose, CA,
USA, November 2000. ACM Press.

37. K. Winter. Model checking for Abstract State Machines. J. Universal Computer
Science, 3(5):689{701, 1997.


