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Abstract. We survey applications of the Abstract State Machines (ASM)
method for high-level system modeling and for well-documented re�ne-
ments of abstract models to code.

The outstanding feature of the ASM method is that within a single, precise
yet simple, conceptual framework it naturally supports and uniformly links the
major activities which occur during the typical software life cycle, namely:

{ requirements capture by constructing satisfactory ground models, i.e. ac-
curate high-level system blueprints, serving as precise contract and formu-
lated in a language which is understood by all stakeholders (see [5]),

{ detailed design by stepwise re�nement, bridging the gap between speci�-
cation and code design by piecemeal, systematically documented detailing
of abstract models down to executable code (see [6]),

{ validation of models by their simulation, based upon the notion of ASM run
and supported by numerous tools to execute ASMs (ASM Workbench [18],
AsmGofer [32], C-based XASM [2], .NET-executable AsmL engine [23]),

{ veri�cation of model properties by proof techniques, also tool supported,
e.g. by KIV [31] or PVS [20, 24] or model checkers [37, 19, 26],

{ documentation for inspection, reuse andmaintenance by providing, through
the intermediate models and their analysis, explicit descriptions of the soft-
ware structure and of the major design decisions.

The key to the practicability of ASMs also under industrial constraints
is to be found in the simple and intuitive way in which ASMs support de�n-
ing most general Virtual Machines (VMs) and their re�nements to lower levels
of abstraction. ASMs naturally extend Finite State Machines by allowing a)
states with arbitrarily complex or abstract data structures and b) runs with
transitions where multiple components act either simultaneously (synchronous
parallellism) or asynchronously (like globally asynchronous, locally synchronous
Codesign-FSMs). The exible ASM re�nement notion provides a uniform con-
ceptual framework for e�ectively relating di�erent system views and aspects, in
both design and analysis, �lling a gap in the UML framework.



The general yet frugal character of the ASM language, namely for a rigorous
form of \pseudo-code over abstract data", is the source for the exibility in
modeling and analysis which has been experienced in such di�erent areas as:

{ industrial standardization projects: models for the ITU-T standard for SDL-
2000 [27], the ECMA standard for C# [10], the IEEE-VHDL93 standard [11],
the ISO-Prolog standard [8],

{ programmming languages: de�nition and analysis of the semantics and the
implementation for the major real-life programmming languages, e.g. Sys-
temC [30], Java and its implementation on the Java Virtual Machine [34],
domain-speci�c languages used at the Union Bank of Switzerland [29], etc.

{ architectural design: veri�cation (e.g. of pipelining schemes [12] or of VHDL-
based hardware design at Siemens [33, Ch.2]), architecture/compiler co-
exploration [35, 36],

{ reengineering and design of industrial control systems: software projects at
Siemens related to railway [7, 13] and mobile telephony network compo-
nents [17], debugger speci�cation at Microsoft [3],

{ protocols: for authentication, cryptography, cache-coherence, routing-layers
for distributed mobile ad hoc networks, group-membership etc., focussed on
veri�cation,

{ veri�cation of compilation schemes and compiler back-ends [14, 9, 21, 34],
{ modeling e-commerce [1] and web services [22],
{ simulation and testing: �re detection system in coal mines [16], simulation
of railway scenarios at Siemens [13], implementation of behavioral interface
speci�cations on the .NET platform and conformence test of COM compo-
nents at Microsoft [4], compiler testing [28], test case generation [25].

The AsmBook [15] introduces into the ASM method and illustrates it by
textbook examples, which are extracted from real-life case studies and indus-
trial applications. Additional material, including slide decks for lecturers, can be
downloaded from the AsmBook website http://www.di.unipi.it/AsmBook/.
To appear in: B. Rumpe and W. Hesse (Eds): Modellierung 2004. Proceed-
ings (Marburg 23.-26.3.2004). GI-Edition Lecture Notes in Informatics, Vol.P-45,
pp.235-239.
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