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GLOSSARY
Algorithm. A procedure, also the finite text describing it, that can be mechanized, at least in principle.  Examples are electronic booking procedures, or the operating system of a computer, or protocols which govern the interaction of multiple computer programs in the internet. An important special group of algorithms are those procedures that compute functions, i.e. procedures which, started with any given argument, eventually terminate and yield the value of the function for that argument as output. Examples are the well-known methods for computing the four elementary arithmetical functions, or more generally computer programs which compute numerical functions.

Computer Program. A finite text, satisfying the syntactical conditions of the (so-called programming) language in which it is formulated, which can be executed on a computer. A computer program refers to the specific data structures of the programming language to which it belongs. A particularly important class of computer programs are the so-called reactive programs whose role is to continuously execute the actions associated to them, as distinguished from so-called sequential transformational programs that compute an input-output relation.

Finite State Machine. A machine to execute a set of instructions which determine, for each of a finite number of so-called internal (or control) states, and for each of a finite number of possible finite inputs, the next internal state and the (equally finite) output. A more precise definition of these transformational sequential FSMs is given in the text below.

Logic. The branch of mathematics that develops rigorous systems of reasoning, which are also called logics, and studies their mathematical properties. Usually a system of logic is defined syntactically by a formal language, establishing the set of legal expressions (also called formulae) of this logic, together with a system of rules allowing to deduce from given formulae (the so-called axioms) their logical consequences.  Semantically, a logic is defined by characterizing the intended interpretations of its formulae, yielding classes of models where the axioms, and the consequences deduced from them by the rules, are “true”. For first-order logic, such models are so-called structures, consisting of finitely many domains with functions and relations defined over them.

Abstract State Machine. A generalization of Finite State Machines to arbitrary structures, instead of finitely many control states, and to distributed runs, instead of sequential computations that transform input to output.  The two major subclasses of Abstract State Machines are the sequential ASMs and the distributed (multi-agent) ASMs. Such machines encompass any known form of virtual machines and real computers, in a way that can be made rigorous (see the explanation of the ASM Thesis below, where also a precise definition of ASMs is given).

Discrete Systems are dynamic systems that evolve in discrete steps, due to the abrupt occurrence of internal or external events. The system evolution is typically modelled as resulting from firing state transforming rules, which are triggered when certain (internal and/or external) conditions become true. Such systems encompass sequential (also called transformational) algorithms and their implementations as computer programs, but also systems of distributed (asynchronous concurrent) processes, like telecommunication systems, operating on physically or logically separate architectures and typically triggered by external (discrete or continuous physical) events. Methods for modelling sequential or distributed systems are intimately related to methods for validating and verifying these systems against their models.

I. Sequential Systems. 

Sequential discrete systems are dynamic systems with a law that determines how they evolve in discrete steps, producing for every initial state a sequence of states resulting from firing state transforming rules, which are triggered when certain conditions become true. Such sequences S0, S1, … are determined by the evolution law, usually rules which model the dynamics of the system, and by the initial state S0. This sequence constitutes what is also called a computation of the algorithmic or transformational process defined by the rules.  There is a great variety of such algorithmic systems, including manufacturing, transportation, business, administrative, and information handling processes as well as computers, where the rules are described by computer programs.  Numerous general purpose or specialized languages exist which are used to model and implement such systems.

A widespread criterion to classify different modelling languages is whether the system definitions they allow to formulate are state-transformation-based (also called operational) or purely logico-functional (also called declarative).  This dichotomy came into use around 1970 with the denotational and algebraic approaches to system descriptions, which were biased to modelling systems by sets of algebraic equations or axioms. A representative example is the Vienna Development Method (VDM) for constructing models of software systems in early design stages. Also declarative set-theoretic modelling, e.g. in Z, belongs here, as well as numerous forms of system modelling by axioms of specific logics, like temporal logics, logics of action, logics of belief, etc. The stateless form of modeling underlies also functional programming (e.g. in pure LISP or ML) and logic programming (e.g. in PROLOG), as opposed to imperative or object-oriented programming (e.g. in FORTRAN, C, JAVA).  

The fundamental problem, to whose solution the distinction between declarative and operational system models has been set out to contribute, is the necessity to provide the system designer with abstraction methods that enable one to cope with the ever increasing complexity of software and hardware systems. The idea was to tackle this problem by developing system definitions at levels of abstraction higher than the level of the machines where these systems are implemented, so that the resulting models can be analysed before the detailed design, coding, and testing are started. Unfortunately, formalizations by logical axioms inherently lead to global descriptions; in fact in addition to formalizing dynamic changes of mostly local system elements, the overwhelming part of the sets of axioms usually is concerned with stating that, under the specified conditions, all the other system parameters do not change. This phenomenon is known as the frame problem and yields high-level system models that are considerably larger than the final system. E.g. in the SCR method, which uses the temporal logic x/x’ notation within table based modelling of systems, the frame problem yields numerous so-called NC (No Change) clauses. Furthermore, it is usually difficult to reliably relate the (stateless) logical descriptions, by a sequence of stepwise refinements, to imperative code, which is executed and tested on state-transforming machines. See for instance the difficulties encountered in attempts to extend logical characterizations of passive databases by descriptions of the inherently reactive behaviour of active databases, in particular when it comes to model multiple database transactions that may happen during the execution of an active rule. Thus logico-functional modelling methods contribute to the gap, experienced in the practice of large-scale system design, between high-level system models and their executable counterpart on virtual or physical machines.

The same idea, namely to abstract from machine details, which are only relevant for the implementation, to obtain better understandable and verifiable high-level system models, underlies the development, since the end of the 60’ies, of numerous notions and specimens of abstract machines, also called virtual machines. Famous examples, developed for the implementation of programming languages, are the class concept of Simula67, Wirth’s P-Machine (for executing PASCAL programs), Warren’s Abstract Machine (for efficient implementations of PROLOG programs), Peyton Jones’ spineless tagless G-Machine (for efficient implementations of functional programs), the Java Virtual Machine (for platform independent execution of JAVA programs). Such machines split the implementation of programs into two steps, a compilation into intermediate byte code, and the interpretation of byte code by an abstract machine or its further compilation into runnable code. Virtual machines appear also in other areas, see for example the numerous forms of database machines, instruction set architectures, etc. This development paralleled for over twenty years the rich deployment of logico-algebraic specification methods, without having been connected to it, so that no general notion of abstract machine came out which could have been used as uniform and practical basis for high-level system modelling coming together with methods for refining the abstract models to executable and thereby testable ones.

Gurevich’s notion of Abstract State Machine (ASM) resolves the impractical dichotomy between declarative and operational modelling methods and yields a simple universal concept of virtual machines. The intended abstractions are realized by

a) the appropriate choice of the relevant, a priori arbitrary, data structures, which can be tailored to the system under investigation to make up the needed notion of states, and 

b) providing corresponding abstract machine instructions which describe the intended evolution (transformation) of states, at the desired level of detailing.

A . Sequential Abstract State Machines.
Sequential Abstract State Machines capture the notion of sequential algorithm, in the sense that for every sequential algorithm, there exists an equivalent sequential ASM (i.e. with the same set of states, the same set of initial states, and the same state transformation law).  This Sequential ASM Thesis relies upon the following three postulates for sequential algorithms from which it can be proved.  The sequential time postulate expresses that every sequential algorithm is associated with a set of states, a subset of initial states and a state transformation law (which is a function from states to states). The abstract-state postulate requires that the states of a sequential algorithm are first-order structures, with fixed domain and signature, and closed under isomorphisms (respecting the initial states and the state transformation law). The bounded exploration  postulate states that  for every sequential algorithm, the transformation law depends only upon a finite set of terms over the signature of the algorithm, in the sense that  there exists a finite set of terms such that for arbitrary states X and Y which assign the same values to each of these terms, the transformation law triggers the same state changes for X and Y. 

A sequential ASM is defined as a set of transition rules of form 

                                         If Condition then Updates 
which transform first-order structures (the states of the machine), where the guard Condition, which has to be satisfied for a rule to be applicable, is a variable free first-order formula, and Updates is a finite set of function updates (containing only variable free terms) of form

                                        f (t1,…,tn) := t .

The execution of these rules is understood as updating, in the given state and in the indicated way, the value of the function f at the indicated parameters, leaving everything else unchanged. This proviso avoids the frame problem of declarative approaches. In every state, all the rules which are applicable are simultaneously applied (if the updates are consistent) to produce the next state. If desired or useful, declarative features can be built into an ASM by integrity constraints and by assumptions on the state, on the environment, and on the applicability of rules.

Computations of sequential ASMs formalize the so-called transformational character of sequential systems, namely that each step of the system consists of an ordered sequence of two substeps of the environment and of the transformational program of the system. First the environment prepares the input on which the program is expected to be run, then the program fires its rules on the given input without further intervention from the environment. An example can be found in current implementations of active databases, where the occurrence of external events and the processing of active rules alternate. Part of the second substep may be that the program produces some output, which may be used by the environment for preparing the next input. This is often considered a third substep in this sequence of interactions between the environment and the transformational program, which together constitute the sequential system. 

In a sequential ASM M, this separation of the action of the environment from that of the transformational program is reflected in the following classification of functions, which make up the state of the system. A function f is called static, or rigid, if its values do not change in any of the states of M; f is called dynamic, or flexible, if its values may change from one to the next state of M. Dynamic functions are further classified into input functions, controlled  functions, output functions, and shared functions. Input functions for M are those functions that M can only read, which means that these functions are determined entirely by the environment of M. These functions are often also called monitored functions, because they are used to reflect the occurrence of events which trigger rules. Controlled  functions of M are those which are updated by some of the rules of M and are never changed by the environment. This means that M and only M can update these functions. Output functions for M are functions which M can only update but not read, whereas the environment can read them (without updating them). Shared functions are functions which can be read and updated by both M and the environment, which means that their consistency has to be guaranteed by special protocols.

This function classification includes a fundamental distinction for selection functions, which are an abstract form of scheduling algorithms. In fact static selection functions, like Hilbert’s ε-operator, whose values depend only upon the value of the set they choose from, are distinguished from dynamic selection functions, whose choice may depend upon the entire computation state. There is a standard notation for not furthermore specified selection functions, which is often used for modeling the phenomenon of non-determinism in discrete systems, namely for applying a rule for an element which satisfies a given condition:

                            choose x satisfying cond (x) in rule (x).

The above-defined abstract machines provide a practical (and by the Sequential ASM Thesis most general) framework for high-level modeling of complex discrete systems and for refining high-level models to executable system models. Important examples are given below. There are various ways to refine high-level ASM models to executable models, using various tools for executing ASMs (e.g. ASMGofer, ASM Workbench, XASM), coming also with implementations of natural ASM definitions for standard programming constructs, like sequentialization, iteration, and submachine calls.
B.  Specialized Modelling Languages for Sequential Systems .
Most of the numerous specification and programming languages are tailored to the particular modelling needs of the given domain of application, or of the given framework for modelling (read: defining and implementing) the class of systems of interest. 

The best known group of examples is constituted by programming languages belonging to the major (non-concurrent) programming paradigms, namely functional, logical, imperative, and object-oriented programming. All these modelling approaches can be viewed naturally, and in a rigorous way, as producing instantiations of ASMs at the corresponding level of abstraction. This has been proved explicitly for numerous programming languages, e.g. PROLOG, C, JAVA, by defining their semantics and their implementations on virtual machines as ASMs. In this way ASMs have been used also for modeling and analyzing  protocols, architectures, ASICS, embedded software systems, etc.  

Also active databases are special forms of ASMs, essentially systems of rules with so-called event, condition and action component. The event and condition part together form the ASM rule guard; the event describes the trigger which may result in firing the rule; the condition extracts, from the context in which the event has taken place, that part which must be satisfied to actually execute the rule, by performing the associated action. This action part describes the task to be carried out by the database rule, if the event did occur and the condition was true; it corresponds to the updates of ASM rules. Different active databases result from variations of 

a) the underlying notions of state, as constituted by the signature of events, conditions and actions, and of their relation to the database states, 

b) the scheduling of the evaluation of condition and action components relative to the occurrence of events (e.g. using coupling modes and priority declarations), 

c) the rule ordering (if any), etc. 

ASMs provide a rigorous and flexible semantical basis to reflect and analyse these different models for the interaction between active rules and the database proper, and to classify their implementations. The Sequential ASM Thesis guarantees, for instance, that the intuitive notion of active database “actions”, which may range from performing simple operations to the execution of arbitrary programs, is captured completely by the rigorous concept of ASM rule.

For some other widely used forms of system models, we now provide their explicit definition in terms of ASMs.

One of the historically first and most important types of system models is constituted by finite automata, also called Moore automata or Finite State Machines (FSM), which are sequential ASMs where all the rules have the form 

     If ctl = i and in = a then ctl := j

with functions in for input, and ctl  for internal (control) states, which assume only a finite number of values. FSMs which yield also output (also called Mealy automata) are equipped with an additional function out for output, which assumes only a finite number of values, and is controlled by an additional update out := b in the ASM rule above. By analogy, Mealy-ASMs are ASMs whose rules are like those of Mealy automata, but with the output update replaced by a fully blown ASM rule. In a similar fashion one can define all the classical models of computation (e.g. the varieties of Turing machines, Thue systems, Markov algorithms, Minsky machines, Recursive Functions, Scott machines, Eilenberg’s X machines, Push Down Automata) and their modern extensions, like relational database machines, Wegner’s interaction machines or timed automata or Discrete Event Systems (DES).  

DES are tailored to describe the control structure for the desired occurrence of events, in the system to be modelled, by specifying allowed event sequences as belonging to languages generated by finite automata. Time can be incorporated into Discrete Event Systems by timer variables, whose update rules relate event occurrences and the passage of time, thus constituting one among many other timed extensions of finite automata for modelling real-time systems. 

Wegner’s interacting machines add to Turing machines that each computation step may depend upon and also influence the environment, namely by reading input, and by yielding an output that may affect the choice of the next input by the environment. This comes up to the following instantiation of ASMs, where ctl represents the current internal state, headpos the current position of the reading head, and mem the function which yields the current content (read: the memory value) of a tape position. In the traditional notation of Turing machines by sets of instructions, the functions nextstate, move, print, correspond to the machine program. They determine how the machine changes its control state, the content of its working position, and this position itself, depending on the current values of these three parameters. output represents an abstract output action, which depends on the same parameters.

ctl := nextstate(ctl, mem(headpos), input)

headpos := move(ctl, mem(headpos), input)

mem(headpos) := print(ctl, mem(headpos), input)

output (ctl, mem(headpos), input)

Considering the output as written on the in-out tape comes down to defining the output action as follows, where out is a function determined by the program instructions:

 output:= input*out(ctl, mem(headpos), input).

Similarly, viewing the input  as a combination of preceding outputs and the new user input comes down to defining input as follows, where user-input is a monitored function, and combine formalizes the way the environment mixes the past output with the new input:

input = combine (output, user-input)

The differentiation between Single and Multiple  Stream Interacting Turing Machines is only a question of instantiating input to a tuple (inp1,…,inpn) of independent input functions, each representing a different environment agent.
The classical models of computation come with simple data structures, typically integers or strings, into which other structures have to be encoded to guarantee the universality of the computational model. Modern modelling languages offer more and richer data structures, but nevertheless the level of abstraction is usually fixed und thereby leads to the necessity of encoding, when structures have to be modelled whose data types are not directly supported by the modelling language. E.g. VDM models are instances of sequential ASMs with fixed abstraction level, which is described by the VDM-SL ISO standard. It is obtained by restricting sets to VDM-SL types (built from basic types by constructors 

), functions to those with explicit or implicit definitions, operations to procedures (with possible side effects), and states  to records of read/write variables (0-ary instead of arbitrary functions). Similarly CSP models, as well as their refinements to OCCAM programs that can be executed on the TRANSPUTER, are known to be instances of ASMs equipped with agents and with mechanisms for communication and for non-deterministic choice. Parnas tables, which underlie the SCR approach to system modelling, classify functions into monitored or controlled, without providing support for system modularisation by auxiliary external functions. The table notation, used in SCR for updating dynamic functions of time, reflects particular instances of ASMs. For example, normal Parnas tables, which specify how a function value f(x,y)  will change to say ti,j when a row condition ri(x)  and a column condition  cj(y)  are true, represent the ASM with the following rules (for all row indices i  and all column indices j ):

             If ri(x)  and   cj(y)  then f(x,y) := ti,j
Relational machines add to Turing machines arbitrary, but fixed relational structures.

The Unified Modeling Language (UML) shares with the ASM approach a general first-order view of  data structures, although UML documents do not formulate anything which goes as far as the abstract-state postulate. Instead they describe the general first-order view of data structures only vaguely by declaring the intended models to consist of  (read: universes of) “things” (“abstractions that are first-class citizens in a model”) together with their relationships. UML comes with a set of graphical notations, which are proposed as “visual projections” into the textual, fully detailed specifications of system models. This includes activity diagrams, state diagrams, and use case diagrams (supported by collaboration and sequence diagrams), which are offered to model the dynamic aspects of discrete systems, although no precise meaning is defined for these diagram types by the UML documents. The dynamic semantics of these diagrams has been defined rigorously using particular classes of ASMs, as a matter of fact sequential ASMs for all diagrams that describe purely sequential system behaviour. For instance, each sequential UML activity diagram, that is activity diagram with only synchronous concurrent nodes, can be built from composing alternating branching and action nodes as shown in Fig.1.

Fig. 1. ASM normal form of sequential UML activity diagrams
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The meaning of alternating branching and action nodes is a generalization of the above ASM rules for FSMs. In moving through such a diagram, along the arrows to perform in succession the actions inscribed in the rectangles, being placed on an arc i visualizes being in the control state i (i.e. ctl = i ); changing the position from one to another arc, as indicated by the arrows, visualizes changing the control state correspondingly. The input reading condition in = a in the FSM rules above is generalized to an arbitrary guard condj, which labels an arc exiting a branching node and leading to an action node action j; it visualizes that when the control is positioned on the branching node, one is allowed to perform action j  and to move correspondingly the control - namely from the arc entering the branching node, along the arc guarded by condj , to the arc, say j, which exits the action node action j -  if the condition condj  is true in the current state. The output action out := b is generalized to an arbitrary ASM rule, which provides a rigorous semantical definition for what in UML is called and verbally described as an (atomic) action. Due to the simultaneous firing of all rules of an ASM, in any state, this rational reconstruction of an atomic UML action as one step of an ASM provides, within sequential systems, an interpretation also for synchronous concurrent UML nodes.

Therefore Fig. 1 visualizes the ASM with the following set of rules (for all 0<j<n+1):

                    If ctl = i and condj then action j 

                                                             ctl := j

where i,j stand for the control states visualized by the corresponding arcs.

Via this ASM normal form representation of sequential UML activity diagrams, the experimental evidence provided by the experience of 50 years of computing, namely that these diagrams represent a notation for a most general modelling language, is theoretically confirmed by the above-mentioned proof for the Sequential ASM Thesis.

The remaining UML diagrams, in particular class (object, component, deployment) diagrams, are used for modelling the static aspects of discrete systems, namely the signature of the model, together with the constraints imposed on its structure.

Sequential ASMs also naturally reflect the computational model of synchronous programming languages, like ESTEREL, that are widely used for modelling parallel synchronous systems. This is due to the ASM concept of simultaneous execution of all applicable rules, which is enhanced by the following operator to apply a rule for all elements satisfying a given condition:

   forall x satisfying cond (x) do rule (x).

A typical use of such a rule is illustrated in the ASM model for Conway’s Game of Life, which consists of the following rule:

    Forall c in Cell: if aliveNeighb(c) = 3 then resume(c)
                              if aliveNeighb(c) < 2 or aliveNeighb(c) > 3 then  suspend(c)

where resume (c ) stands for alive(c) := true
 and  suspend(c) for alive(c) := false. The rule expresses how at each step, for all cells in the system, their life status may change from non-alive to alive or vice-versa.
II.  Distributed Systems. 

Distributed systems consist of physically or logically separate, but concurrently executed sequential systems, which interact with each other via communication and synchronization, and typically lack global control while manifesting causal dependencies. From the point of view of each sequential component of a distributed system, the other components can be regarded in their entirety as environment, which continuously interacts with this component, concurrently and without any a priori known order of component and environment actions.

Distributed systems can be modelled as sets of cooperating sequential systems, independently of whether the transfer of information between the interacting agents is based upon shared memory, or upon a form of (synchronous or asynchronous) message-passing mechanism or of remote procedure calls. For distributed ASMs, the notion of run, which is defined for sequential systems as sequence of computation steps of a single agent, is replaced by the notion of a partial order of moves of finitely many agents, such that the following three conditions are satisfied:


1. co-finiteness: each move has only finitely many predecessors,

2. sequentiality of single agents: the moves of every agent are linearly ordered,

3.coherence: each finite initial segment X corresponds to a state ((X), interpreted as the result of executing all moves in X, which for every maximal element x(X is obtainable by applying move x in state ( (X-{x}). The moves of the single agents can be atomic or durative, but for simplicity the preceding definition of distributed runs assumes actions to be atomic.

This definition of distributed ASMs, which are also called multi-agent ASMs, provides a theoretical basis for a coherent “global” system view for concurrent sequential computations of single agents, each executing its own sequential ASM, at its own pace and with atomic actions applied in its own “local” states, including input from the environment as monitored functions. The definition guarantees that given any finite initial segment of a distributed run, all linearizations of this segment, also called interleavings, yield the same global view of the state resulting from the computation. In other words, if moves of different agents are independent of each other in a given run, they can be scheduled relatively to each other in an arbitrary manner, without influencing the overall view of the state resulting from the run. 

The notion of distributed ASM runs comes with no recipe for constructing such runs, which in applications may turn out to be a challenging problem. However, it is this generality of the concept that provides the freedom to design and analyse models for distributed systems without any a priori commitment to special synchronization or communication concepts, an important consequence for the practice of modelling. This includes the abstraction from any particular conditions on the timing of moves of the single agents. The ordering of moves reflects only their causal dependency, which is a before-after-relation without further details on the precise timing of the moves. 

Another consequence is that numerous concepts of distributed systems, which are tailored to specific modelling needs, can be naturally viewed as instances of classes of distributed ASMs. See for example the modeling approaches which work with the method of interleaving of atomic actions, where in runs of the given system of parallel processes, at each moment exactly one atomic action is chosen for execution. This is a special way to abstract from possible simultaneity of atomic actions, or from overlapping of durative actions, which may happen in concurrent computations on different processors. Interleaving is often viewed as reducing concurrency to non-determinism, in the sense that a given concurrent run represents a random choice among the corresponding interleaving orders yielding a sequential run. This is particularly convenient for executable models of concurrency. In other approaches, the notion of run is refined by imposing additional fairness constraints on the scheduling of enabled transitions; e.g. in the language Unity it is assumed that in infinite runs, each assignment is executed infinitely many times. In fact interleaving alone does not guarantee that the choices made for scheduling are fair. Many specification or programming languages for distributed systems provide special coordination constructs, like semaphores, monitors, critical regions, rendezvous, or handshaking, which support programming the desired scheduling of allowed single actions in distributed runs.

Although at present there is no proof for a Distributed ASM Thesis, experimental evidence indicates that also for distributed systems, ASMs constitute a most general computational framework, naturally encompassing the major paradigms used for modelling distributed systems. An industrially relevant example is SDL, the Specification and Description Language for distributed systems, which is widely used for modelling telecommunication systems, and whose recent standard for version SDL-2000 has been defined in terms of distributed ASMs by the international standardization body for telecommunications (International Telecommunication Union). 

Another important modelling approach for distributed systems is known under the name of Petri nets, which incorporate a broad spectrum of different languages. All the known types of Petri nets turn out to be instances of distributed ASMs, namely of agents which are equipped with rules of the form 

 If condition (pre-places) then updates (post-places)

where pre/post-places are finite, not necessarily disjoint, sets of so-called places, which appear as rule parameters, and where updates (p1 ,…, pn)  is a set of function updates 

f (pi ) :=t i. The ASM rules correspond to what in the traditional phrasing of Petri nets is called the information flow relation, which leads along arcs from pre-places via transitions to post-places. The rule guards represent the “passive” net components (called places, graphically represented by circles), the updates the “active” components (called transitions, graphically represented by bars or boxes). The conditions and the values, to which the functions are updated, are usually about some marking of places by weighted sets of tokens, about their colouring, etc. In the above characterization of Petri nets as particular classes of distributed ASMs, the ASM notion of state as arbitrary structure naturally encompasses the generalized notions of Petri nets, where tokens can be arbitrary data. 

In the famous example of the Dining Philosophers, the value function is about ownership of a left and right fork; each agent, below referred to as me, has as program his instance of each of the following two sequential ASM rules:

   if Owner(LF(me)) = Owner(RF(me)) = none
      then Owner(LF(me)):= me

           Owner(RF(me)):= me

   if Owner(LF(me)) = Owner(RF(me)) = me
      then Owner(LF(me)):= none

           Owner(RF(me)):= none

These rules allow an agent to possibly fetch the pair of his left fork LF(me)and  his right fork RF(me), if they are free (i.e. not owned by any other agent), or to release this pair for use by one of the neighbor agents.  In every distributed run (of dining philosophers), the partial order reflects the way competing agents have solved their conflicts about accessing the common resources (in the example forks); in general the partial order avoids introducing forms of pairwise synchronization.

The states of Petri nets are sometimes also defined as first-order logical predicates, associated to places. This is a peculiar logical view of states as structures (where those predicates can be true or false), and of actions (Petri net transitions) as changing the truth value of these predicates. The concept of local states with associated atomic actions, which is characteristic for Petri net transitions and underlies their graphical representation, is reflected in the above ASM definition by the fact that the single agents are sequential ASMs, firing their transition rules in their own “substate” of the “global” state resulting from the distributed computation. This locality of causation and effect avoids the difficulties of global event based modeling, where a single action may depend upon tracing an event in the entire system, as is familiar from CCS and from the event driven run-to-completion scheme of UML state machines (also called statecharts). The rich variety of different synchronization mechanisms, which has been developed for Petri nets, defines special patterns for synchronizing the corresponding distributed ASMs runs.

Co-design Finite State Machines (CFSMs), which are used for modeling in hardware-software co-design, are distributed ASMs whose agents are equipped with Mealy-ASMs as defined above. The data structure capabilities of Mealy-ASMs are needed for including arbitrary combinational (external and instantaneous) functions in the definition of CFSMs. These machines often come with an additional global scheduler agent, who controls the interaction of the other system components, and/or with timing conditions in case the agents are able to perform durative instead of atomic actions.  Due to the parallelism of simultaneous execution of multiple rules that is incorporated into sequential ASMs, the sequential Mealy-ASM components of CFSMs have a locally synchronous behavior, a fact that facilitates their validation and verification, whereas the partial order of runs of the CFSMs reflects the flexibility of the globally asynchronous system features.

III.  Validation and Verification of Systems. 

An intrinsic goal of modelling systems is to achieve that the model, which as an algorithmic description has to obey the laws of logic and mathematics, corresponds in the intended way to the desired physical system it was built to design. To show that this goal has been reached implies various engineering and mathematical methods, depending on the phase of the modelling process. 

A. Validation and Verification of Ground Models. 

At the beginning of the modelling work, the so-called specification or requirements engineering phase, a model has to be defined which reflects the informally described requirements for the system to be built. Such models, also called ground models, have the role of mediating between on the one side the formulation of the application domain view of the desired system, which usually is expressed in natural language, interspersed with symbolic elements (tables, formulae, and the like), and on the other side its formalization through the design. The ground model itself is of mathematical character, but usually comes with a large number of interfaces to the natural language description of the given requirements. This hybrid character of ground models reflects that they represent the link between the (e.g. physical) reality to be modelled and the formal (mathematical) models.

For the designer the ground models capture the requirements in such a way that, due to their mathematical character, they can serve as starting point for producing the executable system, by rigorously verifiable and validatable refinements of the requirements model. For the designer the ground models document the relevant application domain knowledge in a traceable way, which allows one to link the requirements to the detailed design. For the customer the ground models provide inter-subjective means for requirements inspection, which make the correctness and the completeness of the ground model checkable with respect to the intentions of the requirements. The particular character of such inspections is that they cannot have the status of mathematical verifications, since the informal requirements are not given with mathematical rigor (and by an Aristotelian argument, there is no infinite regress to push the limits of formalizability and verifiability). But this does not exclude that certain system properties, which are required by the informal descriptions, can be proved or disproved in the ground model, once their formalization there is recognized as faithful to the intentions. It also does not exclude that the ground model itself is validated (or falsified, in the Popperian sense) by executing the ground model for relevant experiments (e.g. use cases or scenarios that appear as part of the requirements), either mentally or by machines. The ground model also provides the possibility to formulate rigorous test plans before the beginning of the design, which can serve as basis for testing the final code.

B. Validation and Verification of Model Refinements. 

During the phase of detailed design, starting with the ground model, a hierarchy 
of stepwise refined models is developed, which links the ground model to the 
implementation of the system. The justification problem during this phase is of 
mathematical nature, given that all models involved are mathematical objects, 
which can be subject to verification. Here the problem is that of crossing system 
levels, by rigorous but practical notions of abstraction and refinement
, which have to reflect good principles of system composition respectively decomposition. Typically at each refinement step, for a given level of abstraction (notion of state and of computation), a more detailed level of abstraction has to be found, together with a notion of refinement and abstraction, which links the abstract and the refined states of interest, as well as the relevant segments of abstract and of refined computations. Then the locations of interest have to be determined, which are related to each other, and it has to be defined in which sense they are supposed (and then proved) to be equivalent. 
The situation is illustrated by Fig.2.

                              Fig.2. Commutative Refinement Diagrams.


Such refinement hierarchies yield a good system documentation, which reports the results of the modelling and of its analysis. This helps design engineers to communicate design patterns. It prepares the ground for 
effective reuse of models, by exploiting the orthogonality of different hierarchical levels. It also helps the maintenance engineer by providing faithful models for different system components and their interplay.

The main problem during this refinement phase of the modelling process is to find and to formulate the right refinements and abstractions that 

a) faithfully reflect the intended design decision (or reengineering idea, in case the modeling starts from the detailed model and has to be abstracted into a less detailed one), and 

b) can be justified as faithful by verification and validation (through experiments with executing the models). 
C. Separating Different Design and Analysis Concerns.

There is an intimate relation between modeling and verification problems and methods. Clearly every modelling language affects the comprehension of the models expressed in the language, as well as the potential for analysing their properties.  Most modelling approaches come with fixed schemes for hierarchical definition and corresponding proof principles. Nevertheless, from the practical engineering point of view, it is usually advantageous to separate design (modeling) concerns from analysis (verification and validation) concerns as much as possible, to make both tasks achievable also for large designs. 

The separation of design from analysis supports letting orthogonal design decisions stand out as independent of each other, by reflecting them in different models. This helps 
to keep the design space open, thus realizing the two important modelling principles 

a) to “specify for change”,  and 

b) to avoid premature design decisions. 

It also helps to structure the design space, providing rigorous interfaces for system composition and decomposition, and a basis for experimentation with different design decisions. A design effect of ASMs being unstructured, i.e. without any a priori fixed structuring or decomposition principle, is to provide the freedom for the system designer to develop compositional and hierarchical design techniques for ASMs as the necessity arises, tailored to and guided by the kind of system being in investigation, thus taking advantage of the possibly simplifying particularities of the system under study. This may indeed also simplify the verification and validation task by supporting the a posteriori development of modular proof techniques that are tuned to the application.
The systematic separation of modeling from verification and validation means in particular that the validation (debugging) of a system, namely through simulation based upon the executability of the model, is separated from the proof oriented verification of system properties of interest. A further separation of concerns comes with the distinction between different verification levels, characterized by corresponding degrees of detailing the arguments.  It is one thing to justify
 the design by reasoning made for human inspection and understanding, it is another thing to provide a proof in a rule based reasoning system. Furthermore, such proofs may be produced either by a human or by an interactive computerized system or by an automatic procedure, for instance model checkers or fully automated theorem provers. 

A widespread prejudice identifies rigor, stratified in over two thousands years of mathematics, with the very particular degree of formality that is characteristic of modern systems of logic, which come with a machine oriented (usually algorithmic, i.e. mechanizable) syntax, semantics, and proof rules to carry out verifications by deductions
. Such a logical degree of rigor may, in the ideal case and under the assumption that the formalization is intuitively correct with respect to the system under study, yield machine-checkable verifications that – under the additional assumptions that the prover design is logically correct, that its implementation is semantically correct, and that the environment which is running the code executes the prover’s implementation correctly -- exclude any sources of error in the verified model (although not necessarily in the real system). However the price to be paid for such full-fledged logical formalizations is that usually they enforce decisions about single details, which may be required by the particular proof system and not by the problem under study, or which may restrict unnecessarily the implementor’s freedom to choose among the many design options, against good engineering practice. Furthermore the cost of such formalized verifications is typically very high, in terms of labor and time, and usually prohibitive. The often criticized “formal explosion” of logical formalizations belongs here, yielding model descriptions that are longer and more difficult to understand than the programs they are intended to specify. In practice, the most intriguing problem of system design and verification in the large is to provide, for the human reader, a) an insight into the structure of the system to be modeled, and b) a sufficient understanding of the reasons why the model and its refinements to an implementation are correct, intrinsically and with respect to the real system. Such an understanding is supported by rigorous modeling and proof techniques, where the degree of rigor varies with the given reliability requirements.

The ASM approach to the verification of models makes no a priori commitment to a special logical notation, to specific proof rules or to specific implementations of machine supported verification assistants. As a consequence, it allows one to use any mathematical notation and argument for justifying a design. On the other side it fits any specific implementation of the state-of-the-art algorithmic or deductive approaches to verification, namely through model checkers or by proof systems, like PVS, HOL, ISABELLE, KIV, Z-EVE, ACL2, OTTER, Coq, to mention only a few among dozens of such systems. Model checkers are automatic procedures, but they are applicable only to finite-state systems and in real-life applications quickly face the intrinsic “state explosion” problem. In contrast, proof systems have the advantage of being applicable to infinite as well as to finite systems, but their fully automatic versions are usually rather restricted in applicability. Interactive proof systems open a wider range of applicability, but need the expertise of a verification specialist to exploit their verification space. 

In combined system design and verification approaches, some of which work well for the development of small-sized designs, the proof rules correspond to program constructs, mappable to restricted classes of programs, for developing programs and proofs of their desired properties hand-in-hand. This holds in particular in declarative approaches that are based upon specialized logics, often proven to be complete for a particular class of properties. Numerous examples can be found in the axiomatic semantics approaches that are based on so-called Floyd or Hoare “assertion calculi” for program verification. 

Another set of examples is constituted by temporal logics, coming with operators dealing with the future or with the past of computation states, which are widely used as languages for specifying properties of reactive programs, i.e. programs that are specified in terms of their ongoing behaviour.  Logical constructs are classified, which are then used to obtain classifications of program properties into hierarchies. An example is the hierarchy of safety, guarantee, obligation, response, persistence, and reactivity properties for reactive systems. Another example is provided by the classification into so-called safety, liveness, and  progress properties. Safety properties are defined as properties which hold always, throughout the entire computation (i.e. in each of the states of a computation),  so that they are also called state properties, e.g. global or local state invariants, deadlock freedom, fault freedom, mutual exclusion, event ordering principles, etc. Liveness properties are defined as properties which will hold eventually. Progress properties are defined as conjunctions of safety and liveness properties, e.g. termination and total correctness,  freedom from individual starvation and livelocks, accessibility,  fairness requirements, etc.

Also Petri nets are a priori unstructured like most transition systems. Nevertheless usually they are tightly linked to obtain a combination of modelling and analysis techniques. In those approaches local states are viewed as logical formulae, and actions are introduced as predicate transformers. In other words, a net transition (a rule) is characterized by logical formulae, describing the relation between pairs of a state and its next state with respect to the given transition. This logical rule description is usually split into the enabling condition, which formalizes the rule guard, and the modification statement, which formalizes the result of the updates, similar to what has been explained above for the event and action part of active database rules.

Another method that advocates linking the construction of models to their verification in corresponding proof systems is the so-called rigorous approach to industrial software engineering, known under the acronym RAISE. Another combined design and verification method that has been tailored to the development of sequential executable code is Abrial’s B method. It improves upon its predecessor, the axiomatic set-theoretic Z method, by achieving the executability of models, which are described using basically syntactical logical means. The semantics of B machines is defined using Dijkstra’s weakest pre-condition notion. Atomic machine actions are formalized syntactically, by a generalized substitution, so that the fundamental (local) notion of assignment appears as a specialization of the global notion of substitution. The intended meaning of the logical definition of the semantics of B machines is provided by set-theoretic models, in contrast to the ASM approach where the assignment operator constitutes the not furthermore analysed semantical basis of arbitrary machine operations (local function updates). The construction of B machines is linked to proving their properties by corresponding proof rules, tailored in particular to provide termination proofs. As a consequence the resulting notion of refinement is restricted to refining single operations. This reflects that the underlying computation model of B is that of a pocket calculator, with only finite states (that is finite sets and finitely many variables ranging over them) and a purely sequential operation mode.
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