
Egon B�orger (Pisa)
Universit�a di Pisa, Dipartimento di Informatica, boerger@di.unipi.it

The ASM Method for System Design and Analysis.

A Tutorial Introduction

Paper printed in: B. Gramlich (Ed.): Frontiers of Combining Systems.
Springer LNAI 3717 (2005), 264-283

Copyright c
 2005 Egon B�orger, Dipartimento di Informatica, Universit�a di Pisa, Pisa, Italy. 1

Scope and Achievements of the ASM Method
Supports, within a single precise yet simple conceptual framework , and
uniformly integrates the following activities/techniques:
the major software life cycle activities, linking in a controllable
way the two ends of the development of complex software systems:
{ requirements capture by constructing rigorous ground models
{ architectural and component design bridging the gap between
speci�cation and code by piecemeal, systematically documented
detailing of abstract models via stepwise re�ned models to code

{ documentation for inspection, reuse, maintenance providing, via
intermediate models and their analysis, explicit descriptions of
software structure and major design decisions

the principal modeling and analysis techniques
{ dynamic (operational) and static (declarative) descriptions
{ validation (simulation) and veri�cation (proof) methods at any
desired level of detail

Copyright c
 2005 Egon B�orger, Dipartimento di Informatica, Universit�a di Pisa, Pisa, Italy. 2

Models and methods in the ASM-based development process

TEST
CASES

domains
transition system

stepwise
refinement
reflecting
design

dynamic functions
external functions

decisions

manual

mechanized

PROVER

adding assumptionsadding definitions

SIMULATOR

using data from
application domain

Verification

Application Domain Knowledge

Ground Model

Informal Requirements

Code

Validation

+

Copyright c
 2005 Egon B�orger, Dipartimento di Informatica, Universit�a di Pisa, Pisa, Italy. 3

Variety of applications of ASMs (1)
industrial standards: ground models for the standards of
{OASIS for Business Process Execution Language for Web Services
{ ECMA for C#
{ ITU-T for SDL-2000
{ IEEE for VHDL93
{ ISO for Prolog
design, reengineering, testing of industrial systems:
{ railway and mobile telephony network component software (at
Siemens)

{ �re detection system in German coal mines
{ implementation of behavioral interface speci�cations on the .NET
platform and conformence test of COM components (at Microsoft)

{ business systems interacting with intelligent devices (at SAP)
{ compiler testing and test case generation tools

Copyright c
 2005 Egon B�orger, Dipartimento di Informatica, Universit�a di Pisa, Pisa, Italy. 4

Variety of applications of ASMs (2)
programmming languages: de�nition and analysis of the
semantics and the implementation for the major real-life
programmming languages, among many others for example
{ SystemC
{ Java/JVM (including bytecode veri�er)
{ domain-speci�c languages used at the Union Bank of Switzerland
including the veri�cation of numerous compilation schemes and
compiler back-ends
architectural design: veri�cation (e.g. of pipelining schemes or of
VHDL-based hardware design at Siemens), architecture/compiler
co-exploration
protocols: for authentication, cryptography, cache-coherence,
routing-layers for distributed mobile ad hoc networks,
group-membership etc.
modeling e-commerce and web services (at SAP)

Copyright c
 2005 Egon B�orger, Dipartimento di Informatica, Universit�a di Pisa, Pisa, Italy. 5

Three Ingredients of the ASM Method

ASM method comes with a rigorous scienti�c foundation:

ASM = FSM with generalized state
ASM ground models: mathematical blueprints (instead of loose
human-centric UML descriptions)
ASM re�nements accurately link models at successive stages of system
development cycle in an organic and e�ectively maintainable chain of
coherent system views (�lls gap in UML-based techniques)

The resulting documentation maps the structure of the blueprint to
compilable code, providing a road map for system use and maintenance.

Copyright c
 2005 Egon B�orger, Dipartimento di Informatica, Universit�a di Pisa, Pisa, Italy. 6

Turning FSMs into Abstract State Machines

n

cond 1

cond nrule

1rule

i

j

jn

1 if ctl state = i thenif cond1 thenrule1ctl state := j1� � �if condn thenrulenctl state := jn

instructions Fsm(i; if cond� then rule�; j�) updating
a single internal ctl state assuming values i; j1; : : : ; jn in a not
furthermore structured �nite set
in/output locations in, out assuming values in a �nite alphabet

are extended by allowing
a set of parameterized locations holding values of whatever types
simultaneous updates of arbitrary many locations via multiple
assignments loc(x1; : : : ; xn) := val

resulting in rules of form if cond then assignments with
non-determinism replaced by synchronous parallelism

Copyright c
 2005 Egon B�orger, Dipartimento di Informatica, Universit�a di Pisa, Pisa, Italy. 7

ASMs viewed as transforming Tarski structures
group subsets of locations into tables (array variables f) of �xed
dimension n
associating to each table entry (f; (a1; : : : ; an)) a value f (a1; : : : ; an)
yields the current interpretation of the table f as an n-ary \dynamic"
function or predicate (boolean-valued function)
ASM state = set of tables = (multisorted) Tarski structure

Consequently the FSM-input condition in = a is extended to arbitrary
ASM-state expressions (�rst-order formulae), called guards.
Reassuming the ASM semantics: to execute one step of an ASM in a
given state S, determine all the �reable rules in S (s.t. cond is true
in S), compute all expressions ti; t in S occuring in the updates
f (t1; : : : ; tn) := t of those rules and then perform simultaneously all
these location updates if they are consistent. In the case of
inconsistency, the run is considered as interrupted.
Copyright c
 2005 Egon B�orger, Dipartimento di Informatica, Universit�a di Pisa, Pisa, Italy. 8

Classi�cation of ASM Functions and Locations

controlled out

derived

(monitored)
in

(interaction)

static

shared

dynamic

basic

function/relation/location

supporting the separation of concerns: information hiding, data
abstraction, modularization and stepwise re�nement
Copyright c
 2005 Egon B�orger, Dipartimento di Informatica, Universit�a di Pisa, Pisa, Italy. 9

Notational Shorthand for Selection Functions
Nameless notation for selection functions f to select out of a
collection X of objects satisfying a property ' one element f (X)
(in a way that may depend on the current state) to execute rule(f (X)):

choose x with '
rule(x)

A typical application: denoting abstract scheduling policies, e.g. for
thread handling of Java

t is current active thread execJava
t

in ExecRunnableThread

resume
suspend thread

Choose t

yesno

Fig. 0.1. Multiple thread Java machine
Copyright c
 2005 Egon B�orger, Dipartimento di Informatica, Universit�a di Pisa, Pisa, Italy. 10

Further Standard Notational Shorthands

expressing synchronous parallelism in terms of arbitrary properties:
forall x with '
rule(x)

standing for the simultaneous execution of rule(x) for every element x
satisfying '
if cond then R1 else R2
let x = t in R
: : :

For a further formalization see the AsmBook

Copyright c
 2005 Egon B�orger, Dipartimento di Informatica, Universit�a di Pisa, Pisa, Italy. 11

Retransmitsend

match

timeout

CloseCurrFileTransfer

RefreshMsgId
TransmitNxtFile

check

Fig. 0.2. Kermit protocol sender ASM (Alternating Bit and Sliding Window)
Example: Control State ASMs

ASM where all rules have the form
Fsm(i; if cond then rule; j)

Typical for industrial control systems, protocols, business processes, etc.,
with a concept of status or mode or phase that directs complex state
transformations

Copyright c
 2005 Egon B�orger, Dipartimento di Informatica, Universit�a di Pisa, Pisa, Italy. 12

OnStoppingEvent

OnNonEmptyEventQueue

OnNonEmptyEventQueueOnAnyEvent

RunQ

OnStart

TryToBreak

Run

OnNonStoppingEvent

OnRunningCommand

OnEmptyEventQueue

OnExit

Init

Break

OnBreakingCommand

Fig. 0.3. Debugger control state ASM
Debugger Control State ASM

From a reverse-engineering case study at MSR to model a command-line
debugger of CLR. Led to the discovery of a
aw in the code.
Copyright c
 2005 Egon B�orger, Dipartimento di Informatica, Universit�a di Pisa, Pisa, Italy. 13

ASM Ground Models (System Blueprints)
Capture changing requirements (\what to build") in a way that is:
consistent and unambiguous (`precise'),
simple and concise (`
exible': abstractions that \directly" re
ect the
structure of the real-world problem without extraneous encoding),
minimal (abstract) and complete, making all and only semantically
relevant features present (model \closed" modulo some appropriately
circumscribed \holes", e.g. for auxiliary functionality)

so that the resulting documentation \grounds the design in reality" as
understandable and checkable (for correctness and completeness) by
both domain experts (for inspection) and system designers (for
veri�cation)

ASMs allow one to calibrate the degree of precision of a ground model
to the conceptual frame of the given problem domain, supporting the
concentration on domain issues instead of issues of notation
Copyright c
 2005 Egon B�orger, Dipartimento di Informatica, Universit�a di Pisa, Pisa, Italy. 14

ASM Re�nements (Re
ecting Design Decisions)

practice-oriented method to systematically separate, structure and
document orthogonal design decisions, relating di�erent system
aspects and (system architect's to programmer's) views
supports cost-e�ective system maintenance and management of
system changes
supports piecemeal system validation and veri�cation techniques

�1 � � � �n| {z }n steps of M�
-State S� S�0

6
?� 6

?�
-State S S0

m steps of Mz }| {�1 � � � �m

With an equivalence notion � between data inlocations of interest in corresponding states.

Copyright c
 2005 Egon B�orger, Dipartimento di Informatica, Universit�a di Pisa, Pisa, Italy. 15

The parameters for de�ning an ASM re�nement step

a notion of re�ned state
a notion of states of interest and of correspondence between M -states
S and M�-states S� of interest, including usually initial/�nal states (if
there are any)
a notion of abstract computation segments �1; : : : ; �m, where each �i
represents a single M -step, and of corresponding re�ned computation
segments �1; : : : ; �n, of single M�-steps �j, which in given runs lead
from corresponding states of interest to (usually the next)
corresponding states of interest (the resulting diagrams are called
(m;n)-diagrams and the re�nements (m;n)-re�nements)
a notion of locations of interest and of corresponding locations, i.e.
pairs of (possibly sets of) locations one wants to relate in
corresponding states
a notion of equivalence � of the data in the locations of interest

Copyright c
 2005 Egon B�orger, Dipartimento di Informatica, Universit�a di Pisa, Pisa, Italy. 16

De�nition of Correct ASM Re�nement Step
Fix any notions � of equivalence of states and of initial and �nal states.
M� is called a correct re�nement of M if and only if for each M�-run
S�0 ; S�1 ; : : : there are an M -run S0; S1; : : : and sequences
i0 < i1 < : : : ; j0 < j1 < : : : such that i0 = j0 = 0 and Sik � S�jk for
each k and either
both runs terminate, their �nal states are equivalent, or
both runs and both sequences i0 < i1 < : : :, j0 < j1 < : : : are in�nite

M�-run S�0 ; S�1 ; : : : is said to simulate the M -run S0; S1; : : :, where
Sik; S�jk are the corresponding states of interest
in (m;n)-re�nements m;n may dynamically depend on states
(m;n)-re�nements with n > 1 and including (m; 0); (0; n)-steps
support the feasibility of decomposing complex (global) actions into
simpler (locally describable) ones
procedural (1; n)-re�nements with n > 1 have their typical use in
compiler veri�cation

Copyright c
 2005 Egon B�orger, Dipartimento di Informatica, Universit�a di Pisa, Pisa, Italy. 17

Re�nement and Veri�cation Example: Leader Election

Goal of the protocol: achieve the election of a leader among �nitely
many homogeneous agents in a connected network, using only
communication between neighbor nodes
leader = max(Agent) with respect to a linear order < among agents
algorithmic idea: every agent proposes to its neighbors its current
leader cand idate, checks the leader proposals received from its
neighbors and upon detecting a proposal which improves its leader
candidate, it improves its candidate for its next proposal
Correctness property to be proved: if initially every agent is without
proposals from its neighbors and will proposeToNeighbors itself
as candidate, then eventually every agent will checkProposals with
empty set proposals and cand = max(Agent)
Side goal: make algorithm and correctness proof extendable (e.g. to
compute a shortest path to leader, its length, etc.)

Copyright c
 2005 Egon B�orger, Dipartimento di Informatica, Universit�a di Pisa, Pisa, Italy. 18

Improve proposals
Proposals

EmptyProposals

Proposals

EmptyProposals
ImproveByProposals

Neighbours
propose To check

there are

propose

yes

no

Fig. 0.4. Basic ASM of LeaderElection agents
Basic Leader Election ASM

LeaderElectionMacros =
propose = forall n 2 neighb insert cand to proposals(n)
proposals improve = max(proposals) > cand
improve by proposals = cand := max(proposals)
EmptyProposals = (proposals := empty)
there are proposals = (proposals 6= empty)

Copyright c
 2005 Egon B�orger, Dipartimento di Informatica, Universit�a di Pisa, Pisa, Italy. 19

Correctness Proof for LeaderElection ASM

to be proved: if initially every agent is without proposals from its
neighbors and will proposeToNeighbors itself as candidate, then
eventually every agent will checkProposals with empty set
proposals and cand = max(Agent)
assume: every enabled agent will eventually make a move
use an induction on
{ runs and
{Pfleader � cand(n) j n 2 Agentg, measuring the distances of
candidates from the leader

Copyright c
 2005 Egon B�orger, Dipartimento di Informatica, Universit�a di Pisa, Pisa, Italy. 20

Re�nement Step to Compute a Shortest Path

Re�nement idea: provide for every agent (except for the leader), in
addition to the leader candidate, also a neighbor which is currently
known to be closest to the leader, together with the minimal distance
to the leader via that neighbor
Pure data re�nement: enrich cand and proposals by
{ a nearNeighb :Agent with minimal distance to the leader,
{ the distance :Distance to the leader candidate
(e.g. Distance = N [f1g)

so that proposals � Agent� Agent�Distance (triples of leader
cand, nearNeighbor and distance to the candidate leader)
initially assume nearNeighbor = self and distance =1, except for
the leader where distance = 0.

Copyright c
 2005 Egon B�orger, Dipartimento di Informatica, Universit�a di Pisa, Pisa, Italy. 21

Re�ned MinPathToLeader Macros
MinPathToLeaderMacros =
propose = forall n 2 neighb

insert (cand; nearNeighb; distance) to proposals(n)
proposals improve = let m = Max(proposals) in
m > cand or
(m = cand and minDistance(proposalsFor m) + 1 <
distance)

improve by proposals =
cand := Max(proposals)
update PathInfo to Max(proposals)

update PathInfo to m = choose (n; d) with
(m;n; d) 2 proposals and d = minDistance(proposalsFor m)
nearNeighb := n
distance := d + 1

Copyright c
 2005 Egon B�orger, Dipartimento di Informatica, Universit�a di Pisa, Pisa, Italy. 22

Extending Correctness Proof by Shortest Path Property

Proposition: In every distributed run of agents equipped with the ASM
computing a minimal path to the leader, eventually for every agent
holds:
{ cand=max(Agent)=leader
{ distance=minimal distance of a path from agent to leader
{ nearNeighbor = a neighbor of agent on a minimal path to the leader
(except for leader where nearNeighbor=leader)

{ ctl state = checkProposals
{ proposals = empty
Proof: induction on runs and onPfleader � cand(n) j n 2 Agentg
enhanced by side induction on the minimal distances in proposalsFor
Max(proposals).

Copyright c
 2005 Egon B�orger, Dipartimento di Informatica, Universit�a di Pisa, Pisa, Italy. 23

Method of Splitting Complex Proofs by ASM Re�nements

Split the overall task of proving P � for S�, which for real-life systems is
usually too complex to be tackled in a single blow, into a series of
manageable subtasks (1){(3), each step re
ecting a part of the design
1. build an abstract model S,
2. prove a possibly abstract form P of the property in question to hold
under appropriate assumptions for S,

3. show S to be correctly re�ned by S� and the assumptions to hold in
S�.

Copyright c
 2005 Egon B�orger, Dipartimento di Informatica, Universit�a di Pisa, Pisa, Italy. 24

Looking for invariants for ASM re�nement correctness proofs
. . .

~

.

. . .

~
~~ ~~ ~~

s’

*’s*s

s

*’s*s

s

*s

s’s

Idea: decompose commuting diagram into more basic diagrams with end
points s; s� which satisfy an invariant � implying the to be established
equivalence �
(m,0)-triangles: computation segments where only the abstract run
makes progress reaching an s0 � s� by a positive number m of steps
(0,n)-triangles: computation segments where only the concrete run
makes progress reaching an s�0 � s by a positive number n of steps
(m,n)-trapezoids: representing a computation segment which leads in
m > 0 steps to an s0 and in n > 0 steps to an s�0 such that s0 � s�0.
NB. Cases m < n, m > n (typical for optimizations), m = n allowed

Copyright c
 2005 Egon B�orger, Dipartimento di Informatica, Universit�a di Pisa, Pisa, Italy. 25

Schellhorn's Forward Simulation Condition FSC

For every pair (s; s�) of states, if s � s� and not both are �nal states,
then
either the abstract run can be extended by an (m; 0)-triangle leading
in m > 0 steps to an s0 � s� satisfying (s0; s�) <m0 (s; s�) for a
well-founded relation <m0 limiting successive applications of
(m; 0)-triangles,
or the re�ned run can be extended by a (0; n)-triangle leading in n > 0
steps to an s�0 � s satisfying the condition (s; s�0) <0n (s; s�) for a
well-founded relation <0n limiting successive applications of
(0; n)-triangles,
or both runs can be extended by an (m;n)-trapezoid leading in m > 0
abstract steps to an s0 and in n > 0 re�ned steps to an s�0 such that
s0 � s�0.

Copyright c
 2005 Egon B�orger, Dipartimento di Informatica, Universit�a di Pisa, Pisa, Italy. 26

Theorem on Decomposition of ASM Re�nement Diagrams
M� is a correct re�nement of M with respect to an equivalence notion
� and a notion of initial/�nal states if there is a relation � (a coupling
invariant) such that
1. the coupling invariant implies the equivalence,
2. each re�ned initial state s� is coupled by the invariant to an abstract
initial state s � s�,

3. the forward simulation condition FSC holds.
This theorem, proved by Schellhorn using KIV, constitutes the basis of
G. Schellhorn, W. Ahrendt: The WAM Case Study: Verifying Compiler
Correctness for Prolog with KIV. In W.Bibel, P. Schmitt (Eds):
Automated Deduction A Basis for Applications. Vol.3, Ch.3, Kluwer
1998
G. Schellhorn, W. Ahrendt: Reasoning About Abstract State Machines:
The WAM Case Study. JUCS 3 (4) 1997, 377-413

Copyright c
 2005 Egon B�orger, Dipartimento di Informatica, Universit�a di Pisa, Pisa, Italy. 27

ASM Analysis Techniques (Validation and Veri�cation)
Practitioner supported to analyze ASM models by reasoning and
experimentation at the appropriate degree of detail, separating
orthogonal design decisions and complementary methods, e.g. abstract
operational and declarative/functional/axiomatic
design from analysis (de�nition from proof)
validation (by simulation) from veri�cation (by reasoning)
{ e.g. ASM Workbench (ML-based, DelCastillo 2000), AsmGofer
(Gofer-based, Schmid 1999), XASM (C-based, Anlau� 2001), AsmL
(.NET-based, MSR 2001), CoreASM (Gl�asser et al. 2005,
Java-based)

veri�cation levels (degrees of detail)
{ reasoning for human inspection (design justi�cation)
{ rule based reasoning systems (e.g. St�ark's Logic for ASMs)
{ interactive proof systems, e.g. KIV, PVS, Isabelle, AsmPTP
{ automatic tools: model checkers, automatic theorem provers

Copyright c
 2005 Egon B�orger, Dipartimento di Informatica, Universit�a di Pisa, Pisa, Italy. 28

References
E. B�orger and R. F. St�ark: Abstract State Machines

Springer 2003. pp.X+438. Slides for courses on single chapters,
themes and case studies are to be found in ppt and pdf format on the
CD coming with the book and are also downloadable from the website:

http://www.di.unipi.it/AsmBook/

Comprehensive case study (ASM modeling, validation, veri�cation):
R. F. St�ark and J. Schmid and E. B�orger: Java and the Java Virtual
Machine: De�nition, Veri�cation, Validation. Springer 2001.

E. B�orger: The ASM Re�nement Method
In: Formal Aspects of Computing 15 (2003), 237-257

E. B�orger: The ASM ground model method as a foundation of require-
ments engineering . In: LNCS 2772 (2003), 145-160
Copyright c
 2005 Egon B�orger, Dipartimento di Informatica, Universit�a di Pisa, Pisa, Italy. 29

