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Università di Pisa, Dipartimento di Informatica, I-56125 Pisa,
Italy, boerger@di.unipi.it

Abstract

We capture the principal models of computation and specification in the literature
by a uniform set of transparent mathematical descriptions which—starting from
scratch—provide the conceptual basis for a comparative study 1 .

1 Introduction

Since the pioneering work of Post, Turing, Church, Gödel, Herbrand and many
others to capture the intuitive notion of algorithm, and with the advent of
computer programming numerous models of computation and system design
frameworks have been developed to support the construction and analysis of
complex algorithmic systems. In this paper we capture the principal models
of computation and specification in the literature in a systematic way by a
uniform set of transparent mathematical descriptions. Starting from scratch
they provide the conceptual basis for a comparative investigation of different
specification methods to technically clarify their merits and drawbacks. As
a by-product the descriptions constitute a useful definitional framework for
teaching, providing in particular a small set of definitions which unravel the
basic common structure of the myriad of different machine concepts which are
studied in computation theory. The goal of this paper is not to prove a the-
orem, but to formulate a new set of definitional suggestions for computation
theory [44] which covers also system specification frameworks. The exposi-
tion is driven by systematic and not by historical considerations, for detailed
historical references we refer the reader to [14] or to the update in [23, Ch.9].

1 Helmut Schwichtenberg gewidmet, dem Freund und Kollegen seit der gemein-
samen Studienzeit in Münster
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Our basis are Abstract State Machines, briefly reviewed in Section 2, which
were defined in [32] and became an integral part of the powerful high-level sys-
tem design and analysis method explained in the AsmBook [23]. Elaborating
upon [13] we provide here for representative algorithmic systems a uniform
set of simple ASM definitions which are faithful to the basic intuitions and
concepts of each investigated system. The particularly natural, ‘coding-free’
way in which ASMs allow one to capture other computation models and thus
turn out to be ‘universal’ contrasts with the difficulties one usually encoun-
ters when trying to reverse the simulation with a definition of ASMs in other
computational frameworks. This is related to the universality claim known as
‘ASM thesis’ and analysed by Blass and Gurevich in [33,8].

The ASM models we construct in this paper are however different from the
ones which come out of the proofs for the two special versions of the ASM
thesis in op.cit. where a small number of postulates is exhibited from which
every sequential or synchronous parallel computational device can be proved
to be simulatable in lock-step by an appropriate ASM. The construction in [8]
depends on the way the abstract postulates capture the amount of compu-
tation performed by every single agent, and of the communication between
synchronized agents, which are allowed in a synchronous parallel computation
step. The desire to prove computational universality from abstract postulates
implies the necessity to first capture a) the huge class of data structures and
b) the many ways they can be used in a basic computation step and then
to unfold every concrete basic parallel communication and computation step
from the postulates. This unavoidably yields some ‘encoding’ and ‘decoding’
overhead to guarantee, for every computational system which possibly could
be proposed, a representation by the abstract concepts of the postulates. As
side effect of this generality of the postulates, the application of Blass and
Gurevich’s proof scheme to established models of computation tends to yield
‘abstract’ machine models which are more involved than necessary and may
blur features which really distinguish different concrete systems. Furthermore,
postulating by an existential statement that ‘states’ are appropriate equiva-
lence classes of structures of a fixed signature (in the sense of logic), that
the evolution happens as iteration of single ‘steps’, that the single-step ‘ex-
ploration space’ is bounded (i.e. that there is a uniform bound on memory
locations basic computation steps depend upon, up to isomorphism), does not
by itself provide, for a given computation or specification model, a standard
reference description of its characteristic states, of the objects entering a basic
computation step, and of its next-step function.

The goal in this paper is that of naturally capturing the basic data structures
and single computation steps which characterize current systems of specifi-
cation and computation, and of formulating them in a way which is uniform
enough to pave the way for explicit technical comparisons. By deliberately
keeping the ASM model for each proposed system as close as possible to the
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original usual description of the system, so that it can be recognized straight-
forwardly to be simulated correctly and step by step by the ASM model, we
provide for the ASM thesis a strong argument which includes asynchronous
distributed systems, for which no proof of the ASM thesis is known. In addi-
tion our argument avoids a sophisticated existence proof for the ASM models
from abstract postulates, avoids decoding of concrete concepts from abstract
postulates, and avoids involved proofs to establish the correctness of the ASM
models.

We start from control state ASMs, which were defined in [12] as a natural
extension of Finite State Machines (FSMs), and from the extension of basic
ASMs to so-called turbo ASMs, which were defined in [21] to establish a sub-
machine concept that fits the synchronous parallelism of ASMs and includes
sequential composition and iteration. Both concepts are reviewed in Section
2. In Section 3 we investigate Turing machine like classical models of compu-
tation which typically appear in standard computation theory textbooks (au-
tomata, substitution systems, tree computations, structured and functional
programming) and in Section 4 the major currently used system design mod-
els (executable high-level design languages like UNITY or COLD, state-based
specification languages like Petri nets and B, stateless modeling approaches
like process algebra, and axiomatic logico-algebraic design systems like Z).
For a survey of the numerous ASM models which have been defined for the
dynamic and/or static semantics of the major current programming languages
we refer to [14] and [23, Ch.9].

2 ASMs, control state ASMs, turbo ASMs

Abstract State Machines (more precisely what in [23] are termed basic ASMs)
are transition systems which transform structures of a given signature, i.e.
finite sets of so called transition rules of form

if Condition then Updates .

The Condition under which a rule is applied is a closed predicate logic for-
mula of the underlying signature. Updates is a finite set of assignments of
form f (t1, . . . , tn) := t whose execution is to be understood as changing (or
defining, if there was none) in parallel the value of the occurring functions f at
the indicated arguments to the indicated value. More precisely, in any given
structure (called ‘state’), first all parameters ti , t are evaluated to their values,
say vi , v , then the value of f (v1, . . . , vn) is updated to v which represents the
value of f (v1, . . . , vn) in the next state. Such pairs of a function name f and
an argument (v1, . . . , vn) are called locations, location-value pairs (loc, v) are
called updates. Without loss of generality predicates are treated as character-
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istic functions (returning true or false) and constants and individual variables
as 0-ary functions. Partial functions are turned into total functions by inter-
preting f (x ) = undef with a fixed special value undef as f (x ) being undefined.

An ASM computation step in a given state consists in executing simultaneously
all updates of all transition rules whose guard is true in the state, if these
updates are consistent, in which case the result of their execution yields the
next state. In the case of inconsistency the computation does not yield a next
state. A set of updates is called consistent if it contains no pair of updates
with the same location, i.e. no two elements (loc, v), (loc, v ′) with v 6= v ′.

Simultaneous execution is enhanced by the following notation to express the
simultaneous execution of a rule R for each x satisfying a given condition ϕ
(where typically x will have some free occurrences in R which are bound by
the quantifier):

forall x with ϕ

R

Similarly non-determinism can be expressed by rules of the form

choose x with ϕ

R

where ϕ is a Boolean valued expression and R a rule. The meaning of such
an ASM rule is to execute rule R with an arbitrary x chosen among those
satisfying the selection property ϕ. If there exists no such x , nothing is done.

We freely use combinations of where, let, if -then-else, etc. which are easily
reducible to the above basic definitions. When dealing with multi-agent sys-
tems we use sets of agents each executing its own ASM. In the case of asyn-
chronous computations the underlying concept of run (computation) becomes
that of a partially ordered set of basic computation steps of single agents.
These partial orders have to satisfy three natural constraints for whose defi-
nition we refer the reader to the last section of [32].

Control State ASMs. In [12] we defined a particularly frequent class of
ASMs, called control state ASMs, which allow one to define machines providing
below the main control structure of Finite State Machines (FSMs) synchronous
parallelism and the possibility to manipulate data structures. A control state
ASM is an ASM whose rules are all of the following form:

if ctl state = i then

if cond1 then
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rule1

ctl state := j1

· · ·

if condn then

rulen

ctl state := jn

The finitely many control states ctl state ∈ {1, . . . ,m} resemble the so-called
‘internal’ states of Finite State Machines. In a given control state i , these
machines do nothing when no condition condj is satisfied. One can use the
widespread flowchart representation for control state ASMs where the con-
trol states appear as (possibly named) circles or directed arcs. This helps to
visually distinguish the role of control states—to “pass control”—from that
of ASM rules, which describe the update “actions” concerning the underly-
ing data structure and are inscribed into rectangles, often separated from the
rule guards which are then written into rhombs or hexagons labeling the arcs
outgoing or ingoing the control states. We will sometimes use the following
abbreviation which relates the visual notation for FSMs to the usual textual
description of ASMs:

Fsm(i , if cond then rule, j ) =

if ctl state = i and cond then

rule

ctl state := j

As is usually done for FSMs one could consider non-deterministic control state
ASMs, using non-determinism as mechanism to resolve possibly conflicting
updates of ctl state. For reasons of clarity we prefer to keep for control state
ASMs the parallel synchronous understanding of ASMs as firing in each step
every rule. One can control possible conflicts e.g. by taking care that the rule
guards condk of rules fireable in control state i are disjoint.

Turbo ASMs. In [21] a precise definition is given which justifies to use,
within the context of simultaneously executed rules, an occurrence of a ‘rule
call’ r(x1, . . . , xn) where an ASM rule is expected, coming with a declaration
r(x1, . . . , xn) = R. Such a rule call r(x1, . . . , xn) is used only when the pa-
rameters are instantiated by legal values (objects, functions, rules, whatever)
so that the resulting rule has a well defined semantical meaning. In these
submachine rules also ‘sequential machines’ P seq Q are allowed to occur,
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defined in op.cit. for ASM rules P ,Q to denote the machine which in one
macro-step provides the state change which is realized by the two substeps
of first applying to the given state machine P and then to the resulting state
machine Q . Similarly ‘iteration machines’ iterate P may be used, denoting
for an ASM P the machine which in one macro-step realizes the computation
Pn = P seq P . . . seq P (n times) where n is the smallest number of iter-
ations of P which lead to a state where a further application of P does not
change the state any more. Technically speaking this is the case when a rule
application produces the empty update set. Note that n may be undefined
(n =∞). ASMs which are built from basic ASMs using rule calls, sequential
and iteration submachines are called turbo ASMs. For a detailed definition
see [21].

3 Classical Computation Models

In this section we instantiate control state ASMs to classical automata and
substitution systems (see any textbook on computation theory, e.g. [11]):
FSMs (finite state machines à la Moore-Mealy and their more recent ex-
tensions by stream-processing, timing conditions, co-design control features),
pushdown and computation universal automata (à la Turing, Scott, Eilenberg,
Minsky, Wegner), replacement systems (à la Thue, Markov, Post and context
free, attribute and tree adjoining grammars for language generation). The
point of these definitions is not to model those systems by ASMs, which is a
rather straightforward exercise performed on some examples in the literature,
but to derive them uniformly as instances (simple refinements) of a general
scheme which is made explicit in the present paper. We also show how to
model by turbo ASMs structured and functional programming concepts and
tree computations, including general forms of recursion.

3.1 Automata

Variations of Mealy/Moore Automata. Deterministic Mealy and Moore
automata are control state ASMs where every rule has the following form,
with skip instead of the output assignment in the case of Moore automata.

Fsm(i , if in = a then out := b, j )

Writing programs in the usual tabular form, where one has one entry (i , a, j , b)
for every instruction “in state i reading input a, go to state j and print
output b”, yields the following guard-free FSM rule scheme for updating
(ctl state, out), where the parameters Nxtctl and Nxtout are the two projec-
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tion functions which define the program table, mapping ‘configurations’ (i , a)
of control state and input to the next control state j and output b.

MealyFsm(Nxtctl ,Nxtout) =

ctl state := Nxtctl(ctl state, in)

out := Nxtout(ctl state, in)

Since the input function in is monitored (i.e. read but not updated by the ma-
chine), it is not updated in the rule scheme, though one could certainly make
it shared to formalize an input tape which is scanned letterwise from (say)
left to right (see as example the machine StreamProcessingFsm defined
below). The question of 1-way or 2-way automata is a question of whether one
includes into the instructions also Moves of the input head (say on the input
tape), yielding additional updates of the head position and a refinement of in
to in(head) (the input portion seen by the new reading head):

TwoWayFsm(Nxtctl ,Nxtout ,Move) =

ctl state := Nxtctl(ctl state, in(head))

out := Nxtout(ctl state, in(head))

head := head + Move(ctl state, in(head))

Non-deterministic versions of FSMs, as well as of all the machines we consider
below, are obtained by placing the above rules under a choose operator to
allow choices among different R ∈ Rules , obtaining rules of the form choose
R ∈ Rule in R.

We illustrate an instance of this scheme for the extension of FSMs to machines
which appears in [37]. These machines compute stream functions S m → S n

over a data set S (typically the set S = A∗ of finite or S = AN of infinite
words over a given alphabet A), yielding an output stream out resulting from
consumption of the input stream in. Non-deterministically in each step these
automata

• read (consume) at every input port a prefix of the input stream in,
• produce at each output port a part of the output stream out ,
• proceed to the next control state ctl state.

To extend the MealyFsm machines to a model of these stream processing
FSMs it suffices to introduce two choice-supporting functions Prefix : Ctl ×
S m → PowerSet(S m

fin), yielding sets of finite prefixes among which to choose
for given control state and input stream, and Transition : Ctl × (S m

fin) →
PowerSet(Ctl × S n

fin) describing the possible choices for the next control state
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and the next finite bit of output. The rule extension for stream processing
FSMs is then as follows, where input consumption is formalized by deletion
of the chosen prefix from the shared function in.

StreamProcessingFsm(Prefix ,Transition) =

choose pref ∈ Prefix (ctl state, in)

choose (c, o) ∈ Transition(ctl state, pref )

ctl state := c

out := concatenate(o, out)

in := delete(pref , in)

Mealy/Moore automata give rise to Mealy/Moore ASMs defined in [12], a
subclass of control state ASMs where the emission of output is generalized to
arbitrary ASM rules:

MealyAsm = Fsm(i , if in = a then rule, j ).

MealyAsms appear as components of co-design FSMs where turbo ASM
component rules are needed to compute arbitrary combinational (external
and instantaneous) functions. Co-design FSMs are used in [40] for high-level
architecture design and specification and for a rigorous comparison of current
models of computation. Usually co-design FSMs come together with a global
agent scheduler or with timing conditions for agents which perform durative
(not only atomic) actions. We illustrate the inclusion of timing conditions by
an extension of Mealy-ASMs to timed automata [5]. In these automata letter
input comes at a real-valued occurrence time which is used in the transitions
where clocks record the time difference of the current input with respect to the
previous input: time∆ = occurrenceTime(in) − occurrenceTime(previousIn).
Firing of transitions may be subject to clock constraints and includes clock
updates (resetting a clock or adding to it the last input time difference).
Typically the constraints are about input to occur within (<,≤) or after (>
,≥) a given (constant) time interval, leaving some freedom for timing runs,
i.e. choosing sequences of occurrenceTime(in) to satisfy the constraints. Thus
timed automata can be modeled as control state ASMs where all rules have
the following form:

TimedAutomaton(Constraint ,Reset) =

Fsm(i , if TimedIn(a) then ClockUpdate(Reset), j )

where
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TimedIn(a) = (in = a and Constraint(time∆) = true)

ClockUpdate(Reset) =

forall c ∈ Reset do c := 0

forall c 6∈ Reset do c := c + time∆

In pushdown automata the Mealy automaton ‘reading from the input tape’
and ‘writing to the output tape’ is extended to reading from input and/or a
stack and writing on the stack . Since these machines may have control states
with no input-reading or no stack-reading, pushdown automata can be defined
as control state ASMs where all rules have one of the following forms with the
usual meaning of the stack operations push, pop (optional items are enclosed
in []):

PushDownAutomaton =

Fsm(i , if Reading(a, b) then StackUpdate(w), j ) where

Reading(a, b) = [in = a] and [top(stack) = b]

StackUpdate(w) = stack := push(w , [pop](stack))

Turing-like automata. Writing pushdown transitions in tabular form

PushDownAutomaton(Nxtctl ,Write) =

ctl state := Nxtctl(ctl state, in, top(stack))

stack :=

Pop&Push(stack ,Write(ctl state, in, top(stack)))

identifies the ‘memory refinement’ of FSM input and output tape to input
and stack memory. The general scheme becomes explicit with Turing machines
which combine input and output into one tape memory with moving head. All
the Turing-like machines we mention below are control state ASMs which in
each step, placed in a certain pos ition of their memory, read this memory
in the env ironment of that pos ition and react by updating mem and pos .
Variations of these machines are due to variations of mem, pos , env , whereas
their rules are all of the following form:

TuringLikeMachine(mem, pos , env) =

Fsm(i , if Cond(mem(env(pos)) then
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update (mem(env(pos)), pos), j )

For the original Turing machines this scheme is instantiated by mem = tape
containing words, integer positions pos : Z where single letters are retrieved,
env = identity , Writes in the position of the tape head. This leads to extending
TwoWayFsm as follows (replacing in by tape and Nxtout by Write):

TuringMachine(Nxtctl ,Write,Move) =

ctl state := Nxtctl(ctl state, tape(head))

tape(head) := Write(ctl state, tape(head))

head := head + Move(ctl state, tape(head))

It is an exercise to extend the 1-tape Turing machine to a k -tape and to an
n-dimensional TM by data refining the 1-tape Turing memory and the related
operations and functions correspondingly. Also register machines [11, Ch.AI1]
are instances of Turing-like machines, whether working on numbers or words.
In contrast to Turing and register machines, their generalizations introduced
by Scott [44] and Eilenberg [27] instead of read/write operations on words
stored in a tape provide data processing for arbitrary data, residing in abstract
memory, by arbitrarily complex mem-transforming functions. Eilenberg’s X-
machines can be modeled as instances of Mealy ASMs whose rules in addition
to yielding output also update mem via global memory functions f (one for
each input and control state):

XMachine = Fsm(i ,

if in = a then {out := b,mem := f (mem)}, j )

It is an exercise to define a stream processing version of Eilenberg’s X-machines,
similarly to the StreamProcessingFsm above. The global memory Actions
of Scott machines together with their standard IfThenElse control flow di-
rected by global memory Test predicates yield control state ASMs consisting
of rules of the following form:

ScottMachine(Action,Test) =

ctl state := IfThenElse(ctl state,Test(ctl state)(mem))

mem := Action(ctl state)(mem)

Wegner’s interactive Turing machines [46] in each step can receive some input
from the environment and yield output to environment. Thus they simply ex-
tend the TuringMachine by an additional input parameter and an output
action. This description clarifies the limitations of Wegner’s rather particu-
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liar model for systems of interacting machines, compared with the concept of
asynchronous multi-agent ASMs.

TuringInteractive(Nxtctl ,Write,Move) =

ctl state := Nxtctl(ctl state, tape(head), input)

tape(head) := Write(ctl state, tape(head), input)

head := head + Move(ctl state, tape(head), input)

output(ctl state, tape(head), input)

Considering the output as written on an in-out tape comes up to define

output :=

concatenate(input ,Out(control , tape(head), input))

as the output action using a function Out defined by the program. Viewing
the input as a combination of preceding inputs/outputs with the new user
input comes up to define input as a derived function

input = combine(output , user input)

depending on the current output and user input . The question of single-
stream versus multiple-stream interacting Turing machines (SIM/MIM) is only
a question of instantiating input to a stream vector input = (inp1, . . . , inpn).

The alternating variation of Turing machines can be obtained by extending
TuringMachine to spawn subprocesses, each executing the same program
but on different tapes. An alternating TM-computation is focussed to either
accept or reject the initial input tape, whereto it is permitted to also invoke
TM-subcomputations and to explore whether some or all of them accept or
reject their input. For this purpose to the traditional control states, which
are termed normal and in which the given TuringMachine is executed,
four new types are added: control states which simply accept or reject or
which accept/reject in case some/every subcomputation accepts/rejects (ex-
istential type) or which accept/reject in case every/some subcomputation ac-
cepts/rejects (universal type). When in an existential or universal control state
subcomputations are created and put into running mode (rule AltTmSpawn

below), the invoking computation turns to idle mode to observe whether the
yield of the subcomputations switches from undef to either accept or re-
ject and to define its own yield correspondingly (TmYieldExistential,
TmYieldUniversal below). Different subcomputations of an alternating
Turing machine, whose program is defined by the given functions Nxtctl ,
Write, Move, are distinguished by parameterizing the machine instances by
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their executing agents a, obtaining TuringMachine(Nxtctl ,Write,Move)(a)
from the above defined TuringMachine by replacing the dynamic functions
ctl state, tape, head with their instances a.ctl state and a.tape, a.head . This
leads us to the following definition where for simplicity of exposition but with-
out loss of generality we assume that in an existential or universal state, the
alternating Turing machine does not print or move its head and NxtCtl yields
the set of possible next control states where the subcomputations are started.
We use children(a) = {c | parent(c) = a} and denote agents by the variable
self .

AlternatingTm(Nxtctl ,Write,Move) =

if type(self .ctl state) = normal then

TuringMachine(Nxtctl ,Write,Move)(self)

if type(self .ctl state) ∈ {existential , universal} then

AltTmSpawn(self)

TmYieldExistential(self)

TmYieldUniversal(self)

if type(self .ctl state) ∈ {accept , reject} then

yield(self) := type(self .ctl state)

AltTmSpawn(a) = if a.mode = running then

let {j1, . . . , jk} = Nxtctl(a.ctl state, a.tape(a.head))

let a1, . . . , ak = new(Agent) forall 1 ≤ i ≤ k

Activate(ai , a, ji)

parent(ai) := a

a.mode := idle

Activate(b, a, j ) =

StartSubComp(b, a, j )

b.mode := running

b.yield := undef
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StartSubComp(b, a, j ) =

b.ctl state := j

forall pos ∈ domain(a.tape) do b.tape(pos) := a.tape(pos)

b.head := a.head

TmYieldExistential(a) =

if a.mode = idle and type(a.ctl state) = existential then

if ∀c ∈ children(a) yield(c) = reject then

yield(a) := reject

if ∃c ∈ children(a) yield(c) = accept then

yield(a) := accept

TmYieldUniversal(a) =

if a.mode = idle and type(a.ctl state) = universal then

if ∀c ∈ children(a) yield(c) = accept then

yield(a) := accept

if ∃c ∈ children(a) yield(c) = reject then

yield(a) := reject

Substitution systems. The substitution systems à la Thue, Markov, Post
are Turing-like machines operating over mem : A∗ for some finite alphabet
A with a finite set of word pairs (vi ,wi) where in each step one occurrence
of a ‘premisse’ vi in mem is replaced by the corresponding ‘conclusion’ wi .
The difference between Thue systems and Markov algorithms is that Markov
algorithms have a fixed scheduling mechanism for choosing the replacement
pair and for choosing the occurrence of the to be replaced vi . In the semi-
Thue ASM rule below we use mem([p, q ]) to denote the subword of mem
between the p=th and the q-th letter of mem, which matches v if it is identical
to v . By mem(w/[p, q ]) we denote the result of substituting w in mem for
mem([p, q ]). The non-determinism of semi-Thue systems is captured by two
selection functions. For the Markov version we show how one can include
the condition on matching already into the specification of these selection
functions.
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SemiThue(ReplacePair) =

let (v ,w) = selectrule(ReplacePair)

let (p, q) = selectsub(mem)

if match(mem([p, q ]), v) then mem := mem(w/[p, q ])

The Markov ASM is obtained from the SemiThue ASM by a pure data re-
finement, instantiating selectrule(ReplacePair ,mem) to yield the first (v ,w) ∈
ReplacePair with a premise occurring in mem, and selectsub(mem, v) to de-
termine the leftmost occurrence of v in mem. Similarly the ASM for Post
normal systems is obtained by instantiating selectrule(ReplacePair ,mem) to
yield a pair (v ,w) ∈ ReplacePair with a premise occurring as initial subword
of mem, selectsub(mem) to determine this initial subword of mem, and by up-
dates of mem which delete the initial subword v and copy w at the end of
mem.

Language generating grammars. We extract here from the ASM for the
core of Prolog in [18] a basic tree generation and traversal ASM Backtrack

variations of which model other constraint logic or functional programming
languages as well as context free and attribute grammars. The machine dy-
namically constructs a tree of alternatives and controls its traversal. When
its control state (which we call here mode) is ramify , it creates as many new
children nodes to be computation candidates for its currnode as there are
computation alternatives , provides them with the necessary env ironment and
switches to select ion mode. In mode = select , if at currnode there is no more
candidate the machine Backtracks, otherwise it lets the control move to
TryNextCandidate to get executed. The external function alternatives de-
termines the solution space depending upon its parameters and possibly the
current state. The dynamic function env records the information every new
node needs to carry out the computation determined by the alternative it is
associated with. The macro Back moves currnode one step up in the tree,
to parent(currnode), until the root is reached where the computation stops.
TryNextCandidate moves currnode one step down in the tree to the next
candidate, where next is a possibly dynamic choice function which determines
the order for trying out the alternatives. Typically the underlying execution
machine will update mode from execute to ramify , in case of a successful ex-
ecution, or to select if the execution fails. This model is summarized by the
following definition.

Backtrack =

Ramify

Select
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Ramify =

if mode = ramify then

let k =| alternatives(Params) |

let o1, . . . , ok = new(NODE )

candidates(currnode) := {o1, . . . , ok}

forall 1 ≤ i ≤ k

parent(oi) := currnode

env(oi) := ith(alternatives(Params))

mode := select

Select =

if mode = select then

if candidates(currnode) = ∅ then Back

else

TryNextCandidate

mode := execute

Back =

if currnode = root

then mode := Stop

else currnode := parent(currnode)

TryNextCandidate =

currnode := next(candidates(currnode))

Delete(next(candidates(currnode)),

candidates(currnode))

By data refinements Backtrack can be turned into the backtracking engine
for the core of ISO Prolog [18], of IBM’s constraint logic programming lan-
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guage CLP(R) [20], of the functional programming language Babel [17], and of
context free and of attribute grammars [38] as we are going to sketch here. To
obtain the backtracking engine for Prolog, we instantiate alternatives to the
function procdef (stm, pgm) yielding a sequence of clauses in pgm, which have
to be tried out in this order to execute the current goal stm, together with the
needed state information from currnode. We determine next as head function
on sequences, reflecting the depth-first left-to-right tree traversal strategy of
ISO Prolog. It remains to add the execution engine for Prolog specified as
ASM in [18], which switches mode to ramify if the current resolution step
succeeds and otherwise switches mode to select . The backtracking engine for
CLP(R) is the same, one only has to extend procdef by an additional pa-
rameter for the current set of constraints for the indexing mechanism and to
add the CLP(R) engine specified as ASM in [20]. The functional language
Babel uses the same function next , whereas alternatives is instantiated to
fundef (currexp, pgm) yielding the list of defining rules provided in pgm for
the outer function of currexp. The Babel execution engine specified as ASM
in [17] applies the defining rules in the given order to reduce currexp to normal
form (using narrowing, a combination of unification and reduction).

To instantiate Backtrack for context free grammars G generating leftmost
derivations we define alternatives(currnode,G) to yield the sequence of sym-
bols Y1, . . . ,Yk of the conclusion of a G-rule whose premise X labels currnode,
so that env records the label of a node, either a variable X or terminal letter a.
The definition of alternatives includes a choice between different rules X → w
in G . For leftmost derivations next is defined as for Prolog. As machine in
mode = execute one can add the following rule. For nodes labeled by a vari-
able it triggers further tree expansion, for terminal nodes it extracts the yield
(concatenating the terminal letter to the word generated so far) and moves
the control to the parent node to continue the derivation in mode = select .

Execute(G) =

if mode = execute then

if env(currnode) ∈ VAR then mode := ramify

else

output := output ∗ env(currnode)

currnode := parent(currnode)

mode := select

For attribute grammars it suffices to extend the instantiation for context free
grammars as follows. For the synthesis of the attribute X .a of a node X from
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its children’s attributes we add to the else-clause of the Back macro the
corresponding update, e.g. X .a := f (Y1.a1, . . . ,Yk .ak) where Yi = env(oi)
for children nodes oi and X = env(parent(currnode)). Inheriting an attribute
from the parent and siblings can be included in the update of env (e.g. upon
node creation), extending it to update also node attributes. The attribute
conditions for grammar rules are included into Execute(G) as additional
guard to yielding output, of the form

Cond(currnode.a, parent(currnode).b, siblings(currnode).c)

We leave as an exercise to formulate an ASM for tree adjoining grammars,
generalizing Parikh’s analysis of context free languages by ‘pumping’ of con-
text free trees from basis trees (with terminal yield) and recursion trees (with
terminal yield except for the root variable).

3.2 Structured programming and recursion

Turbo ASMs provide the conceptual ingredients of structured programming.
This has been illustrated in [21] by providing a surprisingly elementary proof
for a general form of the celebrated Structured Programming Theorem of
Böhm and Jacopini [9], constructing by sequential iteration simple turbo
ASMs to compute arbitrary computable functions, in a way which combines
the advantages of Gödel-Herbrand style functional and of Turing style imper-
ative programming. We call Böhm-Jacopini-ASM any turbo ASM M which
can be defined, using only seq, while, from basic ASMs whose non-controlled
functions are restricted to one (a 0-ary) input function (whose values represent
the arguments on which the given function is to be computed, they are fixed
by the initial state), one (a 0-ary) output function (which upon terminating
the computation will be updated to the computed function value), and the
initial functions of recursion theory as static functions. It suffices to define
by induction for each partial recursive (definition of a computable function)
f a Böhm-Jacopini-ASM F computing it. For example if f is defined from g
by the µ-operator, f (x ) = µy(g(x , y) = 0), and if a Böhm-Jacopini-ASM G
computing g is given, then the following machine µ-Operator mimics the
standard definition of the µ-operator to compute f . The start submachine com-
putes g(x , rec) for the initial recursor value 0, the iterating machine computes
g(x , rec) for increased values of the recursor until 0 shows up as computed
value of g , in which case the reached recursor value is set as output. We use
a macro F (in) to describe inputting from some external input source in to a
machine F before it gets started, which in the functional notation appears as
argument providing mechanism. Formally F (in) stands for inF := in seq F .

µ-Operator(G) =
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G(inF , 0)

rec := 0

seq

while outG 6= 0

G(inF , rec + 1)

rec := rec + 1

seq outF := rec

The examples illustrates how by the atomicity of their black-box computa-
tions, turbo ASMs allow one to reflect exactly the machinery which underlies
the common mathematical use of functional equations to evaluate function
values. Often functional programs are characterized as different from impera-
tive ones because “rather than telling the computer what to do, they define
what it is that the computer is to provide” (quoted from [25]). The equations
which appear in the Gödel-Herbrand type definition of partial recursive func-
tions “define what it is that the computer is to provide” only on the basis
of the implicit assumptions made for the procedure to be followed for the
manipulation of arguments and values during the evaluation of terms. The
corresponding Böhm-Jacopini-ASMs as indicated above make this machinery
explicit, exhibiting how to evaluate the subterms when using the equations,
as much as needed to make the functional shorthand work correctly the way
it was hardwired in our brains through training at school.

In a similar way we can answer Moschovakis’ question in [41] what are the
abstract machines for standard forms of recursion, like the ones used to define
the Mergesort algorithm. In fact turbo ASM submachines abstractly model the
standard imperative calling mechanism, which provides the key for express-
ing the common intuitive understanding of recursion in terms of single-agent
ASM computations. It suffices to extract the desired value from the final state
reached by a turbo ASM step, which describes an abstract form l ← R(a)
of returning values to an indicated location (0-ary function) l . Here is the
formal definition whose detailed justification can be found in [15] 2 . Let Ri , S
be turbo ASMs with formal parameter sequences xi of Ri and parameters yi

of S . Define:

let {y1 = R1(a1), . . . , yn = Rn(an)} in S ≡

2 A similar definition is given in [30]. In [15] we also explain why we are dissatisfied
with the explanation of recursion in terms of distributed ASMs which is advocated
in [34].
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let l1, . . . , ln = new(FUN0) in

forall 1 ≤ i ≤ n do li ← Ri(ai) seq

let y1 = l1, . . . , yn = ln in S

This definition allows us to capture by a turbo ASM the computations sug-
gested by systems of recursive equations, e.g. to mergesort a given list L. It
consists in FIRST splitting the list into a LeftHalf (L) and a RightHalf (L)
(if there is something to split) and mergesort these two sublists separately
(independently of each other), THEN to Merge the two results by an aux-
iliary elementwise Merge operation. This is expressed by the following turbo
ASM which besides two auxiliary functions LeftHalf , RightHalf comes with an
external function Merge which can be defined independently as a submachine.

Mergesort(L) =

if | L |≤ 1 then result:= L else

let

x = Mergesort(LeftHalf (L))

y = Mergesort(RightHalf (L))

in

result←Merge(x , y)

Remark. Concluding the ASM modeling of classical automata and computa-
tion concepts in this section one can say that with hindsight, it comes as no
surprise that the numerous definitions of the notion of algorithms found in the
30’ies and 40’ies of the last century, in an attempt to mathematically capture
the intuitive notion of computable function, all turned out to be equivalent:
they are all variations of control state ASMs, mostly data refinements of the
TuringLikeMachine model made explicit above. This positions also the
Church-Turing thesis with respect to the more general ASM thesis [33].

4 System Design Models

In this section we show how to model by ASMs the basic semantical concepts
of the executable high-level design languages UNITY and COLD, of widely
used sequential and distributed state-based specification languages (illustrated
for sequential systems by Parnas tables and B machines, for distributed sys-
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tems by Petri Nets), of dedicated virtual machines (e.g. data flow machines),
and of axiomatic logic-based or stateless modeling systems (like denotational
semantics, VDM, Z, and algebraic systems like process algebras).

UNITY [24]. Unity computations are sequences of state transitions where
each step comprises the simultaneous execution of multiple conditional vari-
able assignments, including quantified array variable assignments of form forall
0 ≤ i < N do a(i) := b(i). States are formed by variables (0-ary dynamic
functions which may be updated by different agents, respecting some nam-
ing conventions), conditions are typically formulated in terms of <,=, steps
are executions of program statements which correspond in an obvious way
to basic ASM rules. This is expressed below by applying a here not further-
more specified machine Exec to basic ASM rules, which allows one to reflect
metaprogramming features (e.g. to turn ‘rules’ into computational objects).
The steps are scheduled using a global clock (Unity system time) which syn-
chronizes the system components for an interleaving semantics: per step one
statement of one component program in the system is scheduled using non-
deterministic schedulers (required to respect a certain fairness condition on
infinite runs). The Unity system time is thus identified with the time for ex-
ecuting one step of the ASM UnitySystem below. Like in basic ASMs, also
in Unity there is no further control flow. Identifying components with basic
ASMs and systems with sets of components leads therefore to the following
computational model for Unity systems (which is linked to a particular proof
system Unity, geared to extract proofs from the program text):

UnitySystem(S ) =

choose com ∈ Component(S )

choose rule ∈ Rule(com)

Exec(rule)

COLD [28]. In the Common Object-oriented Language for Design states are
realized as structures, including abstract data types (ADT) linked to an un-
derlying dynamic logic proof system which is geared to provide proofs for
algebraic specifications of states and their dynamics (à la Z and VDM). Com-
putations are sequences of state transitions (due to the execution of procedure
calls, built from statements viewed as expressions with side effects) allowing
synchronous parallelism of simultaneous multiple conditional variable assign-
ments (but no explicit forall construct) and non-deterministic choices among
variable assignments and rules (procedure invocations). Thus a Cold class
(with a set of states, one initial state, and a set of transition relations) corre-
sponds in a standard way to a control state ASM, except that different states
of a same class are allowed to have different signatures. The black box view
offered for sequencing and iteration is directly reflected by the correspond-
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ing turbo ASM constructs, taking into account that Cold provides a separate
guard statement for blocking evaluation of guards which is executed only (with
skip effect) when the guard becomes true.

The machine ColdModify(Var) models the idiomatic high-level construct
Mod of Cold which supports non-determinism in choosing subsets of variables
to be updated by chosen values. A similar construct Use permits to choose
procedures from a set Proc to be Executed in sequence.

ColdModify(Var) =

choose n ∈ N

choose x1, . . . , xn ∈ Var

choose v1, . . . , vn ∈ Value

forall 1 ≤ i ≤ n do val(xi) := vi

ColdUse(Proc) =

choose n ∈ N, choose p1, . . . , pn ∈ Proc

Exec(p1) seq . . . seq Exec(pn)

Parnas Tables. An elaborate definition has been given in [42] for the se-
mantics of a complex classification of Parnas tables which underlies the SCR
method [36]. Their semantical meaning as a special matrix notation—a 2-
dimensional layout of the CASE construct—for sequential systems with finitely
many (controlled or monitored) state variables can be succinctly expressed by
basic ASMs, providing an easily accessible foundation for the systematic use
of such tables in system engineering. Normal tables are used to express the
assignment of a value ti ,j to f (x , y) under the i -th row and the j -th column
condition (where it is assumed that for each x , y at most one pair of row and
column condition is true), formally:

NormalTable = forall i ≤ n, j ≤ m

if RowCondi and ColumnCondj then f (x , y) := ti ,j

Inverted tables are used to assign a value tj to f (x , y) under a leading row
condition and a side condition (assumed to be sufficiently disjoint as for nor-
mal tables, to prevent inconsistent (‘ambiguous’) function updates), formally
described by the following rules (for all i ≤ n, j ≤ m):

InvertedTable(i , j ) = if RowCondi(x , y) then
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if SideCondi ,j then f (x , y) := tj

Decision tables trigger a column action tj under a parameterized column con-
dition, formally expressed by the following set of rules (for all j ≤ n, where
disjoint properties avoid column actions conflicts):

DecisionTable(j ) =

if ∀i ≤ m RowCondi ,j (si) then trigger tj

VDM,Z,B [29,47,1]. These high-level design languages share the notion of
computation as sequence of state transitions given by a before-after relation,
where states are formed by variables taking values in certain sets (in VDM
built up from basic types by constructors) with explicitly or implicitly defined
auxiliary functions and predicates. The single (in basic B sequencing-free and
loop-free) transitions can be modeled in a canonical way by basic ASM rules
which capture also the ‘unbounded’ as well as the ‘bounded’ choice and the
parallelism B offers in terms of simultaneous (‘multiple generalized’) substitu-
tion. The basic scheme is determined by what Abrial calls the ‘pocket calcu-
lator model’ which views a machine (program) as offering a set of operations
(in VDM procedures with side effects) which are callable one at a time, e.g.
in the non-deterministic form choose R ∈ Operation in R or harnessed by
a scheduler let R = scheduled(Operation) in R; similarly for events which
in event-B are allowed to happen only one per time unit. The structuring
mechanisms for large and refined B machines are captured by turbo ASMs,
including also the machine state hiding mechanism operations typically come
with: it is allowed to activate (call) an operation for certain parameters, which
results in an invariant preserving state modification, but besides calling the
operation and taking its result no other direct access to the state is granted.
Historically, this view has led to a certain bias to functional modeling one can
observe for uses of VDM.

By the logical nature of Z specifications, their before-after expressions define
the entire system dynamics. In B as in the ASM method, the formulation of the
system dynamics—in B by operations (in event-based B by events [2–4]), in
ASMs by rules—is separated from the formulation of the static state invariants
and of the dynamic run constraints, which express desired system properties
one has to prove to hold through every possible state evolution. However for
carrying out these proofs, in contrast to the ASM method, there is a fixed link
between B and a computer assisted proof system relating syntactical program
constructs to proof rules which are used to establish program invariants and
dynamic constraints along with the program construction. This fits also the
basically axiomatic foundation of B as of Z and VDM: VDM by a denota-
tional semantics; Z by axiom systems formulated in (mainly first-order) logic;
B by Dijkstra’s weakest precondition theory, interpreted in set-theoretic mod-
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els and based upon the syntactic global concept of substitution (from which
local assignment x := t and parallel composition are derived). Differently from
Z, which due to the purely axiomatic character of Z descriptions has intrinsic
problems to turn specifications into executable code (see [35]), VDM and B
are geared to obtain software modules from abstract specifications via refine-
ments which are tailored to the proof rules used for proving that the refined
operations satisfy ‘unchanged’ properties of their abstract counterparts.

Petri Nets [43]. The general view of Petri nets is that of distributed transi-
tion systems transforming objects under given conditions. In Petri’s classical
instance the objects are marks on places (‘passive net components’ where ob-
jects are stored), the transitions (‘active net components’) modify objects by
adding and deleting marks on the places. In modern instances (e.g. the pred-
icate/transition nets) places are locations for objects belonging to abstract
data types (read: variables taking values of given type, so that a marking
becomes a variable interpretation), transitions update variables and extend
domains under conditions which are described by arbitrary first-order formu-
lae. The distributed nature of Petri nets is captured by modeling them as
multi-agent asynchronous ASMs, associating to each transition one agent to
execute the transition. Each single transition is modeled by a basic ASM rule
of the following form, where pre/post-places are sequences or sets of places
which participate in the ‘information flow relation’ (the local state change)
due to the transition and Cond is an arbitrary first-order formula. By mod-
eling Petri net states as ASM states we include the abstract Petri net view
proposed in [43] where states are interpreted as logical predicates which are
associated to places and transformed by actions.

PetriTransition =

if Cond(prePlaces) then Updates(postPlaces)

where

Updates(postPlaces) = a set of function updates

Virtual Machines. IBM’s Virtual Machine [39] and Dijkstra’s Abstract Ma-
chine [26] concept originated in the 60-ies of the last century as a high-level
operating system abstraction, but quickly spread to hierarchical system design
in general, ranging from data spaces to programming language platforms to
layered software architectures, and nowadays has become ubiquitous in high-
level system design. The definition of ASMs provides an explicit mathematical
description of the class of machines covered by this concept and thus not sur-
prisingly found quickly numerous applications for modeling complex virtual
machines (e.g. Warren’s Abstract Machine [19] and its extensions [20,7,6], the
Transputer [16] and the Java Virtual Machine architecture [45], the Neural
Net (abstract data flow) Machine [22], the UPnP architecture [31]).
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Logico-Algebraic Design Systems. The fascinating idea to write specifi-
cations as logical formulae with computations corresponding to logical deduc-
tions, furthermore in such a way that logical conjunction corresponds to sys-
tem composition and logical implication to refinement, has led to a myriad of
logic and algebraic specification and ‘declarative programming’ languages and
calculi, like Prolog and its numerous variants, VDM, Z, innumerable ‘logics
of programs’ offering proof calculi to support verification of program proper-
ties. It is certainly an advantage that once a complete logical specification is in
place, a (possibly machine supported) proof for the desired program properties
provides a rather high degree of reliability (if the implementation of the prover
and its handling by the operating system are correct). Unfortunately this ad-
vantage has to be paid at such a high price that despite of the longstanding
world-wide research effort in this direction, logical specifications are simply
not part of standard industrial software engineering practice (though they are
used with success in certain well-delineated areas, among which design and
verification of control systems, protocols and hardware). This is so not only for
the extraordinary cost of logical formalizations of real-life software projects,
due to the considerable tecnicho-mathematical skill and the time needed to
carry to the end a large scale logico-algebraic design and verification project,
but also for intrinsic reasons. All declarative specifications by their very logical
nature are subject to the frame problem of having to describe not only the
local changes, but also everything that is supposed not to change. Every logic
system implies a fixed level of abstraction for design and verification. These
two features lead to the rightly critisized ‘formal specification explosion phe-
nomenon’ that formal specifications which come in the form of a huge logical
formula or system of algebraic equations tend to become orders of magnitude
larger than the executable code, making it difficult (if possible at all) to fully
understand them and to derive an efficient program from them. Minor but
not negligible disadvantages derive from the typical external non-determinism
in inference rule applications, which does not necessarily reflect the computa-
tionally intended scheduling, and from the natural drive of logical descriptions
to lead to the rather special case of purely functional specifications (‘big-step
semantics’ with exclusive consideration of relations between initial and final
states) which are not always easy to be implemented. See the characteristic
view expressed in [35, pg.89], that “The most important characteristic of Z,
which singles it out from every other formal method, is that it is completely
independent of any idea of computation”.

The ASM method allows one to use such logic-based design and verifica-
tion techniques where appropriate—which means desired, technically feasible
and cost-effective—, integrating them into the high-level but state-based, gen-
uinely semantical and computation oriented, specification and analysis tech-
niques which are supported by ASMs. Successful projects in this direction have
been reported using theorem proving systems (KIV, PVS, Isabelle) and model
checkers, see the survey paper [14] for details. See also [10] for an integration
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of process-algebraic and ASM concepts.

Conclusion We hope some reader will feel challenged by the above definitions
to investigate classes of ASMs whose elements reflect the structure of well
known computation or system design concepts, trying to establish interesting
properties which relate different models, e.g. in terms of simulations between
them or of the complexity of expressing in them computational features of
interest.

To appear in: Annals of Pure and Applied Logic (2004)
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