
77 (1-2) 2007

1. Preface i-iv

2. Refinement, Decomposition, and Instantiation of Discrete Models:Application to Event-B

Jean-Raymond Abrial, Stefan Hallerstede 1-28

We argue that formal modeling should be the starting point for any serious development of com-
puter systems. This claim poses a challenge for modeling: at first it must cope with the constraints
and scale of serious developments. Only then it is a suitable starting point. We present three
techniques, refinement, decomposition, and instantiation, that we consider indispensable for mod-
eling large and complex systems. The vehicle of our presentation is Event-B,but the techniques
themselves do not depend on it.

3. Retrenching the Purse: The Balance Enquiry Quandary, and Generalised and (1, 1) Forward
Refinements

Richard Banach, Czeslaw Jeske, Michael Poppleton, Susan Stepney 29-69

Some of the success stories of model based refinement are recalled, as well as some of the annoy-
ances that arise when refinement is deployed in the engineering of large systems. The way that
retrenchment attempts to alleviate such inconveniences is briefly reviewed. The Mondex Elec-
tronic Purse formal development provides a highly credible testbed for examining how real world
refinement difficulties can be treated via retrenchment. The contributions ofretrenchment to in-
tegrating the real implementation with the formal development are surveyed, and the extraction
of commonly occurring ‘retrenchment patterns’ is recalled. One of the Mondex difficulties, the
‘Balance Enquiry Quandary’ is treated in detail, and the way that retrenchment is able to account
for the system behaviour is explained. The problem is reconsidered using generalised forward
refinement, and the simplicity of the resolution of the quandary, both by retrenchment, and by
generalised forward refinement, inspires the creation of a genuine(1, 1) forward refinement for
Mondex, something long thought impossible. The forward treatment exhibits asimilar balance en-
quiry quandary to the backward refinement, as it must, given that both arerefinements of an atomic
action to a non-atomic protocol, and the forward quandary is dealt with as easily by retrenchment
as is the backward case. The simplicity of the retrenchment treatment foreshadows a general pur-
pose retrenchmentAtomicity Patternfor dealing with atomic-versus-finegrained situations.

4. CoreASM: An Extensible ASM Execution Engine

Roozbeh Farahbod, Vincenzo Gervasi, Uwe Glässer 71-103

In this paper we introduce a new research effort in makingabstract state machines(ASMs) exe-
cutable. The aim is to specify and implement an execution engine for a language that is as close as
possible to the mathematical definition of pure ASMs. The paper presents the general architecture
of the engine, together with a high-level description of the extensibility mechanisms that are used
by the engine to accommodate arbitrary backgrounds, scheduling policies,and new rule forms.



5. Model Checking Abstract State Machines with Answer Set Programming

Calvin Kai Fan Tang, Eugenia Ternovska 105-141

The quality of a computer system can be enhanced by modelling its design and verifying the cor-
rectness of the design before implementation is done. Abstract State Machines (ASMs) provide a
mathematical framework for system modelling, while Model Checking is a technology for verifi-
cation of system properties. Together, they form a powerful tool for checking systems. Bounded
Model Checking (BMC) based on Answer Set Programming (ASP) is a competitive model check-
ing approach due to its ability to compactly encode BMC problems. In this paper,we present a
method of applying ASP to BMC of ASMs. Given an ASM and a temporal property, we show how
to efficiently translate the BMC problem for the ASM into a problem of answer set computation.
Experimental results for our method using the answer set solvers SMODELS and CMODELS are
also given.

6. Time in State Machines

Susanne Graf, Andreas Prinz 143-174

State machines are a very general means to express computations in an implementation-independent
way. There are ways to extend the abstract state machine (ASM) framework with distribution as-
pects, but there is no unifying framework for handling time so far.

We propose event structures extended with time as a natural framework for representing state
machines and their true concurrency model at a semantic level and for discussing associated time
models. Constraints on these timed event structures and their traces (runs)are then used for charac-
terising different frameworks for timed computations. This characterisationof timed frameworks
is independent of ASM and allows to compare time models of different modelling formalisms.

Finally, we propose some specific extensions of ASM for the expressionsof time constraints in
accordance with the event-based semantic framework and show the applicability of the obtained
framework on an example with a standard time model and a set of consistency properties for timed
computations.

7. RAM Simulation of BGS Model of Abstract-state Machines

Comandur Seshadhri, Anil Seth, Somenath Biswas 175-185

We show in this paper that the BGS model of abstract state machines can be simulated by random
access machines with at most a polynomial time overhead. This result is already stated in [5] with
a very brief proof sketch. The present paper gives a detailed proofof the result. We represent
hereditarily finite sets, which are the typical BGS ASM objects, by membership graphs of the
transitive closure of the sets. Testing for equality between BGS objects canbe done in linear time
in our representation.


