
Abstract State Machines

and High-Level System Design and Analysis

Egon B�orger a;�,

aDipartimento di Informatica, Universit�a di Pisa,
Via F. Buonarroti 2, I-56127 Pisa, Italy

Abstract

The background and the themes of this ASM-centered special issue of TCS are
shortly described.

Key words: Abstract State Machines, High-Level System Design, Mathematical
System Analysis, Re�nement, Veri�cation, Testing, Coordination, Mobile
Networks, C#

The year 2003 was a landmark in the short history of the Abstract State Ma-
chines (ASM) method 1 , a mathematics-based industrially successful method
for the design and the analysis of complex computer-based systems. After the
authoritative formulation of the underlying notion of ASMs|its de�nition was
presented in the Summer School on Speci�cation and Validation Methods I or-
ganized in 1993 on the Lipari island and was published in [2]|only ten years
passed to see the �rst monograph and textbook on the ASM method appear [3]
and the 10th International Workshop on Abstract State Machines [4] be held
in Taormina. The workshop aimed at an integration of ASM-based model-
ing, validation and veri�cation techniques into neighboring system engineering
methods and thus featured invited lectures on object-oriented, component-
based design and program veri�cation techniques, mobile computing, testing,
concurrency and re�nement frameworks. This triggered the invitation by Don
Sanella, which I accepted with pleasure, to edit a special issue of this Journal
with elaborations of selected papers from ASM 2003 and of related recent work
on themes in the spectrum of the workshop. The pre-selection was based upon
the reviews written for the Proceedings of ASM 2003 [4], followed by a �nal
selection through a standard reviewing process which resulted in the seven

� Corresponding author.
Email address: boerger@di.unipi.it (Egon B�orger).

1 For a detailed historical account see [1].

Preprint submitted to Elsevier Science 20 May 2004

papers appearing here 2 . Their unifying thread is the systematic use of math-
ematical theories and techniques, whether ASM-based or not, to contribute to
the solution of system engineering problems.

The �rst paper is on a promising method to combine runtime veri�cation
with automatic test case generation, based on systematically exploring the
input domain of the program using a model checker with symbolic execution.
Execution traces are monitored and veri�ed against properties expressed in
temporal logic, with capabilities for analyzing traces for concurrency errors,
such as deadlocks and data races.

In the second paper the ASM models in [5] for Java and the JVM are reused to
dis-cover the mathematical structure that underlies the semantics of C], pro-
viding also a basis for a precise comparative analysis of the two languages and
their implementations. Theorem proving systems are challenged to machine-
assist this veri�cation work.

In the third paper asynchronous (also called distributed) ASMs are used as
a mathematical reference to model, analyze and validate (via prototypical
execution) a routing layer protocol for mobile ad hoc networks. The protocol
provides senders with the needed information on the most recent physical
location of the destination node, which each network node can �nd via GPS-
like navigation technologies.

In the fourth paper the authors continue their previous work on a general alge-
braic framework to analyze the consistency of simultaneous, possibly nested,
modi�cations of structured data by independent agents. The ASM-based ap-
proach is extended from counters, sets and maps to sequences and labeled
ordered trees.

In the �fth paper the authors' logic for ASMs is extended to accomodate
proving security properties of ASMs and correctness of re�nements of parallel
ASMs to sequential C-like programs. A read predicate is introduced that allows
to make precise statements about the accesses of locations of an ASM. The
logic is shown to be complete for hierarchical ASMs and sound for turbo ASMs.

In the sixth paper some major coordination models, tailored for use in mo-
bile computing to describe the interaction of independent system components,
are analyzed. The constructs these models provide are shown to be reducible
to simple schema de�nitions in Mobile UNITY, an extension of the well-
known UNITY language|which is conceptually close to the language of ASMs
(see [6]).

2 The reviewing procedure for the second paper, where I am a co-author, has been
managed separately by the main TCS editor Don Sanella.

2

In the seventh paper the relation between the notions of ASM re�nement
and data re�nement is explored. It is shown that forward simulation in the
behavioral approach to data re�nement can be viewed as a speci�c instance of
ASM re�nement with 1:1 diagrams without control structure re�nement. Also
weak and coupled re�nement, two recent generalizations of data re�nement,
are shown to be instances of the notion of ASM re�nement.

To understand the papers in this issue no previous knowledge of ASMs is
needed since ASMs can be correctly understood as pseudo-code (guarded
commands) operating on abstract data, or as extension of �nite state ma-
chines by updates of abstract states (structures in the Tarskian sense, known
from logic). Therefore I abstain from repeating here the technical de�nition
of Gurevich's concept of ASMs, which is the �rst constituent of the ASM
method. The reader who wants to see the details may consult the above men-
tioned Lipari Guide [2] or the AsmBook [3]. A general explanation and survey
of the other two constituents I introduced into the ASM system design and
analysis method, namely the concept of ASM ground models|to faithfully
capture informal requirements|and the general notion of ASM re�nement|
to correctly turn abstract models by human-controllable steps into code|is
available in two recent papers [7,8].

We hope that some theoretically inclined reader will be attracted by the pa-
pers in this volume to contribute to the further development of the theory of
ASMs or to enlarge the body of successful applications of the ASM method
through the description and the mathematical investigation of real-life com-
plex computer-based systems.

Egon B�orger, Pisa 17.5.2004

Acknowledgements

I gratefully acknowledge the generous and decisive help of the numerous re-
viewers who have to remain anonymous. Without their constructive criticism
this issue of TCS would not be what it is.

References

[1] E. B�orger, The Origins and the Development of the ASM Method for High-Level
System Design and Analysis, J. Universal Computer Science 8 (1) (2002) 2{74.

[2] Y. Gurevich, Evolving Algebras 1993: Lipari Guide, in: E. B�orger (Ed.),
Speci�cation and Validation Methods, Oxford University Press, 1995, pp. 9{36.

3

[3] E. B�orger, R. F. St�ark, Abstract State Machines. A Method for High-Level
System Design and Analysis, Springer-Verlag, 2003.

[4] E. B�orger, A. Gargantini, E. Riccobene (Eds.), Abstract State Machines 2003{
Advances in Theory and Applications, Vol. 2589 of Lecture Notes in Computer
Science, Springer-Verlag, 2003.

[5] R. F. St�ark, J. Schmid, E. B�orger, Java and the Java Virtual Machine|
De�nition, Veri�cation, Validation, Springer-Verlag, 2001.

[6] E. B�orger, Abstract State Machines: A Unifying View of Models of Computation
and of System Design Frameworks, Annals of Pure and Applied Logic (to
appear).

[7] E. B�orger, The ASM Ground Model Method as a Foundation of Requirements
Engineering, in: N.Dershowitz (Ed.), Veri�cation: Theory and Practice, Vol. 2772
of LNCS, Springer-Verlag, 2003, pp. 145{160.

[8] E. B�orger, The ASM Re�nement Method, Formal Aspects of Computing 15
(2003) 237{257.

4

