
Modeling Workflow Patterns from First
Principles

Egon Börger

Università di Pisa, Dipartimento di Informatica, I-56125 Pisa, Italy
boerger@di.unipi.it

Abstract. We propose a small set of parameterized abstract models
for workflow patterns, starting from first principles for sequential and
distributed control. Appropriate instantiations yield the 43 workflow
patterns that have been listed recently by the Business Process Model-
ing Center. The resulting structural classification of those patterns into
eight basic categories, four for sequential and four for parallel workflows,
provides a semantical foundation for a rational evaluation of workflow
patterns.

1 Introduction

In [3] we have provided Abstract State Machine (ASM) models for the 43 work-
flow pattern descriptions that have been presented recently in [8] by the Business
Process Modeling Center. Our goal there was to make the underlying relevant
questions and implicit parameters explicit and to turn the patterns into a precise
and truly abstract form. To easen the validation of these ASM ground models, in
the sense defined in [1], we esssentially followed the order of presentation adopted
in [8] and only hinted at the most obvious streamlining the ASM models offer
for the classification presented in [8].

In this paper we revisit those workflow pattern ASMs and define eight basic
workflow patterns, four for sequential and four for distributed control, from
which all the other patterns can be derived by parameter instantiation.1 This
provides a conceptual basis for a rational workflow pattern classification that
can replace the partly repetitive listing presented in [8].

We use again the ASM method to provide a high-level, both state-based and
process-oriented view of workflow patterns. This provides a solid semantic foun-
dation for reasoning about workflow functionality. In the ASM models the behav-
ioral interface is defined through actions performed with the help of submachines
that remain largely abstract. The parameterization exploits the possibility the
ASM method offers the specifier to build ‘models with holes’, that is to leave

1 We omit here the four so-called State-Based Patterns in [10], which concern “business
scenarios where an explicit notion of state is required” and are only loosely connected
to workFLOW. Exploiting the most general character of the ASM notion of state,
these four state-based patterns can be expressed by rather simple ASMs.

C. Parent et al. (Eds.): ER 2007, LNCS 4801, pp. 1–20, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

2 E. Börger

parts of the specification either as completely abstract parameters or to accom-
pany them by assumptions or informal explanations, which are named, but ver-
ified respectively detailed only at later refinement stages. The parameterization
allows one in particular to leave the design space open for further refinements
to concrete pattern instantiations.

Most of what we use below to model workflow patterns by ASMs is self-
explanatory, given the semantically well-founded pseudo-code character of
ASMs, an extension of Finite State Machines (FSMs) by a general notion of
state. For a recent tutorial introduction into the ASM method for high-level
system design and analysis see [2], for a textbook presentation, which includes
a formalized version of the definition of the semantics of ASMs, see the Asm-
Book [6]. For sequential patterns we use mono-agent (so-called sequential) ASMs,
for patterns of distributed nature multiple-agent asynchronous (also called dis-
tributed) ASMs.

We make no attempt here to provide a detailed analysis of the basic concepts
of activity, process, thread, of their being active, enabled, completed etc., which
are used in [8] without further explanations. It seems to suffice for the present
purpose to consider an activity or process as some form of high-level executable
program, which we represent here as ASMs. Threads are considered as agents
that execute activities. An active activity, for example, is one whose executing
agent is active, etc. The quotes below are taken from [8] or its predecessor [10].

We start with the more interesting case of parallel control flow patterns, fol-
lowed by the more traditional patterns for sequential control flow known from
programmming.

2 Parallel Control Flow Patterns

The patterns related to parallel control flow can be conceptually categorized
into four types: splitting one flow into multiple flows, merging multiple flows
into one flow, forms of interleaving and trigger variations. As Andreas Prinz has
pointed out, there are good reasons to use instead a classification into splitting
and merging only. Interleaving appears then as parameter for different instances
of splitting, whereas triggering is considered as belonging to start patterns in
the context of distributed (not mono-agent sequential) computations. We do not
claim to have a unique answer to the classification problem. What we believe is
important is to start with a small number of basic patterns out of which more
complex patterns can be obtained by composition and refinement.

2.1 Parallel Split Patterns

We quote the description of the parallel split pattern:

A point in the workflow process where a single thread of control splits
into multiple threads of control which can be executed in parallel, thus
allowing activities to be executed simultaneously or in any order.

Modeling Workflow Patterns from First Principles 3

This description contains two not furthermore specified parameters, which we
represent by two sets Activity and Thread capturing the underlying activities and
the threads executing them. It is left open whether Activity is declared as static
or as dynamic, thus providing for static instantiations and for dynamic ones,
whether as known at design time or as known only at the moment of executing
the parallel split. In contrast the set Thread has to be declared as dynamic,
since multiple threads of control have to be created without committing to the
precise nature of the underlying parallelism, which is left unspecified in the above
pattern description.

The parallelism may be further specified as an interleaving execution, using
one of the interleaving patterns of Sect. 2.3, or as a simultaneous synchronous
or as asynchronous execution. The latter two cases can be expressed using syn-
chronous respectively asynchronous (also called distributed) ASMs. The partic-
ular choice can be left open if we create for each a ∈ Activity a new thread to
execute a. For this purpose we use a function new that is assumed to provide a
fresh element each time it is applied to a set. To provide a handle for expressing
the possible independence of the execution mechanisms for different threads, we
explicitly name a third parameter, namely a machine that triggers the execution
of an activity by a thread. For the representation of such a mechanism we avoid
committing to a particular framework, e.g. Petri nets where triggering is tradi-
tionally represented by placing tokens that enable a transition. This is the reason
why we introduce an abstract machine TriggerExec(t , a). It is not further-
more specified except for requiring that its call triggers enables the execution of
activity a by thread t .

ParallelSplit(Activity,Thread ,TriggerExec) =
forall a ∈ Activity let t = new(Thread) in TriggerExec(t , a)

This pattern is widely used in various forms. A well-known one is represented
by the Occam instruction [7] to spawn finitely many parallel subprocesses of a
given process p, which matches this pattern exactly. See the OccamParSpawn-
rule in [6, p.43], where TriggerExec(t , a) describes the initialization of a by
linking it to the triggering process p as its parent process, copying from there
the current environment, setting a to run and p to wait (for all the spawned
subprocesses to terminate). This instance of ParallelSplit uses as underlying
parallelism the concept of asynchronous ASMs.

An instance with synchronous parallelism takes the following form, where all
the activities in question are executed simultaneously, e.g. as action of one agent.
This is already captured by the default parallelism of basic non-distributed ASMs
so that it suffices to instantiate TriggerExec as not depending on the thread
parameter (whereby the creation of new threads can simply be deleted):

SyncParSplit(Activity , TriggerExec) = forall a ∈ Activity TriggerExec(a)

In [8] other parallel split patterns are discussed for multiple instances of one
activity. One of the descriptions runs as follows.

4 E. Börger

Within the context of a single case (i.e., workflow instance) multiple
instances of an activity can be created, i.e. there is a facility to spawn off
new threads of control. Each of these threads of control is independent
of other threads.

This so-called Multiple Instances Without Synchronization pattern, which ap-
parently comes with an asynchronous understanding of the underlying paral-
lelism, is an instance of ParallelSplit where Activity is further specified to
be a multiset of multiple instances of one activity act . Formally Activity =
MultiSet(act ,Mult) where Mult denotes the number of occurrences of act in the
multiset and determines the multitude with which new threads for the execution
of instances of act are to be created and triggered to execute act .

MultInstWithoutSync(act ,Mult ,Thread ,TriggerExec) =
ParallelSplit(MultiSet(act ,Mult),Thread ,TriggerExec)

In [10] some variations of this pattern appear, which essentially differ by their
interpretations on the static or dynamic character of the Mult itude parameter.
In the ASM framework this is merely a matter of how the parameter is declared.
Since in the formulation of these pattern variants some additional conditions ap-
pear that have to do with synchronization features, we postpone their discussion
to Sect. 2.2 where combinations of split and join patterns are discussed.

2.2 Merge Patterns

The following characterization seems to capture what is common to all the syn-
chronization and merge patterns in [8]:

A point in the workflow process where multiple parallel subprocesses/
activities converge into one single thread of control ... once ... completed
some other activity needs to be started.

The general scheme appears to be that one has to perform a specific con-
vergence action that characterizes the start of the merge phase, namely when a
MergeEvent occurs, and then to complete the merge by some further actions. To
represent these two successive and possibly durative aspects of a merge we use
separate abstract machines StartMerge and CompleteMerge. To capture
that multiple actions may be involved to complete a merge cycle, we formalize
the above description by the following control state ASM Merge, i.e. an ASM
all of whose rules have the form pictorially depicted in Fig. 1. Here i , j1, . . . , jn
denote the control states corresponding to the internal states of an FSM (Finite
State Machine), condν (for 1 ≤ ν ≤ n) the guards and ruleν the rule actions.

The control state ASM Merge switches between two modes mergeStart ,
MergeCompl and takes the merge event predicate and the two submachines
for starting and completing the merge as not furthermore specified abstract
parameters.

Modeling Workflow Patterns from First Principles 5

n

cond 1

cond nrule

1rule

i

j

jn

1

if ctl state = i then
if cond1 then

rule1

ctl state := j1
· · ·

if condn then
rulen

ctl state := jn

Fig. 1. Control state (FSM like) ASM rules

Fig. 2. General Merge Pattern ASM Merge

In accordance with the understanding of activities as executed by agents rep-
resenting threads, we name explicitly also these underlying agents since they
are the ones to be merged (not really the activities). We use for this a pa-
rameter exec denoting for every a ∈ Activity the agent exec(a) executing a,
if there is one. It typically serves as parameter for defining the merge event
MergeEv .

Merge(Activity, exec,MergeEv ,StartMerge,CompleteMerge) =
if ctl state = mergeStart and MergeEv(exec) then

StartMerge

ctl state := mergeCompl
if ctl state = mergeCompl then

CompleteMerge

ctl state := mergeStart

Various forms of synchronizing merge patterns, whether with or without syn-
chronization, can be described as instances of the general merge pattern ASM
Merge. We illustrate this here by deriving the various merge patterns that
appear in [8].

6 E. Börger

Discriminators. One class of patterns in [8] that represent instances of the
two-phase merge pattern Merge are the so-called Discriminator patterns. They
present the durative character of a merging phase together with two additional
basic merge features, namely merging with or merging without synchronization.
The so-called Structured Discriminator pattern is described as follows:

The discriminator is a point in a workflow process that waits for one
of the incoming branches to complete before activating the subsequent
activity. From that moment on it waits for all remaining branches to
complete and “ignores” them. Once all incoming branches have been
triggered, it resets itself so that it can be triggered again...

To view this pattern as an instance of Merge, essentially we have to instan-
tiate MergeEv to the check whether there is “one of the incoming branches to
complete”. Really this is a shorthand for expressing that a thread executing the
activity a associated to a branch has reached a completion point for that activity,
formally whether Completed(a, exec(a)).

As a cosmetic adaptation one may rename the control states mergeStart and
mergeCompl to reflect the basic intention of the discriminator pattern as alter-
nation between a waitingToProceed mode, namely until a first incoming branch
completes, and a reset mode, during which all remaining branches will com-
plete “without synchronization”. Similarly one may rename StartMerge and
CompleteMerge to Proceed respectivelyReset.

Speaking about waiting “for one of the incoming branches to complete” leaves
the case open where more activities complete simultaneously. We formalize the
pattern so that this latter more general case is contemplated, where multiple
activities that complete together may be synchronized. In doing this we fore-
see that the way to Proceed may be parameterized by the set of incoming
branches whose activities have been the first to be simultaneously completed.
Note that this formalization allows one to refine the ‘synchronization’ to choosing
one among the simultaneously completed activities. This leads to the following
instantiation of Merge by Fig. 3.

Fig. 3. Discriminator control-state ASM

Modeling Workflow Patterns from First Principles 7

Discriminator(Activity, exec,Completed ,Proceed,Reset) =
Merge(Activity, exec,MergeEv ,Proceed(ComplAct),Reset)

where
MergeEv =| ComplAct |≥ 1
ComplAct = {a ∈ Activity | Completed(a, exec(a))}

The variant Structured N-out-of-M Join discussed in [8] is the very same
Discriminator machine, replacing the cardinality threshold 1 by N and let-
ting M =| Activity |2. The pattern discussed in [8] under the name Gener-
alized AND-Join is the same as Structured N-out-of-M Join with additionally
N = M .

Reset appears in the above quoted description of the structured discrimina-
tor as a durative action of waiting for other activities to complete. It suffices to
refine Reset to the following machine Structured Discriminator Reset.
To check whether “all incoming branches have been triggered”, one has to dis-
tinguish the activities which have not yet been detected as completed. Thus
one needs a NotYetDetected test predicate, which initially is satisfied by ev-
ery element of the set Activity and is updated until it becomes empty. In the
description below init , exit denote the initial respectively final control state
of the refined machine. As Fig. 4 shows, for the replacement of Reset by
Structured Discriminator Reset we identify init with the reset mode, in
which it is called by Discriminator, and exit with the initial mode
waitingToProceed .

waiting
ForOtherAct
ToComplete

there is a
NotYetDetected

Activity

there is a
NotYetDetected

Completed
Activity

MARKASDETECTED
(NotYetDetectedComplAct)

yes

no

MARKAS
UNDETECTED

(Activity)

Fig. 4. Structured Discriminator Reset

2 | A | denotes the cardinality of set A.

8 E. Börger

StructuredDiscriminatorReset =
if mode = init then

MarkAsUnDetected(Activity)
mode := waitingForOtherActToComplete

if mode = waitingForOtherActToComplete then
if NotYetDetected �= ∅ then let A = ComplAct ∩ NotYetDetected

if A �= ∅ then MarkAsDetected(A)
else mode := exit

where
MarkAsDetected(A) = (forall a ∈ A NotYetDetected(a) := false)
MarkAsUnDetected(A) = (forall a ∈ A NotYetDetected(a) := true)
ComplAct = {a ∈ Activity | Completed(a, exec(a))}

The variations called Cancelling Discriminator and Cancelling N-out-of-M
Join are described in [8] by the additional requirement that “Triggering the dis-
criminator (join) also cancels the execution of all of the other incoming branches
and resets the construct”. This comes up to define the following instances of
Reset:

CancellingDiscriminatorReset =
forall a ∈ Activity \ ComplAct Cancel(exec(a))

In [8] some more variations, coming under the names Blocking Discriminator
and Blocking N-out-of-M Join, are described by the additional requirement that
“Subsequent enablements of incoming branches are blocked until the discrim-
inator (join) has reset.” It comes up to declare Completed as a set of queues
Completed(a) of completion events (read: announcing the completion of some
thread’s execution) for each activity a, so that in each discriminator round only
the first element fstout to leave a queue is considered and blocks the others. This
leads to the following refinement step:

refine the abstract completion predicate to not Empty(Completed(a)),
refine the updates of NotYetDetected(a) by replacing a by
fstout(Completed(a)) (under the additional guard that fstout(Completed(a))
is defined),
for exiting, i.e. in the last else branch of StructuredDiscriminator −
Reset, add the deletion of the completion events that have been considered
in this round:

forall a ∈ Activity Delete(fstout(Completed(a)),Completed(a))
In [8] also variations of the preceding discriminator pattern versions are presented
that work in concurrent environments. This is captured in our model by the fact
that we have parameterized it among others by Activity andCompleted , so that
it can execute in an asynchronous manner simultaneously for different instances
of these parameters.

Synchronizing Merge. This pattern too presents two merge components, one
with and one without synchronization. It is described in [8] as follows:

Modeling Workflow Patterns from First Principles 9

A point in the workflow process where multiple paths converge into
one single thread. If more than one path is taken, synchronization of
the active threads needs to take place. If only one path is taken, the
alternative branches should reconverge without synchronization. It is
an assumption of this pattern that a branch that has already been
activated, cannot be activated again while the merge is still waiting
for other branches to complete. ... the thread of control is passed to
the subsequent branch when each active incoming branch has been
enabled.

This is a merge pattern instance where the threads, which execute the activities
associated to branches and are described as Active, have to be synchronized,
whereas the remaining threads have to “reconverge without synchronization”.
The synchronization event denotes the crucial pattern parameter “to decide
when to synchronize and when to merge” and to determine the branches “the
merge is still waiting for ... to complete”. Nevertheless no definition of threads
being Active, Activated or Enabled is given, so that in particular it is unclear
whether by interpreting enabledness as completion this pattern reduces to the
structured discriminator pattern. Since a decision is needed, we choose to for-
malize the synchronization event in terms of enabledness of active branch activ-
ities by instantiating the MergeEvent in Merge correspondingly. As a cosmetic
change we rename StartMerge and CompleteMerge to Converge re-
spectively Reconverge. The iterative nature of the not furthermore speci-
fied Reconverge machine can be formalized by a structured version, as done
for the discriminator Reset submachine. In this case the description of this
pattern in fact is just another wording for the structured version of the
discriminator.

SynchronizingMerge(Activity , exec,Active,SyncEnabled ,Converge,Reconverge) =
Merge(Activity , exec,MergeEv ,Converge(Active),Reconverge(Activity \ Active)

where
MergeEv =forall a ∈ Activity if Active(exec(a)) then SynEnabled(exec(a))

The assumption “that each incoming branch of a synchronizer is executed only
once” relates each a ∈ Activity to a unique executing thread exec(a). It is natu-
ral to assume that at the beginning of the execution of a, SyncEnabled(exec(a))
is false and that after having become true during this execution, it is reset
to false by Converge respectively Reconverge, thus resetting
SynchronizingMerge for the next synchronization round.

The machine SynchronizingMerge has been further simplified in [8] to
a pattern called Synchronizer. This can be defined as an instantiation of
SynchronizingMerge by declaring all activities to be active (i.e.
Active(exec(a)) holds for each a ∈ Activity when the pattern is used) and re-
converging to be empty (Reconverge = skip).

The Acyclic Synchronizing Merge pattern presented in [8] is another variation
described by the following additional requirement:

10 E. Börger

Determination of how many branches require synchronization is made
on the basis of information locally available to the merge construct. This
may be communicated directly to the merge by the preceding diverging
construct or alternatively it can be determined on the basis of local data
such as the threads of control arriving at the merge.

This variation is easily captured by refining the MergeEvent predicate to check
whether the necessary synchNumber of to be synchronized enabled and active
branches has been reached:

AcyclSynchrMerge = SynchronizingMerge where
MergeEv= | {a∈Activity | Active(exec(a)) and SyncEnabled(exec(a))} |≥
synchNumber

Another variation called General Synchronizing Merge is described in [8]
by relaxing the firing condition from “when each active incoming branch has
been enabled” through the alternative “or it is not possible that the branch
will be enabled at any future time”. To reflect this restriction it suffices
to relax SyncEnabled(exec(a)) in MergeEv by the disjunct “or
NeverMoreEnabled(exec(a))”, but obviously the crux is to compute such a pred-
icate. It “requires a (computationally expensive) evaluation of possible future
states for the current process instance” [8, pg.71].

Simple and Thread Merge. The Simple Merge pattern described in [10] is
an example of merging without synchronization. Its description runs as follows.

A point in the workflow process where two or more alternative branches
come together without synchronization. It is an assumption of this pat-
tern that none of the alternative branches is ever executed in parallel.

This is an instance Simple Merge of the Merge ASM where the two control
states are identified and we set CompleteMerge = skip. In [8] the description
is weakened as follows, withdrawing the uniqueness condition.

The convergence of two or more branches into a single subsequent branch.
Each enablement of an incoming branch results in the thread of control
being passed to the subsequent branch.

This weakening can be made explicit by incorporating into the StartMerge

submachine of SimpleMerge a choice among two or more branches that try
to converge simultaneously, using one of the selection patterns discussed in
Sect. 3.4. In [8] two more variations are discussed under the names Thread Merge
with Design/Run-Time Knowledge, where a merge number MergeNo appears
explicitly:

At a given point in a process, a ... number of execution threads in a
single branch of the same process instance should be merged together
into a single thread of execution

Modeling Workflow Patterns from First Principles 11

This number is furthermore specified to be either “nominated” or “not known
until run-time”, which is a question of how the number is declared. As to the
definition of ThreadMerge, it can be obtained as follows, reusing the instan-
tiation of Merge to Simple Merge and refining the MergeEv further by an
analogous condition as the one used for AcyclSynchMerge above:

ThreadMerge(Activity, exec,MergeEnabled ,Proceed,MergeNo) =
Merge(Activity, exec,MergeEv ,Proceed, skip)

where
MergeEv = (| {a ∈ Activity and MergeEnabled(exec(a))} |= MergeNo)
mergeStart = mergeCompl

Thus SimpleMerge appears as ThreadMerge with MergeNo = 1 under
the mutual-exclusion hypothesis.

RelaxSimpleMerge is the variant of ThreadMerge with cardinality check
| A |≥ 1 and Proceed refined to forall a ∈ A Proceed(a).3 At a later
point in [10] this pattern is called Multi-Merge and described as follows: “A
point in the workflow process where two or more branches reconverge without
synchronization. If more than one branch gets activated, possibly concurrently,
the activity following the merge is started for every activation of every incoming
branch.”4

To capture the two Thread Merge variants it suffices to instantiate Activity
to the set of execution threads in the considered single branch of a process
and to declare MergeNo as static respectively dynamic. It is unclear whether
there is a difference worth the two namings between the Synchronizer and
the ThreadMerge pattern besides considering in the latter only the “execution
threads in a single branch of the same process instance”.

Coupled Split and Join Patterns. For the instantiation of ParallelSplit

to the pattern MultInstWithoutSync for multiple instances without synchro-
nization (see Sect. 2.1) three variations appear in [10]. They derive from different
interpretations of the static or dynamic nature of the Mult itude parameter and
from adding a join component to the split feature.

For the Multiple Instances With a Priori Design Time Knowledge pattern
the set Mult is declared to be known a priori at design time. In addition the
following is required:

3 It comes natural to assume here that when Proceed(a) is called,
MergeEnabled(exec(a)) changes to false and exec(a) to undefined . This guar-
antees that each completed activity triggers “the subsequent branch” once per
activity completion. One way to realize this assumption is to require such an update
to be part of Proceed(a); another possibility would be to add it as update to go
in parallel with Proceed(a).

4 It is possible that the relaxed form of Simple Merge was intended not to allow
multiple merge-enabled branches to proceed simultaneously, in which case it either
implies a further selection of one a ∈ A to Proceed(a) as proxy for the others or a
sequentialization of Proceed(a) for all a ∈ A.

12 E. Börger

... once all instances are completed some other activity needs to be
started.

These two requirements can be captured by using the two phases of the Merge

machine, one for the (unconditioned)5 splitting action and one to Proceed upon
the completion event, when all newly created agents have Completed their run
of the underlying activity. Since in [8] also a variation is considered under the
name Static N-out-of-M Join for Multiple Instances, where to Proceed only N
out of Mult = M activity instances need to have completed, we make here the
cardinality parameter explicit. It can then be specialized to N =| Agent(act) |.
The variation Static Cancelling N-out-of-M Join for Multiple Instances in [8]
can be obtained by adding a cancelling submachine.

MultInstNMJoin(act , Mult ,Thread , Completed , TriggerExec,Proceed,N) =
Merge(MultiSet(act , Mult), −, true,

MultInstWithoutSync(act , Mult ,Thread , TriggerExec),
if CompletionEv then Proceed)

where
CompletionEv = (| {t ∈ Thread | Completed(t , act)} |≥ N)

MultInstAPrioriDesignKnowl

(act , Mult ,Thread , Completed , TriggerExec,Proceed) =
MultInstNMJoin

(act , Mult ,Thread , Completed , TriggerExec,Proceed, | Thread(act) |)

The pattern Multiple Instances With a Priori Run Time Knowledge is the
same except that the Mult itude “of instances of a given activity for a given
case varies and may depend on characteristics of the case or availability of re-
sources, but is known at some stage during runtime, before the instances of
that activity have to be created.” This can be expressed by declaring Mult for
MultInstAPrioriRunKnowl as a dynamic set.

The Multiple Instances Without a Priori Run Time Knowledge pattern is the
same as Multiple Instances With a Priori Run Time Knowledge except that for
Mult itude it is declared that “the number of instances of a given activity for a
given case is not known during desing time, nor is it known at any stage during
runtime, before the instances of that activity have to be created”, so that “at any
time, whilst instances are running, it is possible for additional instances to be
initiated” [8, pg.31]. This means that as part of the execution of a Run(a, act),
it is allowed that the set Agent(act) may grow by new agents a′ to Run(a′, act),
all of which however will be synchronized when Completed . Analogously the
pattern Dynamic N-out-of-M Join for Multiple Instances discussed in [8] is a
variation of Static N-out-of-M Join for Multiple Instances.

The Complete Multiple Instance Activity pattern in [8] is yet another varia-
tion: “... It is necessary to synchronize the instances at completion before any
subsequent activities can be triggered. During the course of execution, it is pos-
sible that the activity needs to be forcibly completed such that any remaining
5 As a consequence the parameter exec plays no role here.

Modeling Workflow Patterns from First Principles 13

instances are withdrawn and the thread of control is passed to subsequent
activities.”

To reflect this additional requirement it suffices to add the following machine
to the second submachine of MultInstAPrioriDesignKnowl:

if Event(ForcedCompletion) then
forall a ∈ (Thread(act) \ Completed) do Cancel(a)
Proceed

2.3 Interleaving Patterns

As observed by Andreas Prinz and mentioned above, interleaving should perhaps
be considered as parameter for different forms of parallelism and not as pattern.
Interleaving is described in [8] as follows:

A set of activities is executed in an arbitrary order: Each activity in the
set is executed, the order is decided at run-time, and no two activities
are executed at the same moment (i.e. no two activities are active for
the same workflow at the same time).

We illustrate some among the numerous ways to make this description rig-
orous, depending on the degree of detail with which one wants to describe the
interleaving scheme. A rather liberal way is to execute the underlying activities
one after another until Activity has become empty, in an arbitrary order, left
completely unspecified:

InterleavedPar(Activity) = choose act ∈ Activity
act
Delete(act ,Activity)

A more detailed scheme forsees the possibility to impose a certain schedul-
ing algorithm for updating the currently executed activity curract . The function
schedule used for the selection of the next not-yet-completed activity comes with
a name and thus may be specified explicitly elsewhere. For example, to capture
the generalization of this pattern in [8, pg.34], where the activities are partially
ordered and the interleaving is required to respect this order, schedule can sim-
ply be specified as choosing a minimal element among the not-yet-completed
activities.

ScheduledInterleaving(Activity,Completed , schedule) =
if Completed(curract) then curract := schedule({a ∈ Activity | not
Completed(a)})

A more sophisticated interleaving scheme could permit that the execution
of activities can be suspended and resumed later. A characteristic example ap-
pears in [9, Fig.1.3] to describe the definition of the multiple-thread Java in-
terpreter using a single-thread Java interpreter. It can be paraphrased for the
workflow context as follows, assuming an appropriate specification of what it

14 E. Börger

means to Suspend and to Resume an activity and using an abstract predicate
ExecutableRunnable that filters the currently executable and runnable activities
from Activity.

InterleaveWithSuspension

(Activity ,ExecutableRunnable,Execute,Suspend,Resume) =
choose a ∈ ExecutableRunnable(Activity) if a = curract then Execute(curract)

else
Suspend(curract)
Resume(a)

The generalization from atomic activities to critical sections, proposed in [8]
as separate pattern Critical Section, is a straightforward refinement of the ele-
ments of Activity to denote “whole sets of activities”. Also the variation, called
Interleaved Routing, where “once all of the activities have completed, the next
activity in the process can be initiated” is simply a sequential composition of
Interleaved Parallel Routing with NextActivity.

There is a large variety of other realistic interpretations of Interleaved Parallel
Routing, yielding pairwise different semantical effects. The informal requirement
description in [10,8] does not suffice to discriminate between such differences.

2.4 Trigger Patterns

Two basic forms of trigger patterns are discussed in [8], called Transient Trigger
and Persistent Trigger. The description of Transient Trigger reads as follows:

The ability for an activity to be triggered by a signal from another part
of the process or from the external environment. These triggers are tran-
sient in nature and are lost if not acted on immediately by the receiving
activity.

Two variants of this pattern are considered. In the so-called ‘safe’ variant,
only one instance of an activity ‘can wait on a trigger at any given time’. In the
unsafe variant multiple instances of an activity ‘can remain waiting for a trigger
to be received’.6

The description of the Persistent Trigger goes as follows:

... These triggers are persistent in form and are retained by the workflow
until they can be acted on by the receiving activity.

Again two variants are considered. In the first one ‘a trigger is buffered until
control-flow passes to the activity to which the trigger is directed’, in the second
one ‘the trigger can initiate an activity (or the beginning of a thread of execution)
that is not contingent on the completion of any preceding activities’.

We see these patterns and the proposed variants as particular instantiations
of one Trigger pattern, dealing with monitored events to trigger a process and
6 Note that this safety notion is motivated by the Petri net framework underlying the

analysis in [8].

Modeling Workflow Patterns from First Principles 15

instantiated depending on a) whether at a given moment multiple processes wait
for a trigger and on b) the time that may elapse between the trigger event and
the reaction to it. We add to this the possibility that in a distributed envi-
ronment, at a given moment multiple trigger events may yield a simultaneous
reaction of multiple ready processes. We leave the submachines for Buffering
and UnBuffering abstract and only require that as result of an execution of
Buffer(a) the predicate Buffered(a) becomes true. For notational reasons we
consider monitored events as consumed by the execution of a rule.7

Trigger =
TriggerEvent

TriggerReaction

where
TriggerEvent = if Event(Trigger(a)) then Buffer(a)
TriggerReaction =

if not Empty(Buffered ∩ Ready) then
choose A ⊆ Buffered ∩ Ready forall a ∈ A do

a
UnBuffer(a)

The two variants considered for thePersistentTrigger differ fromeach other only by
the definition of Ready(a), meaning in the first case WaitingFor(Trigger(a)) and
in the second case curract = a (‘process has reached the point to execute a’), where
curract is the activity counter pointing to the currently to be executed activity.

For the Transient Trigger it suffices to stipulate that there is no buffering,
so that Buffered coincides with the happening of a triggering event. Upon the
arrival of an event, TriggerEvent and TriggerReaction are executed si-
multaneously if the event concerns a Ready(a), in which case (and only in this
case) it triggers this activity.

TransientTrigger = Trigger where
Buffer = UnBuffer = skip
Buffered(a) = Event(Trigger(a))

The difference between the safe and unsafe version is in the assumption on how
many activity (instances) may be ready for a trigger event at a given moment
in time, at most one (the safe case) or many, in which case a singleton set A is
required to be chosen in TriggerReaction.

3 Sequential Control Flow Patterns

The patterns related to sequential control flow can be conceptually
categorized into four types: sequencing of multiple flows, iteration of a flow,

7 This convention allows us to suppress the explicit deletion of an event from the set
of active events.

16 E. Börger

begin/termination of a flow and choice among (also called sequential split into)
multiple flows. These patterns capture aspects of process control that are well
known from sequential programming.

3.1 Sequence Patterns

We find the following description for this well-known control-flow feature:
“An activity in a workflow is enabled after the completion of another activity

in the same process”.
One among many ways to formalize this is to use control-state ASMs, which

offer through final and initial states a natural way to reflect the completion
and the beginning of an activity. If one wants to hide those initial and final
control states, one can use the seq-operator defined in [5] for composing an
ASM A1 seq A2 out of component ASMs Ai (i = 1, 2).

Sequence(A1,A2) = A1 seq A2

A related pattern is described as follows under the name Milestone:

The enabling of an activity depends on the case being in a specified state,
i.e. the activity is only enabled if a certain milestone has been reached
which did not expire yet.

This rather loose specification can be translated as follows:

Milestone(milestone,Reached ,Expired , act) =
if Reached(milestone) and not Expired(milestone) then act

3.2 Iteration Patterns

For arbitrary cycles the following rather loose description is given:

A point in a workflow process where one or more activities can be done
repeatedly.

For the elements of Activity to be repeatedly executed, it seems that a
StopCriterion is needed to express the point where the execution of one instance
terminates and the next one starts. The additional stipulation in the revised
description in [8] that the cycles may “have more than one entry or exit point”
is a matter of further specifying the starting points and the StopCriterion for
activities, e.g. exploiting initial and final control states of control-state ASMs.
The Iterate construct defined for ASMs in [5] yields a direct formalization of
this pattern that hides the explicit mentioning of entry and exit points.

ArbitraryCycles(Activity,StopCriterion) =
forall a ∈ Activity Iterate(a) until StopCriterion(a)

In [8] two further ‘special constructs for structured loops’ are introduced,
called Structured Loop and Recursion. The formalization of StructuredLoop

comes up to the constructs while Cond do M respectively do M until Cond ,

Modeling Workflow Patterns from First Principles 17

defined for ASMs in [5]. For an ASM formalization of Recursion we refer to [4]
and skip further discussion of these well known programming constructs.

3.3 Begin/Termination Patterns

In [10] the following Implicit Termination pattern is described.

A given subprocess should be terminated when there is nothing else to
be done. In other words, there are no active activities in the workflow
and no other activity can be made active (and at the same time the
workflow is not in deadlock).

The point of this patterns seems to be to make it explicit that a subprocess
should Terminate depending on a typically dynamic StopCriterion. This varies
from case to case. It may depend upon the subprocess structure. It may also
include global features like that “there are no active activities in the workflow
and no other activity can be made active”; another example is the projection of
the run up-to-now into the future, namely by stipulating that the process should
terminate “when there are no remaining work items that are able to be done
either now or at any time in the future” [8, pg.25]. Such an abstract scheme is
easily formulated as an ASM. It is harder to define reasonable instances of such a
general scheme, which have to refine the StopCriterion in terms of (im)possible
future extensions of given runs.

Termination(P ,StopCriterion,Terminate) =
if StopCriterion(P ,Activity) then Terminate(P)

In [8] the following variation called Explicit Termination is discussed.

A given process (or sub-process) instance should terminate when it
reaches a nominated state. Typically this is denoted by a specific end
node. When this end node is reached, any remaining work in the pro-
cess instances is cancelled and the overall process instance is recorded as
having completed successfully.

It is nothing else than the instantiation of Termination by refining a) the
StopCriterion to currstate = exit , expressing that the current state has reached
the end state, and b) Terminate(P) to include Cancel(P) and marking the
overall process parent(P) as CompletedSuccessfully.

Related to termination patterns are the so-called cancellation patterns.
The Cancel Activity pattern is described as follows:

An enabled activity is disabled, i.e. a thread waiting for the execution of
an activity is removed.

Using an association agent(act) of threads to activities allows one to delete
the executing agent, but not the activity, from the set Agent of currently active
agents:

18 E. Börger

CancelAct(act ,Agent , exec) =
let a = exec(act) in if Enabled(a) then Delete(a,Agent)

The Cancel Case pattern is described as follows: “A case, i.e. workflow in-
stance, is removed completely (i.e., even if parts of the process are instantiated
multiple times, all descendants are removed).”

If we interprete ‘removing a workflow instance’ as deleting its executing
agent,8 this pattern appears to be an application of CancelAct to all the
Descendants of an act ivity (which we assume to be executed by agents), where
for simplicity of exposition we assume Descendant to include act .

CancelCase(act ,Agent , exec,Descendant) =
forall d ∈ Descendant(act) CancelAct(d ,Agent , exec)

For the Cancel Region pattern we find the following description in [8]: “The
ability to disable a set of activities in a process instance. If any of the activities
are already executing, then they are withdrawn. The activities need not be a
connected subset of the overall process model.”

CancelRegion is a straightforward variation of CancelCase where
Descendant(p) is defined as the set of activities one wants to cancel in the
process instance p. Whether this set includes p itself or not is a matter of how
the set is declared. The additional requirement that already executing activities
are to be withdrawn is easily satisfied by refining the predicate Enabled(a) to
include executing activities a. The question discussed in [8] whether the deletion
may involve a bypass or not is an implementation relevant issue, suggested by
the Petri net representation of the pattern.

An analogous variation yields an ASM for the Cancel Multiple Instance Ac-
tivity pattern, for which we find the following description in [8]: “Within a given
process instance, multiple instances of an activity can be created. The required
number of instances is known at design time. These instances are independent of
each other and run concurrently. At any time, the multiple instance activity can
be cancelled and any instances which have not completed are withdrawn. This
does not affect activity instances that have already completed.” Here it suffices
to define Descendant(p) in CancelCase as the set of multiple instances of an
activity one wants to cancel and to include ‘activity instances which have not
yet completed’ into the Enabled predicate of CancelAct.

3.4 Selection Patterns

A general workflow selection pattern named Multichoice is described in [8] as
follows:

A point in the workflow process where, based on a decision or workflow
control data, a number of branches are chosen.

8 To delete the activity and not only its executing agent would imply a slight variation
in the ASM below.

Modeling Workflow Patterns from First Principles 19

Besides the parameter for the set Activity of subprocesses among which to
choose, we see here as second parameter a ChoiceCriterion,9 used to “choose
multiple alternatives from a given set of alternatives” that have to be executed
together. It may take workflow control data as arguments. Using the non deter-
ministic choose construct for ASMs yields the following formalization:

MultiChoice(Activity,ChoiceCriterion) =
choose A ⊆ Activity ∩ ChoiceCriterion

forall act ∈ A
act

An equivalent wording for this machine explicitly names a choice function, say
select , which applied to Activity ∩ ChoiceCriterion yields a subset of activities
chosen for execution:

Choice(Activity,ChoiceCriterion, select) =
forall act ∈ select(Activity ∩ ChoiceCriterion)

act

The Exclusive Choice pattern is described in [8] as follows, where the addi-
tional assumption is that each time an exclusive choice point is reached (read:
ExclChoice is executed), the decision criterion yields exactly one a ∈ Activity
that fulfills it:

A point in the workflow process where, based on a decision or workflow
control data, one of several branches is chosen.

This is a specialization of Choice where the range of the select function is
requested to consist of singleton sets.

We also find the following description of a Deferred Choice:

A point in the workflow process where one of several branches is chosen.
In contrast to the XOR-split, the choice is not made explicitly (e.g.
based on data or a decision) but several alternatives are offered to the
environment. However, in contrast to the AND-split, only one of the
alternatives is executed ... It is important to note that the choice is
delayed until the processing in one of the alternative branches is actually
started, i.e. the moment of choice is as late as possible.

This is captured by an instance of ExclChoice ASM where the
ChoiceCriterion is declared to be a monitored predicate because the decision
for the choice may depend on runtime data.

9 The revised version of the multi-choice pattern in [8, pg.15] describes the selection
as “based on the outcome of distinct logical expressions associated with each of the
branches”. This can be reflected by the parameterization of ChoiceCriterion with
the set Activity , e.g. to represent a disjunction over the “distinct logical expressions
associated with each of the (activity) branches”.

20 E. Börger

4 Conclusion and Outlook

We have identified a few elementary workflow patterns that help to structure
the variety of individually named workflow patterns collected in [10,8]. We hope
that this provides a basis for an accurate analysis and evaluation of practically
relevant control-flow patterns, in particular in connection with business pro-
cesses and web services, preventing the pattern variety to grow without rational
guideline.

Acknowledgement. We thank Andreas Prinz and three anonymous referees
for valuable criticism of previous versions of this paper.

References

1. Börger, E.: The ASM ground model method as a foundation of requirements
engineering. In: Dershowitz, N. (ed.) Verification: Theory and Practice. LNCS,
vol. 2772, pp. 145–160. Springer, Heidelberg (2003)

2. Börger, E.: The ASM method for system design and analysis. A tutorial intro-
duction. In: Gramlich, B. (ed.) Frontiers of Combining Systems. LNCS (LNAI),
vol. 3717, pp. 264–283. Springer, Heidelberg (2005)

3. Börger, E.: A critical analysis of workflow patterns. In: Prinz, A. (ed.) ASM 2007,
Grimstadt (Norway) (June 2007), Agder University College (2007)

4. Börger, E., Bolognesi, T.: Remarks on turbo ASMs for computing functional equa-
tions and recursion schemes. In: Börger, E., Gargantini, A., Riccobene, E. (eds.)
ASM 2003. LNCS, vol. 2589, pp. 218–228. Springer, Heidelberg (2003)

5. Börger, E., Schmid, J.: Composition and submachine concepts for sequential ASMs.
In: Clote, P.G., Schwichtenberg, H. (eds.) CSL 2000. LNCS, vol. 1862, pp. 41–60.
Springer, Heidelberg (2000)

6. Börger, E., Stärk, R.F.: Abstract State Machines. A Method for High-Level System
Design and Analysis. Springer, Heidelberg (2003)

7. INMOS. Transputer Implementation of Occam – Communication Process Archi-
tecture. Prentice-Hall, Englewood Cliffs, NJ (1989)

8. Russel, N., ter Hofstede, A., van der Aalst, W.M.P., Mulyar, N.: Work-
flow control-flow patterns. A revised view. BPM-06-22 (July 2006), at
http://is.tm.tue.nl/staff/wvdaalst/BPMcenter/

9. Stärk, R.F., Schmid, J., Börger, E.: Java and the Java Virtual Machine: Definition,
Verification, Validation. Springer, Heidelberg (2001)

10. van der Aalst, W.M., ter Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow
patterns. Distributed and Parallel Databases 14(3), 5–51 (2003)

http://is.tm.tue.nl/staff/wvdaalst/BPMcenter/

	Introduction
	Parallel Control Flow Patterns
	Parallel Split Patterns
	Merge Patterns
	Interleaving Patterns
	Trigger Patterns

	Sequential Control Flow Patterns
	Sequence Patterns
	Iteration Patterns
	Begin/Termination Patterns
	Selection Patterns

	Conclusion and Outlook

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

