Report on a Practical Application of ASMs in
Software Design

Egon Borger!, Peter Pippinghaus?, and Joachim Schmid?

! Universitd di Pisa, Dipartimento di Informatica, I-56125 Pisa, Italy
boerger@di.unipi.it
2 Siemens AG, Corporate Technology, D-81730 Munich, Germany
{peter.paeppinghaus, joachim.schmid}@mchp.siemens.de

Abstract. ASMs have been used at Siemens Corporate Technology to
design a component in a software package called FALKO. Main purpose
of FALKO is the construction and validation of timetables for railway
systems. For simulation the whole closed-loop traffic control system is
modelled within FALKQO. The railway process model part of FALKO
was formally specified using the ASM approach. C++ code is generated
from the formal specification and compiled together with the handwrit-
ten C++ code of the other components to obtain the FALKO executable.
The project started in May 1998 and was finished in March 1999. Since
then FALKO is used by the Vienna Subway Operator for the validation
of the whole subway operational service.

1 FALKO

Abstract State Machines (ASMs) [Gur95,BH98] have been used at Siemens Cor-
porate Technology to design a component in a software package called FALKO.
This name is the German acronym for “Timetable Validation and Timetable
Construction” describing concisely the main functionality of this tool. Detailed
operational timetables including e.g. vehicle roster plan can be automatically
calculated from raw data like train frequency and infrastructure of a railway
system. For these calculations estimations of trip times are used. Timetables
— whether constructed with FALKO or other tools — have to be validated for
operability and robustness. Conventionally this is done by (physically) driving
trial runs. With FALKO this costly form of validation can be replaced by dy-
namic simulation of operational timetables modelling quantitative aspects like
velocities and trip times as accurately as needed.

To perform dynamic simulation of timetables, the whole closed-loop traffic
control system is modelled within FALKQO. The model is designed in a modular
way with three main components: train supervision/train tracking, interlock-
ing system, and railway process model. Software components for train supervi-
sion/train tracking and for the interlocking system are nowadays part of real
train operation. The railway process model on the other hand serves to replace
the real physical system (trains, signals, switches etc.) in the simulation.

[Z]FALKD — u3 : m18_0_6_demo

Detei ArsichiTopologie F-i1-/=1 Giulaion Eimstehngen Fer Hife
S| 2|l s Al Al D@ E|E] «] Ji e [p]X] zeit516:45 Zug: 301 =
o =0 L ol s o 1 e 1 8, e L e, e
=] 8 = J —8 [& 8 i —§
|
1
Ll 4
SH ws| | Gz MA
s
b -
L o o g:‘_‘ . =l Lo b !7 e L=
] :
—8 8 8 [] —» = —8
Bereit o
L = 2%

Fig. 1. Screenshot of FALKO GUI

The modelling is based on discrete event simulation. The three components
communicate via events, which are tagged with certain data and stamped with
the (fictitious) time of their occurrence. Let us give an example. Train supervi-
sion, e.g., sends an event at time ty to the interlocking system requesting route
r3. The interlocking system, possibly after having received an event which frees
route 73, sends an event at time ¢; to the railway process model requesting switch
sws to change its position. The railway process model then calculates the dura-
tion of rotating this switch and sends an event to the interlocking system to the
effect that switch sws has arrived at the requested position at time t2, etc.

Besides the three main components modelling the traffic control system there
is as a fourth hidden component the event handler, which controls the simula-
tion by receiving events from the visible components and sending them to the
respective addressee in the appropriate order.

The railway process model is based on a physical model of driving according
to which the crucial numerical calculations for determining speeds, trip times etc.
are done. This physical model is another hidden component of FALKO realized
as a C++ library.

Further parts of FALKO are a comfortable GUI and extensive facilities to
analyze and graphically display data of a simulation run. The GUI can also be
used for visualization of simulation runs (see figure 1).

@ Netscape: Main & 5 FE E
File Edit View Go Communicator Help
) o 3 5E - P
:W&L—“ngz ‘tﬁm » 4| transition Passagierhalt Ende(train) == Al
Virite_Exception (w)
o Write Warning (w) if Passagierhalt Phase(train) = g¢losingDoors
: i then Ztop Timer(T_Tueren geschlossen(train))
Passagierhalt_Abfahrtszeit Loesche Passagierhalt Daten(train)
. o gtart Timer(T Planhalt Ende(train), Sim Time)
:%Da&n - Passagierhalt Phase(train) := waitingForDepartur!
Loesche Passaglerhalt_Daten (w) i
® Nom_Abferfisungs Ende -l audiy
: ﬁgg:: g:::z ':g:;thnurdnun w transition Loesche Passagierhalt Datenf(train) ==
Notiere_Passagierhalt_Anordnung (w)
i Passagierhalt Posz(train) 1= undef
Passagierhalt Bht Passagierhalt abfahrtszeit(train) := undef
& Check Door Disturbance
[{\?t Abggﬂnﬁs E“EE 7oL, Z“; vor Nach dem SchlieRen der Tiren werden die Passagierhaltdaten geléscht, Fiir den Beginn
®. N“IP T EUI.’ESd Deb bRE SHE Lt der Abfahrt muss aber noch eine Koordinierung mit einem evil gleichzeitig
i WPWE—da;ﬁMtE% . stattfindenden Wendehalt erfolgen. Dazu wird der Timer T_Planhalt_Ende mit
s Wartende Fahrgaeste_des Vorgaengerzuges Zeitverzbgerung U aufgezogen.
Passagierhalt Nachricht fuer aktiven Wendehalt
® Fehler Passagierhalt Anordnung a2 Wendehalc J
I‘l i Fl Ein Wendehalt zerghiedert sich in mehrere aufeinanderfolgende Phasen. In jeder dieser
=| Phasen feuert (getriggert durch ein entsprechendes Ereignis) eine Regel, die den
Index &1 Ubergang in die jeweills néchste Phase beschreibt, Die felgenden Phasen sverden
J unterschieden,
Names
% Conctnne freetype WENDEHALT PHAGE ==
Famee " 1
» Domornie Bavc foy ksinWsndeHalt,
» Transitions techWende,
® Types wartenaufabfahrt
® Constructors 7l |1
= |

Fig. 2. Screenshot of HTML documentation

2 Design of Railway Process Model with ASMs

2.1 Design Process and Development Tools

The railway process model has been designed with ASMs [Gur95,BH98]. All
the other components of FALKO have been designed and implemented conven-
tionally with handwritten C++ code.! Along with this design a prototypical
development environment has been built up, which can also be used to maintain
this component of FALKO.

This development environment supports a seamless flow from the specifi-
cation down to the executable code. The single source for FALKQ’s railway
process model is a specification consisting of formal parts together with infor-
mal explanations. The formal parts are ASM rules and static, dynamic, derived
and external functions written in ASM-SL, the language of the ASM workbench
[Casar]. The specification comes as a collection of HTML documents (see figure
2). Hyperlinks to navigate between uses and definitions of rules and functions
are generated automatically. The formal parts can be extracted automatically
from the HTML documents to be fed into the front end of the ASM workbench,
which is used for syntax and type analysis.

! The physical model of driving is not included in the railway process model. It has
been designed conventionally as a component of its own.

In the design phase of the project the ASM workbench was also used for
early tests of the ASM model(s). At the end of the design phase it was decided
to attempt code generation rather than hand coding the already debugged ASM
model.

In the implementation phase a code generator has been developed, automat-
ically generating C++ code from type correct ASM-SL code. In addition some
wrapper code for interfacing the generated code to the remaining components,
and some low-level “library code” was hand coded.

Formal verification of the ASM model has not been attempted, this was not
a goal of the project.

2.2 Effort for Design and Implementation
Design Phase

— Requirement specification based on predecessor system, developed in meet-
ings of the design team, documented by minutes of the meetings (4 persons
2 weeks)

— Design of 1%t draft of executable ASM model (1 person 8 weeks)

— Several cycles of testing and debugging using the ASM workbench [Casar]
(1 person 8 weeks + 1 person 11 weeks)

— Review of 2"¢ draft of ASM model by design team plus external reviewers
(6 persons 1 week)

— Several cycles of improving, testing and debugging (2 persons 5 weeks)

Implementation Phase

Development of ASM-SL to C++ code generator (1 person 4 weeks)
Specification and implementation of additional handwritten C++ code (1
person 2 weeks)

Integration of FALKO system including testing and debugging (3 persons 3
weeks)

— Documentation of railway process model component and final polish (1 per-
son 6 weeks)

Summing up that part of the above listed effort, which was spent on behalf of
the railway process model component of FALKO, this yields a total effort of 66
person weeks.

It is not possible, of course, to compare this effort reliably to the correspond-
ing effort in a conventional software design process. But a rough estimation done
by an experienced programmer intimately familiar with FALKO says that the
ASM design (including development of the C++ code generator) has exceeded
a conventional effort by about 10%.

2.3 Size of ASM Model and C++ Code
ASM Model (source of C++ code generation)

— ca. 3000 lines of ASM workbench code

— 120 rules

— 315 functions and relations (240 functions, 75 relations)
e 71 dynamic

69 external

59 static

116 derived

C++ Code

— ca. 9000 lines of generated C++ code

— ca. 2900 additional lines of handwritten C++ code, consisting of
e ca. 400 lines wrapper code for interfacing to other components of FALKO
e ca. 2500 lines low-level library code

In the prototypical predecessor system of FALKO the railway process model
consisted of ca. 20000 lines of (handwritten) C++ code. To be fair one has to
take into account, however, that this component — having been experimented
with — had grown over time (and become difficult to maintain, which was the
reason for redesigning it completely).

3 Experiences

It turned out that one of the main advantages of ASMs for this design was the
parallel update view. This made it possible to model the railway process in such
a way that each state of the ASM model corresponds to a “snapshot” of the
virtual physical process taken at the occurrence of a “relevant discrete event”.
Due to this, one can always have a clear picture of the physical state snapshot,
on which auxiliary computations (specified by static and derived functions) are
based.

FALKO developers and reviewers not concerned with formal methods had no
problems to understand the ASM model. The possibility of early tests by execut-
ing the ASM model with the ASM workbench was very helpful and uncovered
bugs also in other components of FALKO at an early stage.

No serious attempt has been made to measure the potential performance loss
due to the use of generated C++ code. Comparison to the predecessor system of
FALKO has been possible only on one example, for which the data happened to
be available in both systems. In this small example performance of the previous
system was about 30% better than that of the current FALKO system. For the
time being the performance problem has been left aside, since it turned out that
FALKQ'’s performance is good enough for the purpose the product is used for.

FALKO is used in four installations at the Vienna Subway Operator since
March 1999, one of these installations being in daily use. Up to now (i.e. March

2000) the customer reported no bugs. After finishing the first version of FALKO,
two bugs in the railway process model have, however, been discovered in tests
during development of the second version. The FALKO developers have not yet
familiarized themselves with the ASM specific tools. The generated C++ code
being readable enough they chose to implement temporary fixes of the two bugs
by handhacking the generated C++ code, and to postpone correction of the
ASM model until the faults are analyzed more thoroughly.

Acknowledgments. We thank our colleagues of the FALKO team for their
open attitude towards this pioneering use of ASMs and for a year of enjoyable
and fruitful cooperation. Furthermore we thank Giuseppe Del Castillo for the
permission to use early versions of his ASM workbench and for the support we
obtained from him.

References

[BH98] E. Borger and J. Huggins. Abstract State Machines 1988-1998: Commented
ASM Bibliography. Bulletin of EATCS, 64:105-127, February 1998. Updated
bibliography available at http://www.eecs.umich.edu/gasm.

[Casar] Giuseppe Del Castillo. The ASM Workbench — A tool environment for com-
puter aided analysis and validation of ASM models. PhD thesis, University of
Paderborn, to appear.

[Gur95] Yuri Gurevich. Evolving Algebras 1993: Lipari Guide. In E. Borger, editor,
Specification and Validation Methods, pages 9-36. Oxford University Press,
1995.

