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Abstract. Building ground models is one of the three constituents of
the engineering method for computer-based systems which is known as
Abstract State Machine (ASM) method [16]. In this note we character-
ize ground models, whose epistemological role for a foundation of system
design resembles the one Aristotle assigned to axioms to ground science
in reality, avoiding infinite regress. We explain how ASM ground models
help to resolve two major problems of requirements engineering, provid-
ing means a) to obtain for complex computer-based systems an adequate
understanding by humans, and b) to cope with ever-changing require-
ments by faithfully capturing and tracing them via well-documented
modeling–for–change. We point out that via an appropriate refinement
method one can relate ground models to executable code.

1 IINTRODUCTION

In a recent paper [6] Daniel Berry identifies requirements engineering as the main
source for “the inevitable pain of software development”, explaining “why there
is no silver bullet” [17]. We agree that the development of good application-
software design for complex computer-based systems is a hard, intellectually
demanding activity which is as little mechanizable as for example proving in-
teresting mathematical theorems1. We also agree that the main difficulty is en-
countered when it comes to define (read: specify and design) what Brooks called
“the conceptual construct” or the “essence” of software, as opposed for example
to its representation by code. Defining what the software for a computer-based
system is supposed to do takes place mainly during the requirements engineering
phase2 where two stumbling blocks are to be overcome, namely

– to help ensure a correct understanding by humans,
– to cope with the continuous change of the requirements.

1 This does not preclude the automation of key tasks of application design, once such
tasks have been identified as recurring patterns. The situation can be compared to
the automization of proof principles in computer-assisted proof systems.

2 We agree with Dave Parnas [14] that the word “engineering” in this context is
bombastic; “ requirements capture, analysis and documentation” would probably be
more adequate.



We argue in this note that building ground models as introduced in [7–9]3,
describing requirements by Abstract State Machine (ASM4) models, provides
a practical methodical support to tackle those two problems in a way which
scales to large industrial systems. Furthermore, combining the construction of
ASM ground models with the stepwise refinement method of ASMs described
in [12] allows one to link requirements models to executable code in an organic
and effectively maintainable chain of rigorous and coherent system models which
captures and documents design decisions made at successive levels of detailing.

This note is of purely methodological nature so that for the involved tech-
nical definitions, results and illustrating examples we provide references to the
literature. In Section 2 we explain that ground models are inevitably present
in every system design, the question being whether or not this happens in an
explicit form which allows humans to understand and analyze the ground model,
in particular to satisfactorily relate it to the given requirements. We characterize
ground models by their basic properties and compare their role for a trustworthy
foundation of system software to the role Aristotle assigned to axioms as a foun-
dation for scientific theories. In Section 3 we explain why among numerous other
concepts ASMs are particularly well suited as a scientific foundation for satis-
factory ground models. In Section 4 we point out that applying to ASM ground
models the ASM refinement method, which generalizes Wirth’s and Dijkstra’s
classical refinement approach [32, 19] by a most general notion of refinement de-
scribed in [12], offers the designer a practical support to capture, document and
trace changing requirements from the abstract application-domain level down to
executable code.

The combination of ASM ground model construction and of sucessive model
refinements, which is known as the ASM method and is presented in [16], is
not a “silver bullet”, in the sense that it does not provide any mechanizable
algorithmic way of building good systems. But due to the basic character of the
concepts involved, the ASM method provides an accurate support for what the
practitioner in one way or the other has to do anyway to achieve a sufficient
understanding and a reliable management of changing requirements. Since in
addition those basic concepts appear in the ASM method in a technically simple
form, they can be learned without any special training (see the appendix where
the basic definitions are listed or consult [16] for a textbook style introduction).
Therefore the ASM method can be adopted as a professional discipline which
helps in identifying and analyzing “the conceptual construct” of computer-based
systems and turning creative ideas in a traceable way into the architecture of
truly trustworthy, evolving software systems.

2 THE ROLE OF GROUND MODELS

The fundamental problem is clearly identified in Brooks’ famous analysis in [17]:
3 In those papers ASMs were used to build a ground model for what later became the

ISO standard of Prolog (see [13]), but the used method is independent of Prolog.
4 See the appendix for a definition.



The hardest single part of building a software system is deciding precisely
what to build.

It is the role of requirements to describe “what to build”, but too often their
formulation is incomplete or too detailed, ambiguous or inconsistent. When the
requirements fail to provide an accurate understanding of the system to be built,
a typical escape is to consider the code as the true definition of the system. How-
ever, this does not solve the problem of “grounding the design in reality”. In fact
in this way no correspondence is provided between the extra-logical theoretical
terms appearing in a program and their empirical interpretation, violating a
basic principle of Carnap’s analysis of scientific theories in [18]. In addition tak-
ing the code as system definition makes it hard to faithfully reflect changing
high-level requirements and to document them in a transparent way.

The notoriously difficult and error prone elicitation of requirements is largely
a formalization task in the sense of an accurate task formulation, namely to
realize the transition from usually natural-language problem descriptions to a
sufficiently precise, unambiguous, consistent, complete and minimal formula-
tion of what Brooks [17] calls “the conceptual construct” or the “essence” of a
computer-based system, as distinguished from a software representation, e.g. by
code. We use the term ground model5 for such formulations of “the conceptual
construct”, “blueprints” of the to-be-implemented piece of “real world” which
“ground the design in the reality”. By its very epistemological role of relating
a non-linguistic reality to a linguistic description, the concept of ground model
has no purely mathematical definition, though it can be given a scientific def-
inition in terms of basic epistemological concepts which have been elaborated
for empirical sciences by analytic philosophers6. To illustrate the point we want
to make on ASM ground models, it suffices to list the essential properties every
satisfactory scientific substitute for the intuitive concept has to possess. Before
doing this, we shortly characterize three basic problems ground models have to
solve.

2.1 Three problems for any formalization effort

First of all ground models must be apt to mediate between the application do-
main, where the task originates which is to be accomplished by the system to
be built, and the world of models, where the relevant piece of reality has to be
represented. This is mainly a language and communication problem between the
domain expert or customer and the software designer who prior to coding have
to come to a common understanding of “what to build”, to be documented in
a contract containing a model which can be inspected by the involved parties.
The language in which the ground model is formulated must be appropriate to
naturally yet accurately express the relevant features of the given application
domain and to be easily understandable by the two parties involved. This in-
cludes the capability to calibrate the degree of precision of the language to the
5 Ground models [10] were originally called primary models [9, Sect. 3].
6 For one such proposal we refer to [22, 23].



given problem, so as to support the concentration on domain issues instead of
issues of notation. It also means that the modeling language should come with a
general (conceptual and application-oriented) data model together with a gen-
eral function model (for a process-oriented definition of the system dynamics)
and a general interface concept to represent system environments (consisting of
the system users and of neighboring systems or applications).

The second formalization problem is a verification-method problem. It is of
epistemological nature and stems from the fact that there are no mathematical
means to prove the correctness of the passage from an informal to a precise
description. Every chain of models, which formalizes given requirements and
comes for each model with a mathematical correctness proof with respect to
its predecessor, must end with one primary model, which can be related to the
requirements only in a direct way, trying to reach by inspection some kind of
evidence of the desired correspondence between the model and the reality the
model is supposed to capture. This is analogous to Aristotle’s observation in
the Analytica Posteriora that to provide a foundation for a scientific theory no
infinite regress is possible and that the first one of every chain of theories has
to be justified by “evident” axioms. Such an “evidence” of correctness is what
ground model inspection has to provide7.

Two kinds of means are needed to establish that a ground model is complete
and consistent, that it reflects the original intentions and that these are correctly
conveyed – together with all the necessary underlying application-domain knowl-
edge – to the designer. To check the completeness property, which is clarified
further below, it must be possible to proceed by inspection of ground models by
the application-domain expert8. But also appropriate forms of domain-specific
reasoning, not limited to formal deductions in a priori determined logic systems,
have to be available to support the designer in formally checking the internal con-
sistency of the model, as well as the consistency of different system views. Such
a view consistency often is the result of an involved and complex process of re-
solving conflicting objectives in the original requirements. We believe that these
two complementary forms of ground model verification are crucial for a realis-
tic requirements-capture method, though in practice reasoning-based checking
of ground model properties often is of less importance than concept-focussed
model inspection (see, e.g., [31, 24]).

The third formalization problem is a validation problem. It must be possi-
ble to perform experiments with the ground model, in particular to simulate it
for running relevant scenarios (use cases), providing a framework for system-

7 Certainly the epistemological status of the underlying concept of evidence has to be
clarified. See for example Carnap’s confirmation theory or the discussion on the role
of axioms in science, e.g. in the controversy between Frege, who held a “platonistic”
view, and Hilbert, who held a “formalistic” position, on the role of axioms for a
foundation of mathematical theories, see [3].

8 Providing a precise ground against which questions can be formulated, ground mod-
els support the Socratic method of asking “ignorant questions” [4] to check whether
the semantic interpretation of the informal problem description is correctly captured
by the mapping to the terms in the mathematical model.



atic attempts to “falsify” the model in the Popperian sense [28] against the
to-be-encoded piece of reality. This empirical criterion also takes into account
that computer-based systems are not purely intellectual artefacts but inserted
in a real-world environment. Furthermore, use cases often are part of the re-
quirements and thus directly reflectable through simulations. In case an entire
system is conceived as defined by executable specifications of use cases (see for
example [25]), this is captured by the corresponding run segments (simulations)
in the ground model. It is an important technical side-effect that simulations
also allow one to define – prior to coding – a precise system-acceptance test plan
and thus to use a ground model in two roles: (1) as an accurate requirements
specification (to be matched by the application-domain expert against the given
requirements) and (2) as a test model (to be matched by the tester against ex-
ecutions of the final code), where we consider environmental conditions as part
of the requirements.

2.2 Intrinsic Properties of Ground Models

To be appropriate as high-level models for complex real-life systems, also under
industrial constraints, ground models have to be

– precise at the appropriate level of detailing yet flexible, to satisfy the required
accuracy exactly, without adding unnecessary precision;

– simple and concise to be understandable by both domain experts and system
designers and to be manageable for inspection and analysis, avoiding any
extraneous encoding and through their abstractions “directly” reflecting the
structure of the real-world problem. These two properties help to uncover
requirements one may initially not be aware of;

– abstract (minimal) yet complete. Completeness means that every semanti-
cally relevant feature is present, that all contract benefits and obligations
are mentioned and that there are no hidden clauses. In particular, a ground
model must contain as interface all semantically relevant parameters con-
cerning the interaction with the environment, and where appropriate also the
basic architectural system structure. The completeness property “forces” the
requirements engineer, as much as this is possible, to produce a model which
is “closed” modulo some “holes”, which are however explicitly delineated,
including a statement of the assumptions made for them at the abstract
level and to be realized through the detailed specification left for later re-
finements. Model closure implies that no gap in the understanding of “what
to build” is left, that every relevant bit of implicit domain knowledge has
been made explicit. The completeness property should not preclude modu-
lar ground model descriptions. Minimality means that the model abstracts
from details that are relevant either only for the further design or only for
a portion of the application domain which does not influence the system to
be built;

– validatable and thus in principle falsifiable by experiment, satisfying the basic
Popperian criterion for scientific models [28];



– equipped with a simple yet precise semantical foundation as a prerequisite
for rigorous analysis and as a basis for reliable tool development and proto-
typing.

3 HOW TO SOLVE THE FORMALIZATION
PROBLEM

Using Traditional “Formal Methods”. With respect to the communica-
tion and verification problem most so-called formal methods miserably fail as
satisfactory candidates for building ground models, because they propose for-
malizations in the necessarily restrictive syntax of some logic, or verifications
by a-priori-fixed rule-based (in many cases mechanizable) reasoning schemes,
which go beyond the expertise that can reasonably be expected from software
practitioners or domain experts without a thorough training in mathematical
logic. Many formal methods also fail with respect to the validation problem, due
to their intendedly declarative non-executable character which is intrinsic for
axiomatic specifications. We doubt whether “Formal Methods are best applied
during requirements engineering” [5]. Most of the successful formal methods,
e.g. model checkers or theorem provers, are used for the verification of internal
properties of accurate models or of refinements which relate accurate models,
much more than to formulate ground models and to relate them to the encoded
piece of reality; see for example the successful practical applications of the B-
method [2, 1]. Another good reason for using particular ”formal methods” may
be to encapsulate some specific design experience, turning so to speak part of
the design into a language-supported (possibly mechanic) procedure. To cite an
example we can refer to the SCR method [26], or the Requirements State Ma-
chine model defined in [27], which relates process-control systems to methods for
checking a set of criteria identifying missing (as well as incorrect or ambiguous)
requirements.

Using Abstract State Machines. The proposal to use Abstract State Ma-
chines as precise mathematical form of ground models goes back to [7–9] where
it was used to define what later became the ISO standard of Prolog. In fact,
ASMs are not “formal” in the just mentioned restricted understanding of the
term, but instead support intuitive, content-oriented, precise modeling and rea-
soning as used in mathematical and experimental sciences. A basic ASM as
defined in [20] comes as set of “guarded commands”, more precisely rules of
form if Condition then Updates, which at each step are fired simultaneously
to update the current abstract state. Besides this general form of rules, the
language of ASMs is unconstrained, as is the set of reasoning principles. The
definition and its natural extension to asynchronous ASMs—which obviously
can be made more rigorous and even formalized, see the appendix and the Asm-
Book [16, Ch.2]—accurately supports the way domain experts use high-level
process-oriented descriptions and software practitioners use pseudo-code.



ASMs solve the language and communication problem due to the broad-
spectrum, basic algorithmic character of the language of ASMs, which is easy
to understand for domain experts, not only for programmers, and allows one
to tailor the ground model to resemble the structure of the real-world problem.
This works for algorithmic processes and general procedures in whatever do-
main, whether to compute and implement mathematical functions or database
and network management processes or the control of microprocessors and tech-
nical devices or business procedures, etc. (see, e.g., the variety of examples in
Chapters 3,5,6 of [16]). It includes continuous dynamic environmental features
of hybrid systems, which can be captured in various ways in this ASM frame-
work, for example by exploiting the possibility to define parts of the system
in a purely mathematical (functional or declarative) way, e.g. by differential
equations. For an alternative way to model real-time system behavior with in-
finitesimal exactness and refinements of actions by interleaved ASMs see [29].
Similarly, interaction features can be included by an appropriate use of exter-
nal functions computed by different agents (see the ASM function classification
in [11] or the appendix), or by adapting the standard notion of sequential ASM
run to partial-order runs of asynchronous ASMs (see [21] and [16, Ch.6]).

Using ASMs as ground models also solves the verification problem since it
allows one to use both inspection – for checking the model correctness and com-
pleteness with respect to the problem to be solved – and reasoning to analyze
its consistency, using whatever reasoning means are appropriate. The notation
does not limit the verification space. It is important for the practical success
of the ASM method that it advocates a systematic separation of concerns, in
particular to separate design from verification and within verification different
degrees of detailing justification chains.

The validation problem is solved by the operational character of ground
model ASMs, which come with a standard notion of computation or “run”.
Simulations of ground models are possible by mental simulation or using var-
ious tools which make large classes of ASMs executable (see [16, Chapter 8]).
In addition, the operational character of ASMs supports defining in abstract
run-time terms the expected system effect on samples – the so-called oracle def-
inition which can be used for static testing, where the code is inspected and
compared to the specification, but also for dynamic testing where the execution
results are compared. Furthermore, ASM ground models can be used to guide
the user in the application-domain-driven selection of test cases, exhibiting in the
specification the relevant environment parts and the properties to be checked,
showing how to derive test cases from use cases. Last but not least, by appro-
priately refining the oracle, one can also specify and implement a comparator by
determining for runs of the ground model and the code what are the states of
interest to be related (spied), the locations of interest to be watched, and when
their comparison is considered successful (the test equivalence relation). These
features for specifying a comparator using the knowledge about how the oracle
is refined reflect the ingredients of the general notion of ASM refinements we
point to in the next section.



ASMs can be made to possess all the properties listed above for ground
models. Ground models built using other formal methods do share some of these
properties, but usually not all of them (see [10] for a detailed comparison).
The complementary properties of being precise and flexible can be obtained by
fine-tuning the ASMs to the needed degree of rigor, with the consequence that
the resulting ASM ground models are adaptable to different application do-
mains and easily modifiable or extendable for reuse for changing requirements.
The completeness property of ASM ground models does not preclude modular
ground model descriptions, using composition and submachines concepts as de-
fined in [15]. The operational character of ASM ground models supports their
process-oriented understanding, their mental or machine simulation, and the
possibility to turn ground models into prototypes.

The above listed properties of ground model ASMs make them also fit for
reuse in the sense that when building a system, the “right” abstractions can be
expressed directly, avoiding any extraneous coding, to tailor the possibly chang-
ing system specification to the characteristic conceptual frame of the underlying
application-domain problem and to the desired level of detail. In this way, during
the attempt to understand and faithfully capture both the system to be built
and the relevant application domain assumptions, using ASM ground models
supports “asking the right questions” [5, Sect.7] and annotating the answers
without any hindering formal-language-constraint (see in [16] Section 3.1.1 on
“Fundamental questions to be asked” when building ASM ground models )9.

In particular, when the requirements change, most often by incrementally in-
corporating new features which are consistent with the given ones, these changes
can be directly reflected by adaptations of the ground model abstractions, in the
incremental case by conservative extensions. Tracing changes of requirements in
the code is related to tracing the appropriate changes in model refinements, a
complementary method we refer to in the next section. Thus each one of a set
of ground models built during an entire system life cycle represents one stage
of the requirements, so that “freezing” a set of requirements in one model does
not prevent changing that set and formalizing it by a refined ground model. An-
other source for a possible multiplicity of different ground models stems from the
usually many ways to describe the desired system by abstracting from specific
details. This is like saying that there are many equivalent ways to formulate a
contract.

Nothing in the ASM method can guarantee an “appropriate” application of
this abstraction and refinement mechanism, which is inherent in the concept
of ASMs, though by their unconstrained nature ASMs are flexible enough to
be put to use as part of any methodological requirements capture and system

9 In this context the analogy to mathematics is illuminating. Asking the right questions
is by far the most important part of mathematical research, certainly prior to the
invention of new methods which solve important problems. The “openness” of the
language of mathematics, of which the equally open algorithmic language of ASMs
is a part, is crucial for the possibility to formulate such questions against a not fully
formalized yet sufficiently precise, application-domain-determined background.



design scheme. We have no “silver bullet” to offer, no fool-proof button-pushing
or mechanical design and verification procedure, but the ASM method directly
supports professional knowledge and skill in “building models for change”. This
is the best one can hope for, given the intrinsically creative character of defining
“the conceptual construct” of a complex computer-based system.

4 REFINEMENT: MAKING CHANGING
REQUIREMENTS TRACEABLE

The adaptation of ASM ground models to changing requirements is supported
by a generalization of Wirth’s and Dijkstra’s classical refinement method [32,
19], based upon the use of ASMs, introduced for the first time in [7–9]. This
generalization of the refinement method for ASMs, which in fact is a companion
to the ASM ground model method, has been described in [12] so that in this note
we mention only the fact that it is characterized by the practical forms of refine-
ment it supports. They provide means to reflect successive design decisions in a
traceable way via stepwise refined models which add more and more details and
link ground models to executable code. Differently from most refinement con-
cepts in the literature, ASM refinements are not necessarily syntax-directed but
may concern different components which are all affected by some common fea-
ture, e.g. security. Nevertheless also particular forms of refinement can be defined
which are compositional, for example the syntax-directed refinement notions of
the B-method [2]. ASM refinements provide a documentation of the entire de-
sign which supports design reuse and code maintenance. They do this in a simple
way the practitioner can use in his daily work, for reasons which were mentioned
already in the previous section for ASM ground models: namely the transition
from one to a more refined model, or vice-versa in the case of a reengineering
project, can be fine-tuned to the new details one wants to introduce, without
being hindered by any notational overhead.

It is an often heard objection that in practice it will be difficult to effectively
maintain a chain of stepwise refined models with more than 2 levels, given that
related documents “eventually and unavoidably” get out of sync. Or even more it
is claimed, as was mentioned already above, that the code should be considered
as the true definition of the system. Using a chain of stepwise refined models
changes this widely deplored state-of-the-art situation and has the potential to
enhance the designer’s activity, enabling him to exactly localize the “right” level
of abstraction where the desired change has to be performed and from where it
has to be transfered to the more detailed lower levels. A good refinement strategy
aims at encapsulating orthogonal features. Therefore a sequence of successive
changes down to executable code, triggered by changing a particular feature at
a specific level of abstraction, does not produce extraneous additional work but
is nothing else than introducing all the details which are needed any way, but
to do it step by step and not in one blow. This makes it easier to understand
the changed implementation details and to control their effect on the entire
system. If there are only two such levels, it means that the executable code is



rather close to the requirements level, but this usually happens only for simple
systems. The AsmBook [16] contains numerous examples and case studies for
refinement hierarchies of more than two levels. For the most advanced real-life
public-domain case study which involves all the ground model and refinement
capabilities offered by the ASM method, for both design and analysis, see the
Jbook [30] which is focussed on modeling and verifying the semantics of Java
and its implementation by the Java Virtual Machine.
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5 APPENDIX: ASMS IN A NUTSHELL

In this appendix we list the basic definitions concerning ASMs as far as needed
to work with them, covering the definition from [21] and the classification of
functions from [10, 11]. For a more detailed definition of these terms and an
illustration by characteristic examples we refer the interested reader to Section
2.4 of the AsmBook [16].

5.1 Basic ASMs and their Runs

An ASM is a finite set of so called transition rules of form

if Condition then Updates

which transform abstract states. Two more forms are explained below. The
Condition (also called guard) under which a rule is applied is an arbitrary pred-
icate logic formula without free variables, whose interpretation evaluates to true
or false. Updates is a finite set of assignments of form f (t1, . . . , tn) := t whose
execution is to be understood as changing (or defining, if there was none) in
parallel the value of the occurring functions f at the indicated arguments to the
indicated value. More precisely, in the given state first all parameters ti , t are
evaluated to their values, say vi , v , then the value of f (v1, . . . , vn) is updated
to v which represents the value of f (v1, . . . , vn) in the next state. Such pairs of
a function name f , which is fixed by the signature, and an optional argument
(v1, . . . , vn), which is formed by a list of dynamic parameter values vi of whatever
type, are called locations. Location-value pairs (loc, v) are called updates.

The notion of ASM states is the classical notion of mathematical structures
where data come as abstract objects, i.e., as elements of sets (also called domains
or universes, one for each category of data) which are equipped with basic opera-
tions (partial functions in the mathematical sense) and predicates (attributes or
relations). For the evaluation of terms and formulae in an ASM state, the stan-
dard interpretation of function symbols by the corresponding functions in that
state is used. Without loss of generality we usually treat predicates as character-
istic functions and constants as 0-ary functions. Partial functions are turned into
total functions by interpreting f (x ) = undef with a fixed special value undef as
f (x ) being undefined.

The notion of ASM run is an instance of the classical notion of computation
of transition systems. An ASM computation step in a given state consists in
executing simultaneously all updates of all transition rules whose guard is true
in the state, if these updates are consistent, in which case the result of their
execution yields the next state. In the case of inconsistency the computation
does not yield a next state, a situation which typically is reported by executing



engines with an error message. A set of updates is called consistent if it contains
no pair of updates with the same location, i.e. no two elements (loc, v), (loc, v ′)
with v 6= v ′. An ASM step is performed as an atomic action with no side effects.

Simultaneous execution provides means to locally describe a global state
change, namely as obtained in one step through executing a set of updates. The
only limitation—imposed by the need of uniquely identifying objects residing in
locations—is the consistency of the set of the updates which have to be executed.
The local description of global state changes also implies that by definition the
next state differs from the previous state only at locations which appear in the
update set. Simultaneous execution also provides a convenient way to abstract
from sequentiality where it is irrelevant for the investigation. This synchronous
parallelism in the ASM execution model is enhanced by the following notation
to express the simultaneous execution of a rule R for each x satisfying a given
condition ϕ (where typically x will have some free occurrences in R which are
bound by the quantifier):

forall x with ϕ
R

Similarly non-determinism as a convenient way to abstract from details of schedul-
ing of rule executions can be expressed by rules of the form

choose x with ϕ
R

where ϕ is a Boolean valued expression and R a rule. The meaning of such an
ASM rule is to execute rule R with an arbitrary x chosen among those satisfying
the selection property ϕ. If there exists no such x , nothing is done

Common notations like where, let, if -then-else, table-like case notation
with pattern matching, etc. are used without further explanation since they are
easily reducible to the above basic definitions. An occurrence of r(x1, . . . , xn)
where a rule is expected stands for the corresponding rule R (which is supposed
to be defined somewhere else, with r(x1, . . . , xn) = R appearing in the decla-
ration part of the ASM where r(x1, . . . , xn) is used). When such a “rule call”
r(x1, . . . , xn) is used, the parameters have to be instantiated by legal values (ob-
jects, functions, rules, whatever) so that the resulting rule has a well defined
semantical meaning on the basis of the explanations given above. A precise se-
mantical definition of such ASM submachine calls has been defined in [15].

For purposes of separation of concerns it is often convenient to impose for a
given ASM additional constraints on its runs to circumscribe those one wants
to consider as legal. Logically speaking this means to restrict the class of mod-
els satisfying the given specification. Such restrictions are particularly useful if
the constraints express reasoning assumptions for a high-level machine which
are easily shown to hold in a refined target machine. In general ASMs are re-
active systems which iterate their computation step, but for the special case of
terminating runs one can choose among various natural termination criteria to
constrain runs, namely that no rule is applicable any more or that the machine
yields an empty update set or that the state does not change any more.



5.2 Classification of Locations and Functions

In an ASM, a priori no restriction is imposed neither on the abstraction level
nor on the complexity nor on the means of definition of the functions used to
compute the arguments and the new value denoted by ti , t in function updates.
In support of the principles of separation of concerns, information hiding, data
abstraction, modularization and stepwise refinement, the ASM method exploits
however the following distinctions reflecting the different roles these functions
(and more generally locations) can assume in a given machine.

The major distinction for a given ASM M is between its static functions—
which never change during any run of M so that their values for given arguments
do not depend on states of M—and dynamic ones which may change as a con-
sequence of updates by M or by the environment (read: by some other—say an
unknown—agent representing the context in which M computes), so that their
values for given arguments may depend on states of M . By definition static
functions can be thought of as given by the initial state, so that where appropri-
ate, handling them can be clearly separated from the description of the system
dynamics. Whether the meaning of these functions is determined by a mere sig-
nature (“interface”) description, or by axiomatic constraints, or by an abstract
specification, or by an explicit or recursive definition, or by a program module,
depends on the degree of information hiding the specifier wants to realize. Static
0-ary functions represent constants, whereas with dynamic 0-ary functions one
can model variables of programming (not to confuse with logical variables). Dy-
namic functions can be thought of as a generalization of array variables or hash
tables.

The dynamic functions are further divided into four subclasses. Controlled
functions (for M ) are dynamic functions which are directly updatable by and
only by the rules of M , i.e., functions f which appear in at least one rule of M
as leftmost function (namely in an update f (s) := t for some s, t) and are not
updatable by the environment (or more generally by another agent in the case
of a multi-agent machine). These functions are the ones which constitute the
internally controlled part of the dynamic state of M .

Monitored functions, also called in functions, are dynamic functions which
are read but not updated by M and directly updatable only by the environment
(or more generally by other agents). They appear in updates of M , but not
as leftmost function of an update. These monitored functions constitute the
externally controlled part of the dynamic state of M . To describe combinations
of internal and external control of functions, one can use interaction functions,
also called shared functions, defined as dynamic functions which are directly
updatable by rules of M and by the environment and can be read by both
(so that typically a protocol is needed to guarantee consistency of updates).
The concepts of monitored and shared functions allow one to separate in a
specification computation from communication concerns. In fact the definition
does not commit to any particular mechanism (e.g. message passing via channels)
to describe the exchange of information between an agent and its environment
(and similarly between arbitrary agents in the case of a multi-agent machine).



As with static functions the specification of monitored functions is open to any
appropriate method. The only assumption made is that in a given state, the
values of all monitored functions are determined.

Out functions are dynamic functions which are updated but not read by M
and are monitored (read but not updated) by the environment or in general by
other agents. Formally, such output functions do appear in some rules of M , but
only as leftmost function of an assignment.

Functions are called external for M if for M they are either static or moni-
tored.

An orthogonal, pragmatically important classification comes through the dis-
tinction of basic and of derived functions. Basic functions are functions which
are taken for granted (declared as “given”, typically those forming the basic
signature); derived functions are functions which even if dynamic are not updat-
able neither by M nor by the environment but may be read by both and yield
values which are defined by a fixed scheme in terms of other (static or dynamic)
functions (and as a consequence may sometimes not be counted as part of the
basic signature). Thus derived functions are sort of auxiliary functions coming
with a specification or computation mechanism which is given separately from
the main machine; they may be thought of as a global method with read-only
variables.

The same classification principle is applied to (sets of) locations or updates.

5.3 Multi-Agent ASMs

A multi-agent ASM is defined as a set of agents which execute each its own
basic ASM. This may happen in a synchronous or in an asynchronous manner.
In a synchronous ASM the agents execute their basic ASM in parallel, synchro-
nized using an implicit global system clock. Semantically a synchronous ASM is
equivalent to the set of all its constituent single-agent ASMs, operating in the
global states over the union of the signatures of each component, though each
agent is equipped with its own set of states and rules. This concept allows one to
define and analyze the interaction between components using precise interfaces
over common locations.

A problem one has to solve for runs of asynchronously cooperating agents
originates in the possible incomparability of their moves which may come with
different data, clocks, moments and duration of execution, making it difficult to
uniquely define a global state where moves are executed to locate changes of mon-
itored functions in an ordering of moves. A coherence condition in the definition
of asynchronous multi-agent ASM runs given in [21] postulates well-definedness
for a relevant portion of state in which an agent is supposed to perform a step,
thus providing a notion of ‘local’ stable view of ‘the’ state in which an agent
makes a move. The underlying synchronization scheme is described using partial
orders for moves of different agents which reflect causal dependencies, determin-
ing which move depends upon (and thus must come ‘before’) which other move.
This synchronization scheme is as liberal as it can be, restricted only by the



consistency condition for the updates which is logically indispensable, and thus
can be instantiated by any consistent synchronization mechanism.

Formally a run of an asynchronous ASM, also called partial order run, is
defined as a partially ordered set (M , <) of moves m (read: rule applications) of
its agents satisfying the following conditions:

finite history: each move has only finitely many predecessors, i.e. for each
m ∈ M the set {m ′ | m ′ < m} is finite,

sequentiality of agents: the set of moves {m | m ∈ M , a performs m} of
every agent a ∈ Agent is linearly ordered by <,

coherence: each finite initial segment (downward closed subset) X of (M , <)
has an associated state σ(X )—think of it as the result of all moves in X
with m executed before m ′ if m < m ′—which for every maximal element
m ∈ X is the result of applying move m in state σ(X − {m}).

The coherence condition immediately implies for every finite initial seg-
ment X of a run of an asynchronous ASM, all linearizations of X yield runs
with the same final state. The definition provides no clue to construct partial or-
der runs for an asynchronous ASM, but it makes the freedom explicit one has in
implementing the described causal dependencies of certain local actions of oth-
erwise independent agents. Notably the definition imposes no fairness condition
on runs.


