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Abstract. We provide precise high-level models for eight fundamental service interactionpatterns, together with schemes for their composition into complex service-based businessprocess interconnections and interaction 
ows, supporting software-engineered business pro-cess management in multi-party collaborative environments. The mathematical nature of ourmodels provides a basis for a rigorous execution-platform-independent analysis, in particularfor benchmarking web services functionality. The models can also serve as accurate standardspeci�cations, subject to further design leading by stepwise re�nement to implementations.
We begin by de�ning succinct rigorous models to mathematically capture the behavioral mean-ing of four basic bilateral business process interaction patterns (Sect. 1), together with their re�ne-ments to four basic multilateral interaction patterns (Sect. 2). We then illustrate with characteristicexamples how by appropriate combinations and re�nements of these eight fundamental patternsone can de�ne arbitrarily complex interaction patterns of distributed service-based business pro-cesses that go beyond simple request-response sequences and may involve a dynamically evolvingnumber of participants. This leads to a de�nition of the concept of process interaction 
ow orconversation, namely via multi-agent distributed interaction pattern runs (Sect. 3). We point tovarious examples in the literature on web-service-oriented business process management, whichillustrate the models and concepts de�ned here.We start from the informal business process interaction pattern descriptions in [2]1, streamlin-ing, generalizing or unifying them where the formalization suggested to do so. Our models providefor them an accurate high-level view one can consider as ground model (blueprint) de�nition, in thesense de�ned in [4], clarifying open issues and apt to direct the further detailing, by stepwise re�ne-ment in the sense de�ned in [5], to an executable version as for example BPEL code. Since for thesemantics of the forthcoming BPEL standard a formal model has been provided in [15,24,13,14],such re�nements can be mathematically investigated to prove their correctness with respect to theground model, thus preparing for the application of verifying compiler techniques [17,10].For the modeling we use the Abstract State Machines (ASMs) method with its ASM groundmodel and ASM re�nement techniques, extending the pattern description scheme outlined in [8,9].The support the ASM notion o�ers to express the dynamics of abstract state changes allows us toprovide a high-level state-based view of service inter-action patterns, where the behavioral inter-face is de�ned through pattern actions performed by submachines, which remain largely abstractdue to the intention to leave the design space open for further re�nements to concrete patterninstantiations. Most of what we use below to model service interaction patterns by ASMs is self-explanatory, given the semantically well-founded pseudo-code character of ASMs, an extension ofFinite State Machines (FSMs) by a general notion of state. For the sake of completeness we sketchin the appendix (Section 5) what is needed for a correct understanding: the simple semantics ofASMs as extension of FSMs by generalized memory locations together with the ASM classi�cationof locations and functions that supports modularity in high-level system descriptions. A recenttutorial introduction into the ASM method for high-level system design and analysis is availablein [7]. For a more detailed textbook presentation of the method see the AsmBook [12].

1 All the not furthermore quali�ed quotes in this paper are from there.



1 Basic components of bilateral interaction patterns
The basic bilateral (one-to-one) interaction patterns we have identi�ed are characterized by fourcomponent type ASMs, re�nements of which su�ce to compose any other bilateral interactionpattern of whatever structural complexity: Send and Receive and their sequential combinationsSendReceive (for sending a request followed by receiving a response) and ReceiveSend (for receivinga request followed by sending a response). Each of these pattern components describes one side ofan interaction, as illustrated in Figure 1, so that all the basic bilateral interaction pattern ASMswe de�ne in this section are mono-agent machines or modules.

Fig. 1. Basic Bilateral Interaction Pattern Types

1.1 Pattern Send
Di�erent versions for sending are considered, depending on whether the delivery is reliable (guar-anteed) or not and whether, in case of reliable delivery, the action is blocking or non-blocking. Alsothe possibility is contemplated that the send action may result in a fault message in response orthat a periodic resending of a message is performed.For each version it is required that the counter-party may or may not be known at designtime. This is re
ected by the following possibly dynamic function, associating a recipient to eachmessage. In case the recipient depends on further parameters, one has to re�ne recipient(m) byadding those parameters to the function to determine recipient(m; param).

recipient :Message ! Recipientrecipient :Message � Param ! Recipient
All considered types of the send pattern use an abstract machine BasicSend(m) with theintended interpretation that message m is sent to recipient(m), or to recipient(m; param) in casesome additional recipient parameters are given by the context. Some patterns also use the notationBasicSend(m; r) where r = recipient(m; param). This abstraction will be re�ned below, e.g.to capture broadcasting instead of bilateral sending. It also re
ects that the underlying messagedelivery system is deliberately left unspeci�ed.To indicate that a faulty behavior has happened at the receiver's side as result of sendingmessage m, we use an abstract monitored predicate Faulty(m) with the intended interpretationthat a fault message in response has arrived. Possible faults originating at the sender's side, duringan attempt to send a message m, are captured by a SendFaultHandler, typically triggered bya condition not OkSend(m). A typical re�nement of OkSend(m) would be that there exists achannel, connecting the sender to the recipient, which is open to send m.We therefore have two abstract methods, a machine which does a FirstSend(m) withoutfurther resending and a machine to HandleSendFault(m). These two machines use, as guardsfor being triggered, abstract monitored predicates SendMode(m) respectively SendFaultMode(m).A typical assumption on the underlying scheduler for calling these machines will be that for each m,SendFaultMode(m) can become true only after SendMode(m) has been true.



To formalize sending messages whose delivery is requested to be guaranteed by an acknowledge-ment, a machine SetWaitCondition will typically Initialize a shared predicateWaitingFor(m),whose role is to record that the sender is still waiting for an acknowledgement which informsthat m has been delivered. In case of a BlockingSend(m), the blocking e�ect is formalized by set-ting status := blocked(m). Here status itself is not parameterized by m given that its role is topossibly block the Send machine from further sending out other messages (see below the discussionof the blocking case).
FirstSend(m) = if SendMode(m) then 2if OkSend(m) thenBasicSend(m)if AckRequested(m) then SetWaitCondition(m)if BlockingSend(m) then status := blocked(m)
HandleSendFault(m) = if SendFaultMode(m) then SendFaultHandler(m)3
As typical assumption SendMode(m) and not OkSend(m) implies SendFaultMode(m) =true.
Send&Check = fFirstSend(m);HandleSendFault(m)g4

Send Without Guaranteed Delivery. For the instantiation of Send&Check to SendnoAck itsu�ces to require AckRequested and BlockingSend to be always false.
MODULE SendnoAck = Send&Checkwhere 5 forall m AckRequested(m) = BlockingSend(m) = false

Guaranteed Non-Blocking Send. For the instantiation of Send&Check to SendackNonBlockingwith guaranteed delivery, but without blocking e�ect, it su�ces to require AckRequested to be al-ways true resp. BlockingSend to be always false and to further detail the abstract submachineSetWaitCondition(m). This machine has to Set various deadlines and to Initialize the pred-icate WaitingFor(m),6 which is reset to false typically through an action of the recipient(m)upon receipt of m, e.g. by sending an acknowledgement message under a reliable messaging pro-tocol7. Among the various deadlines occurring in di�erent patterns we mention here deadline(m)and sendTime(m), which are typically used to de�ne Timeout(m) by (now � sendTime(m) >deadline(m)), using a system time function now to which sendTime(m) is set in Set. We alsomention a function frequency(m) which will help to de�ne the frequency of events expected by thesender, e.g. the arrival of response messages or the ResendTime(m) at which m has to be resentperiodically (see below). A frequent requirement on the scheduler is that SendFaultMode(m) is im-plied by a Timeout(m), although some patterns come with Timeout concepts which are not relatedto faulty message sending and therefore trigger other machines than TimeoutFaultHandlers.2 For notational succinctness we assume the �ring of this rule to be preemptive. This means that whenthe rule is applied because SendMode(m) became true, SendMode(m) becomes false as a result of thisapplication. Usually such an preemptiveness assumption is automatically guaranteed through furtherre�nement steps.3 As for FirstSend(m) we assume also the �ring of HandleSendFault(m) to be preemptive.4 By this notation we indicate that Send&Check consists of the two methods FirstSend andHandleSendFault, callable for any legal call parameter m, whatever may be the parameter passingmechanism.5 Notationally we use unrestricted quanti�ers, assuming that their underlying range is clear from thecontext.6 This predicate re
ects the not furthermore speci�ed message delivery system. In some cases below itwill be re�ned by providing further details for its de�nition.7 The limit case is possible that Initialize(WaitingFor(m)) sets WaitingFor(m) := false in case ofimmediate and safe delivery.



MODULE SendackNonBlocking = Send&Checkwhereforall m AckRequested(m) = true and BlockingSend(m) = falseSetWaitCondition(m) =Initialize(WaitingFor(m))Set(deadline(m); sendTime(m); frequency(m); : : :)
Guaranteed Blocking Send. For the instantiation of Send&Check to SendackBlocking withguaranteed delivery and blocking e�ect, we require both AckRequested and BlockingSend to be al-ways true, re�ne SendMode(m) to status = readyToSend and add a submachineUnblockSend(m).Its role is to switch back from blocked(m) to an unblocked status, typically readyToSend , and toPerformAction(m) to be taken upon the end of the waiting period.8For a succinct formulation of the re�nement of SetWaitcondition we use the following no-tation introduced in [6]: M addRule R denotes the parallel composition of M and R.

M addRule R =MR
To avoid confusion among di�erent machines, which occur as submachine of machines N ;N 0 butwithin those machines carry the same name M , we use indexing and write MN respectively MN 0 .
MODULE SendackBlocking = Send&Check [ fUnblockSend(m)gwhereforall m AckRequested(m) = BlockingSend(m) = trueSendMode(m) = (status = readyToSend)SetWaitCondition(m) = SetWaitConditionSendackNonBlocking (m)addRule status := blocked(m)UnblockSend(m) = if UnblockMode(m) thenUnblock(status)PerformAction(m)UnblockMode(m) = (status = blocked(m) and notWaitingFor(m))SendFaultMode(m) = (Faulty(m) and status = blocked(m) andWaitingFor(m))

Send with Resending. In case one wants a still not delivered message to be resent fromtime to time, it su�ces to periodically trigger an additional machine ReSend(m) 9 until theWaitingFor(m) value has changed to false|or a Faulty(m) event triggersHandleSendFault(m),which typically is assumed to stop ReSending. We write the pattern for any SendType consid-ered above, namely t 2 fnoAck ; ackNonBlocking ; ackBlockingg. We foresee that message copies arevariations newVersion(m;now) of the original m, where the variation may depend on the currenttime now .
MODULE SendtResend = Sendt [ fReSend(m)gwhereReSend(m) = if ResendMode(m) thenBasicSend(newVersion(m;now))lastSendTime(m) := nowResendMode(m) = ResendTime(m) andWaitingFor(m)8 We use here an abstract machine Unblock(status) instead of status := readyToSend to be preparedfor further re�nements of PerformAction which could include status updates, in coordination with acorresponding re�nement of Unblock(status).9 The period is determined by a predicate ResendTime(m), which typically is de�ned in terms of thefunction lastSendTime(m) and the monitored system time now .



For a pictorial representation of SendackBlockingResend see Figure 2. It generalizes the Alternat-ing Bit Sender control state ASM diagram in [p.243][12].

Fig. 2. Blocking Send with Acknowledgement and Resend
We reassume here the de�nition of the set of SendTypes considered in this paper:
SendType = fnoAck ; ackNonBlocking ; ackBlockingg[fnoAckResend ; ackNonBlockingResend ; ackBlockingResendg

1.2 Pattern Receive
We formalize a general form for receiving messages, which can be instantiated to the di�erentversions discussed in [2], depending on whether the action is blocking or non-blocking, whethermessages which upon arrival cannot be received are bu�ered for further consumption or discardedand whether an acknowledgement is required or not. Also the possibility is contemplated that thereceive action may result in a fault message.For each version it is required that the party from which the message will be received may ormay not be known at design time. This is re
ected by the following possibly dynamic function,associating a sender to each message.

sender :Message ! Sender
We use abstract predicates checking whether a message m is Arriving10 and ToBeAcknowledgedand whether our machine is ReadyToReceive(m) and in case it is not whether the message isToBeDiscarded or ToBeBu�ered , in which cases the action is described by abstract machines toConsume(m), Discard(m), Buffer(m) or to send an Ack(m) message or a faultMsg(m) to thesender(m). For the bu�ering submachine we also forsee the possibility that upon DequeueTime,10 The intended interpretation of Arriving(m) is that m is in the message channel or in the message bu�er.



which is typically de�ned in terms of the enqueueTime of messages, a Dequeue action is re-quired. We leave it as part of the here not furthermore speci�ed submachines Discard(m) andEnqueue(m) to acknowledge by BasicSend(discardOrBu�erMsg(m); sender(m)) a received butdiscarded or bu�ered message m where required. Similarly one may consider sending a furtheracknowledgement as part of the Dequeue submachine.
Receive(m) = if Arriving(m) thenif ReadyToReceive(m) thenConsume(m)if ToBeAcknowledged(m) then BasicSend(Ack(m); sender(m))elseif ToBeDiscarded(m) thenDiscard(m)else Buffer(m)where Buffer(m) =if ToBeBu�ered(m) thenEnqueue(m)enqueueTime(m) := nowif DequeueTime then Dequeue
Remark. Note thatConsume andDiscard are typically realized at the application (e.g. BPEL)level, whereas Buffer(m) belongs to the system level and is usually realized through lower levelmiddleware functionality.

Instances of Receive(m). It is now easy to de�ne special versions of Receive by restrictingsome of the abstract guards.Receiveblocking can be de�ned as Receive where no message is discarded or bu�ered, so that foran Arriving(m) that is not ReadyToReceive(m), the machine is `blocked' (read: cannot �re its rulefor this m) until it becomes ReadyToReceive(m), formally speaking where there is no DequeueTimeand for each message m holds:
ToBeDiscarded(m) = false = ToBeBu�ered(m):

Receivediscard can be de�ned similarly as Receive where arriving messages, if they cannot bereceived at arrival time, are discarded, so that for each message m holds:
ReadyToReceive(m) = false ) ToBeDiscarded(m) = true:

Receivebu�er can be de�ned as Receive where arriving messages, if they cannot be received atarrival time, are bu�ered, formally where for each message m holds:
ReadyToReceive(m) = false )ToBeDiscarded(m) = falseToBeBu�ered(m) = true:
For each of the precedingReceive instances one can de�ne a versionReceiveack with acknowl-edgement, namely by requiring that for each message m it holds that ToBeAcknowledged(m) =true; analogously for a version ReceivenoAck without acknowledgement, where it is required thatToBeAcknowledged(m) = false holds for each message m.We reassume here the de�nition of the set of ReceiveTypes considered above, where we addthe distinction among those with and those without acknowledgement, depending on whetherToBeAcknowledged(m) is true or not for every m:
ReceiveType = fblocking ; bu�er ; discardg [fnoAckBlocking ;noAckBu�er ; ackBlocking ; ackBu�erg



1.3 Pattern Send/Receive
This pattern is about receiving a response to a previously sent request. One can de�ne this patternas a combination of the machines for the send and the receive pattern. The requirement of \acommon item of information in the request and the response that allows these two messages tobe unequivocally related to one another" is captured by two dynamic predicates11 RequestMsgand ResponseMsg with a function requestMsg , which identi�es for every m 2 ResponseMsg therequestMsg(m) 2 RequestMsg to which m is the responseMsg .12For the non-blocking version of the pattern, sending a request message is made to precedethe call of Receive for the response message m by re�ning the Receive-guard Arriving(m)through the condition that the message which Arrived is a ResponseMsg . If no acknowledgementof the response is requested, it su�ces to require ToBeAcknowledged(m) = false for each m. An-other natural assumption is that after having InitializedWaitingFor(m) through FirstSend(m),WaitingFor(m) is set at the recipient(m) to false in the moment responseMsg(m) is de�ned. For theblocking version this assumption guarantees that both Receive and UnblockSend can be calledfor the responseMsg(m). We formulate the Send/Receive pattern for any pair (s; t) of SendTypeand ReceiveType.

MODULE SendReceives;t = Sends [ fReceivet(m)gwhereArriving(m) = Arrived(m) and m 2 ResponseMsgResponseMsg = fm j m = responseMsg(requestMsg(m))g
1.4 Pattern Receive/Send
This pattern is a dual to the Send/Receive pattern and in fact can be composed out of the sameconstituents, but with di�erent re�nements for some of the abstract predicates to let receivinga request precede sending the answer. The di�erent versions of the pattern are re
ected by thedi�erent versions for the constituent machines for the Receive or Send pattern. The re�nement ofSendMode(m) by adding the condition m 2 ResponseMsg guarantees that sending out an answermessage is preceded by having received a corresponding request message, a condition which isrepresented by a predicate ReceivedMsg .

MODULE ReceiveSendt;s = fReceivet(m)g [ SendswhereSendMode(m) = SendModet(m) and m 2 ResponseMsgResponseMsg = fresponseMsg(m) j ReceivedMsg(m)g
An example of this bilateral service interaction pattern appears in the web service mediatormodel de�ned in [1], namely in the pair of machines to ReceiveRequests and to SendAnswers.

2 Basic multilateral interaction patterns(Composition of basic bilateral interaction patterns)
In this section four basic multi-party interaction patterns are identi�ed for each of the four basicbilateral interaction pattern ASMs of the previous section, namely by allowing multiple recipientsor senders: Send messages (representing requests or responses) to multiple recipients, Receiveresponses or requests from multiple senders, SendReceive to send requests to multiple interactionpartners followed by receiving responses from them, similarly ReceiveSend to receive requests frommultiple interaction partners followed by sending responses to them.11 We identify sets with unary predicates.12 This view of ResponseMsg can be turned into a re�ned view by distinguishing at each agentReceivedResponseMsges from ToBeSentResponseMsges.



Each of these patterns describes one side of the interaction, as illustrated in Figure 3, so that allthe components we de�ne in this section are mono-agent ASM machines or modules. Re�nements ofthe identi�ed basic multilateral interaction pattern ASMs su�ce to compose any other multilateralinteraction pattern of whatever structural complexity.

Fig. 3. Basic Multilateral Interaction Pattern Types

2.1 One-to-many Send Pattern
This pattern describes a broadcast action where one agent sends messages to several recipients. Therequirement that the number of parties to whom a message is sent may or may not be known atdesign time is re
ected by having a dynamic set Recipient . The condition that the message contentsmay di�er from one recipient to another can be captured by a dynamic function msgContent for\instantiating a template with data that varies from one party to another".

msgContent :MsgTemplate � Recipient ! Message
Variations of the pattern can be captured by re�ning the abstract predicates like FaultMode(m) orSendMode(m) accordingly13 and re�ning the BasicSend component by forall r 2 Recipient doAtomicSendtype(m;r)(msgContent(m; r)), where the new abstract machine AtomicSend playsthe role of the atomic sending mechanism for broadcasting messages to multiple recipients. Weforsee that it can be of a type which depends on messages m and their recipients r .

OneToManySends = SendswhereBasicSend(m) = forall r 2 Recipient(m) do AtomicSendtype(m;r)(msgContent(m; r))
2.2 One-from-many Receive Pattern
This pattern describes correlating messages, received from autonomous multiple parties, into groupsof given types, whose consolidation may complete successfully, e.g. into a single logical request, ortrigger a failure process. \The arrival of messages needs to be timely enough for their correlationas a single logical request." The pattern can be de�ned by adding to a re�nement of Receive anew module GroupRules whose components manipulate groups by creating, consolidating andclosing them.13 For example SendMode(m) could be re�ned for the guaranteed blocking send by stipulat-ing SendMode(m) � status = forall r 2 Recipient ReadyToSendTo(m; r) and re�ningWaitingFor(m) to forall r 2 RecipientExpectedToAnswer(m) WaitingFor(m; r) or to forsome r 2RecipientExpectedToAnswer(m) WaitingFor(m; r).



The re�nement of Receive consists �rst of all in adapting the predicate ReadyToReceive(m)to mean that the current state is Accepting the type of arriving message. The type(m) serves to\determine which incoming messages should be grouped together". The machine Consume(m) isdetailed to mean that m is accepted by and put into its current (possibly newly created) correlationgroup currGroup, which depends on the type(m). By the constraint that a message, to be insertedinto its correlation group, has to be accepted by its currGroup, we re
ect a stop condition, whichis needed because in the pattern \the number of messages to be received is not necessarily knownin advance". The de�nition of ToBeDiscarded(m) as the negation of Accepting(m) re
ects that nobu�ering is foreseen in this scheme.The machine CreateGroup(type) to create a correlation group of the given type re
ects thatfollowing the pattern requirements, groups can be created not only upon receipt of a �rst message(namely as part of Consume), but \this can occur at any time". To InitializeGroup for a newlycreated element g 2 Group(t) comes up to make it the currGroup of type(g) = t , Accepting andwith the timer(g) set to the current system time now .The group closure machines CloseCurrGroup and CloseGroup reset Accepting for theirargument (namely currGroup or a group type) to false in case a Timeout , imposed on the correla-tion process, or a group completion event respectively a ClosureEvent for a correlation type doesoccur.To Consolidate a group g upon its completion into a single result, the two cases are forseenthat the correlation \may complete successfully or not depending on the set of messages gathered"in g , wherefore we use abstract machines to ProcessSuccess(g) or ProcessFailure(g).
MODULE OneFromManyReceivet = fReceivetg [GroupRuleswhereReadyToReceive(m) = Accepting(type(m))Consume(m) =let t = type(m) inif Accepting(currGroup(t))then insert m into currGroup(t)else InitInsert(m;new(Group(t)))InitInsert(m; g) =InitializeGroup(g)insert m into gToBeDiscarded(m) = not Accepting(type(m))GroupRules = fCreateGroup(type);Consolidate(group);CloseCurrGroup(type);CloseGroup(type)g
CreateGroup(type) = if GroupCreationEvent(type) thenlet g = new(Group(type)) in InitializeGroup(g)InitializeGroup(g) =Accepting(g) := truecurrGroup(type(g)) := gtimer(g) := now
Consolidate(group) = if Completed(group) thenif Success(group)then ProcessSuccess(group)else ProcessFailure(group)
CloseCurrGroup(type) =if Timeout(currGroup(type)) or Completed(currGroup(type))then Accepting(currGroup(type)) := falseCloseGroup(type) =if ClosureEvent(type) then Accepting(type) := false



This formalization permits to have at each moment more than one correlation group open,namely one currGroup per message type. It also permits to have at each moment messages ofdi�erent types to arrive simultaneously. It assumes however that per message type at each mo-ment only one message is arriving. If this assumption cannot be guaranteed, one has to re�nethe Consume machine to consider completing a group by say m1 of m simultaneously arrivingmessages and to create a new group for the remaining m � m1 ones (unless the completion of agroup triggers the closure of the group type).
2.3 One-to-many Send/Receive Pattern
This pattern is about sending a message to multiple recipients from where responses are ex-pected within a given timeframe. Some parties may not respond at all or may not respond intime. The pattern can be composed out of the machine OneToManySend and the moduleOneFromManyReceive, similarly to the composition of the SendReceive modules out of Sendand Receive. For this purpose the sending machine used inOneToManySend is assumed to con-tain the SetWaitCondition submachine to initialize sendTime(m) := now . This value is neededto determine the Accepting predicate in the module OneFromManyReceive to re
ect that \re-sponses are expected within a given timeframe". Remember that the re�nement of the Receive-guard Arriving(m) guarantees that OneToManySend has been called for requestMsg(m) beforeOneFromManyReceive is called to Receive(m).

MODULE OneToManySendReceives;t =OneToManySends [OneFromManyReceivetwhereArriving(m) = Arrived(m) and m 2 ResponseMsg
An instance of this multilateral service interaction pattern appears in the web service mediatormodel de�ned in [1], realized by the machine pair FeedSendReq and ReceiveAnsw. The formeris an instance of OneToManySend, the latter is used as a OneFromManyReceive until allexpected answers have been received.

2.4 One-from-many Receive/Send Pattern
This pattern is symmetric to OneToManySendReceive and can be similarly composed out ofOneToManySend and OneFromManyReceive but with a di�erent re�nement, namely of theSendMode predicate, which guarantees that in any round, sent messages are responses to completedgroups of received requests. Since several received messages are correlated into a single responsemessage, which is then sent to multiple recipients, responseMsg is de�ned not on received messages,but on correlation groups of such, formed by OneFromManyReceive.

MODULE OneFromManyReceiveSendt;s =OneFromManyReceivet [OneToManySendswhere SendMode(m) =SendMode(m)s and m = responseMsg(g) for some g 2 Group with Completed(g)
This pattern generalizes the abstract communication model for distributed systems proposedin [16] as a description of how communicators route messages through a network, namely by for-warding into the mailboxes of the Recipients (read: via OneToManySend) the messages found inthe communicator's mailbox (read: via OneFromManyReceive). The core of this communicatormodel is the ASM de�ned in [16, Sect.3.4], which exhibits \the common part of all message-basedcommunication networks" and is reported to have been applied to model several distributed com-munication architectures.



3 Composition of basic interaction patterns
In this section we illustrate how to build complex business process interaction patterns, bothmono-agent (bilateral and multilateral) and asynchronous multi-agent patterns, from the eightbasic interaction pattern ASMs de�ned in the preceding sections. There are two ways to de�nesuch patterns: one approach focusses on re�nements of the interaction rules to tailor them to theneeds of particular interaction steps; the other approach investigates the order and timing of singleinteraction steps in (typically longer lasting) runs of interacting agents.To illustrate the possibilities for re�nements of basic interaction pattern ASMs, which exploitthe power of the general ASM re�nement notion [5], we de�ne two bilateral mono-agent pat-terns, namely an instance CompetingReceive of Receive and a re�nementMultiResponse ofthe bilateral SendReceive. We de�ne TransactionalMulticastNotification, a mono-agentmultilateral instance of the multilateral OneToManySendReceive and a generalization of thewell-known Master-Slave network protocol. We de�ne MultiRoundOneToManySendReceive,an iterated version of OneToManySendReceive. As examples for asynchronous multi-agentpatterns we de�ne four patterns: Request with Referral, Request with Referral and Noti�cation,Relayed Request, Dynamic Routing.The list can be extended as needed to include any complex or specialized monoagent or multi-agent interaction pattern, by de�ning combinations of re�nements of the eight basic bilateral andmultilateral interaction pattern ASMs identi�ed in the preceding sections.At the end of this section we shortly discuss the investigation of interaction pattern ASM runsand link the management of such runs to the study of current thread handling disciplines.
3.1 Competing Receive Pattern
This pattern describes a racing between incoming messages of various types, where exactly oneamong multiple received messages will be chosen for a special Continuation of the under-lying process. The normal pattern action is guarded by waitingForResponses contained in ex-pected messages of di�erent types, belonging to a set Type; otherwise an abstract submachinewill be called to ProcessLateResponses. The Continuation submachine is called for onlyone ReceivedResponse(Type), i.e. one response of some type t 2 Type, and is executed in par-allel with another submachine to ProcessRemainingResponses. The interaction is closed byupdating waitingForResponse to false. The choice among the competing types of received responseevents is expressed by a possibly dynamic and here not furthermore speci�ed select ion functionto select one received response of some type. An abstract machine EscalationProcedure isforeseen in case of a Timeout (which appears here as a monitored predicate). It is natural toassume that EscalationProcedure changes waitingForResponse(Type) from true to false. Ap-parently no bu�ering is foreseen in this pattern, so that ToBeDiscarded(m) is de�ned as negationof ReadyToReceive(m).An ASM with this behavior can be de�ned as a re�nement of Receive(m) as follows. We de�neReadyToReceive(m) to mean that up to now waitingForResponse(Type) holds and no Timeoutoccurred. This notion of ReadyToReceive(m) describes a guard for executing Receive which doesnot depend on m. In fact we have to make CompetingReceive work independently of whethera message arrived or not, in particular upon a Timeout . Therefore also Arriving(m) has to beadapted not to depend on m, e.g. by de�ning it to be always true.14 The submachine Consume isre�ned to formalize the normal pattern action described above (which may be parameterized by mor not), whereas ToBeDiscarded(m) describes that either a Timeout happened or the system isnot waitingForResponse(Type) any more, in which case Discard formalizes the abnormal patternbehavior invoking EscalationProcedure or ProcessLateResponses.

CompetingReceive = Receivewhere14 These stipulations mean that the scheduler will call CompetingReceive independently of any messageparameter, which is a consequence of the above stated requirements.



Arriving(m) = trueReadyToReceive(m) =waitingForResponse(Type) and not TimeoutConsume =let ReceivedResponse(Type) = fr j Received(r) and Response(r ; t) forsome t 2 Typegif ReceivedResponse(Type) 6= ; thenlet resp = select(ReceivedResponse(Type))Continuation(resp)ProcessRemainingResp(ReceivedResponse(Type) n frespg)waitingForResponse(Type) := falseToBeDiscarded(m) = Timeout or not waitingForResponse(Type)Discard =if not waitingForResponse(Type) then ProcessLateResponsesif Timeout then EscalationProcedure
3.2 Contingent Request
This pattern has multiple interpretations. It can be de�ned as an instance of SendReceive, wherethe Send(m) comes with the ReSend submachine to resend m (maybe to a new recipient) if noresponse is received from the previous recipient within a given timeframe. I can also be de�nedas a combination of CompetingReceive with ReSend. In both cases the function newVersionre
ects that the recipient of that version may be di�erent from the recipient of the original.
3.3 Multi-response Pattern
This pattern is a multi-transmission instance of the SendReceive pattern, where the requestermay receive multiple responses from the recipient \until no further responses are required". Itsu�ces to re�ne the Receive-guard readyToReceive according to the requirements for what maycause that no further responses r will be accepted (and presumably discarded) for the request m,namely (a response) triggering to reset FurtherResponseExpected(m) to false or a Timeout(m)due to the expiry of either the request deadline(m) (time elapsed since the sendTime(m), set inSetWaitCondition(m) when the request m was sent) or a lastResponseDeadline(m) (time thatelapsed since the last response to request message m has been received).To make this work, SetWaitCondition(m) has to be re�ned by adding the initialization ruleFurtherResponseExpected(m) := true. To Receive response messages m, Consume(m) has to bere�ned by adding the rule lastResponseTime(requestMsg(m)) := now , so that the timeout predicateExpired(lastResponseDeadline(m)) can be de�ned with the help of lastResponseTime(m). For there�nement of SetWaitCondition and Consume we use the notation M addRule R from [6] todenote the parallel composition of M and R.

MODULE MultiResponses;t = SendReceives;twhereSetWaitCondition(m) = SetWaitConditionSendReceives;t (m)addRule FurtherResponseExpected(m) := trueReadyToReceive(m) = FurtherResponseExpected(requestMsg(m)) andnot Timeout(requestMsg(m))Consume(m) = ConsumeSendReceives;t (m)addRule lastResponseTime(requestMsg(m)) := nowToBeDiscarded(m) = not ReadyToReceive(m)Timeout(m) = Expired(deadline(m)) or Expired(lastResponseDeadline(m))



3.4 Transactional Multicast Noti�cation
This pattern generalizes the well-known Master-Slave network protocol investigated in [19,12]. Ineach round a noti�cation m is sent to each recipient in a possibly dynamic set Recipient(m).The elements of Recipient(m) are arranged in groups, allowing in groups also further groups asmembers, yielding a possibly arbitrary nesting of groups. Within each group g a certain numberof members, typically between a minimum acceptMin(m; g) and a maximum acceptMax (m; g)number, are expected to \accept" the requestm within a certain timeframe Timeout(m). Recipients\accept" m by sending back an AcceptMsg to the master.The pattern description given below de�nes the master program in the master-slave protocol,whereas in applications it is typically assumed that each slave uses a blocking Send machine.The master ASM can be de�ned as a re�nement of the OneToManySendReceive pattern withblocking Send. WaitingFor(m) is re�ned to not Timeout(m), so that the blocking conditionstatus = blocked(m) appears as waiting mode for receiving AcceptMsges from Recipients in responseto the noti�cation m. The nested group structure is represented as a recipientTree(m) whose nodes(except the root) stand for groups or recipients. The set Leaves(recipientTree(m)) of its leavesde�nes the set Recipient(m); for each tree node n which is not a leaf the set children(n) representsa group. Since for each inner node there is only one such group, we keep every correspondingcurrGroup(t) open by de�ning it as Accepting . We can de�ne type(r) = r so that currGroup(r) forany response message r collects all the AcceptMsgs which are received from brothers of sender(r).SetWaitCondition(m) is extended by a machine to InitializeMinMax(m) and a machineto InitializeCurrGroup(m) for each group. The Acceptance notion for tree nodes has to becomputed by the master itself, namely as part of PerformAction(m). We abstract from theunderlying tree walk algorithm by de�ning Accept as a derived predicate, namely by recursionon the recipientTree(m) as follows, starting from the AcceptMsg concept of response messagesaccepting the noti�cation m. By j X j we denote the cardinality of the set X .

Accept(n), acceptMin(m; children(n)) �j fc 2 children(n) j Accept(c)g jAccept(leaf ), some r 2 ResponseMsg(m) with AcceptMsg(r) was received from leaf
It may happen that at Timeout(m) more than acceptMax (m; g) accepting messages did arrive.Then a \priority" function chooseAccChildren is used to choose an appropriate set of acceptingchildren among the elements of g = children(n). The elements of all these chosen sets constitutethe set chosenAccParty(root) of recipients chosen among those who accepted the noti�cation m.Both functions are de�ned as derived functions by a recursion on the recipientTree(m) as follows:
chooseAccChildren(n) =�; if j AcceptChildren(n) j< acceptMin(m; children(n))�min;max AcceptChildren(n) elsewhereAcceptChildren(n) = fc 2 children(n) j Accept(n)gmin = acceptMin(m; children(n))max = acceptMax (m; children(n))A �l;h B , A � B and l �j A j� h
chosenAccParty(leaf ) = �fng if Accept(n); elsechosenAccParty(n) = Sc2chooseAccChildren(n) chosenAccParty(c)
The submachinePerformAction(m), which in case thatAccept(root(recipientTree(m))) holdsis executed in UnblockMode(m), Processes the fullRequest(m) for the chosenAccParty at theroot(recipientTree(m)), taking into account also the other recipients. Otherwise a RejectProcessis called.To formulate the re�nement of SetWaitcondition we use again the notation M addRule Rfrom [6] to denote the parallel composition of M and R. OTMSR stands as abbreviation forOneToManySendReceiveackBlocking;t .



MODULE TransactionalMulticastNotifyt = OneToManySendReceiveackBlocking;twhere 15WaitingFor(m) = not Timeout(m)SetWaitCondition(m) = SetWaitconditionOTMSR(m)addRuleInitializeMinMax(m)InitializeCurrGroup(m)whereInitializeMinMax(m) = forall g = children(n) 2 recipientTree(m)Initialize(acceptMin(m; g); acceptMax (m; g))InitializeCurrGroup(m) = forall r 2 Recipient(m)currGroup(r) := ;type(response) = responseAccepting(response) = response 2 AcceptMsg and not Timeout(requestMsg(response))currGroup(response) = currGroup(sender(response))currGroup(recipient) = brothers&sisters(recipient) \ fleaf j Accept(leaf )gAccepting(currGroup(r)) = truePerformAction(m) =if Accept(root(recipientTree(m))) thenletaccParty = chosenAccParty(root(recipientTree(m)))others = Leaves(recipientTree(m)) n accParty inProcess(fullRequest(m); accParty ; others)else RejectProcess(m)
For a pictorial representation of TransactionalMulticastNotify (without arrows for theresponses) see Figure 4, where the leaves are represented by circles and the groups by rectangles.

Fig. 4. Transactional Multicast Notify

3.5 Multi-round One-to-many Send/ReceivePattern
This pattern can be described as an iteration of (a re�nement of) the OneToManySendReceivecomponentsOneToManySend andOneFromManyReceive. The number of one-to-many sendsfollowed by one-from-many receives is left unspeci�ed; to make it con�gurable one can introducea corresponding roundNumber counter (into the SendMode guard and the SetWaitCondition).The dynamic set Recipient guarantees that the number of parties where successive requests aresent to, and from where multiple responses to the current or any previous request may be received15 One could probably delete the GroupRules since they are not used by this pattern.



by the sender, may be bounded or unbounded. There is also no a priori bound on the number ofprevious requests, which are collected into a dynamic set ReqHistory .The main re�nement on sending concerns the submachine SetWaitCondition, which has tobe adapted to the fact that WaitingFor , sendTime and blocked may depend on both the messagetemplate m and the recipient r . Furthermore this submachine has to record the message templateas new currRequest and to store the old currReq into the ReqHistory , since incoming responsesmay be responses to previous request versions. The pattern description speaks about responses to\the request" for each request version, so that we use the request template m to de�ne currRequest(and Group types below)16. Also the guard SendMode(m) is re�ned to express (in addition to thepossible status condition) that forall r 2 Recipient(m) a predicate ReadyToSendTo(m; r) holds,where this predicate is intended to depend on the responses returned so far (de�ned below as aderived set ResponseSoFar).The main re�nement on receiving concerns the de�nition of type(m) for any m 2 ResponseMsgas the requestMsg(m) that triggered the response m. This re
ects that each response message isassumed to be a response to (exactly) one of the sent requests. However, every request r is allowedto trigger more than one response m from each recipient (apparently without limit), so that thefunction responseMsg is generalized to a relation responseMsg(m; r). Therefore currGroup(request)represents the current collection of responses received to the request . It remains to re
ect thecondition that \the latest response : : : overrides the latest status of the data : : : provided, althoughprevious states are also maintained". Since the pattern description contains no further requirementson the underlying state notion, we formulate the condition by the derived set ResponseSoFarde�ned below and by adding toConsume an abstract machineMaintainDataStatus to allow oneto keep track of the dataStatus of previous states, for any request. OTMSR stands as abbreviationfor OneToManySendReceive.
MODULE MultiRoundOneToManySendReceive = OneToManySendReceivewhereSendMode(m) = SendMode(m)OTMSR andforall r 2 Recipient(m) ReadyToSendTo(m; r)SetWaitCondition(m) =forall r 2 Recipient(m)Initialize(WaitingFor(m; r))sendTime(m; r) := nowstatus := blocked(m; r)insert currRequest into ReqHistorycurrRequest := mtype(m) = requestMsg(m)Consume(m) = Consume(m)OTMSRaddRuleMaintainDataStatus(Group(requestMsg(m)))
ResponseSoFar = SfGroup(m) j m 2 ReqHistoryg [ fcurrGroup(currReq)g

3.6 Request With Referral
This pattern involves two agents, namely a sender of requests and a receiver from where \anyfollow-up response should be sent to a number of other parties : : :", in particular faults, whichhowever \could alternatively be sent to another nominated party or in fact to the sender". Ap-parently sending is understood without any reliability assumption, so that the sender is simplyformalized by the module SendnoAck . For referring sent requests, the appropriate version of theReceive machine is used, with the submachine Consume re�ned to contain OneToManySendfor the set Recipient(m) encoded as set of followUpResponseAddressees extracted from m. Asstated in the requirement for the pattern, followUpResponseAddr may be split into disjoint subsetsfailureAddr and normalAddr . Since the follow-up response parties (read: Recipient(m)) may be16 Otherwise one could de�ne currReq(r) := msgContent(m; r) for each recipient r .



chosen depending on the evaluation of certain conditions, followUpResponseAddr can be thoughtof as a set of pairs of form (cond ; adr) where cond enters the de�nition of SendMode(m).
2-Agent ASM RequestReferral =Sender agent with module SendnoAckReferral agent with module ReceivewhereConsume(m) = OneToManySend(Recipient(m))Recipient(m) = followUpResponseAddr(m)
For a pictorial representation of RequestReferral see Figure 5.

Fig. 5. Request with Referral and Advanced Noti�cation
A re�nement ofRequestReferral has the additional requirement of an advanced noti�cation,sent by the original sender to the other parties and informing them that the request will be servicedby the original receiver. This requirement comes with the further requirement that the sendermay �rst send his request m to the receiver and only later inform the receiver (and the to-be-noti�ed other parties) about Recipient(m). These two additional requirements can be obtainedby re�ning in RequestReferral the SendnoAck by a machine with blocking acknowledgment|whereWaitingFor(m) means that Recipient(m) is not yet known and that Timeout(m) has not yethappened|and the PerformAction(m) submachine as a OneToManySend of the noti�cationguarded by known(Recipient(m).
2-Agent ASM NotifiedRequestReferral =Sender agent with module SendackBlocking [ fOneToManySendgwhereWaitingFor(m) = not known(Recipient(m)) and not Timeout(m)PerformAction(m) =if not known(Recipient(m)) then SendFailure(m)else OneToManySend(advancedNotif (m))Referral agent with module ReceivewhereConsume(m) = OneToManySend(Recipient(m))Recipient(m) = followUpResponseAddr(m)

3.7 Relayed Request Pattern
The RelayedRequest pattern extends Request Referral by the additional requirement that theother parties continue interacting with the original sender and that the original receiver \observesa \view" of the interactions including faults" and that the interacting parties are aware of this\view". To capture this we re�ne RequestReferral by equipping the sender also with a machineto Receive messages from third parties and by introducing a set Server of third party agents,each of with is equipped with two machines Receive and Send&Audit where the latter is are�nement of Send by the required observer mechanism.For a pictorial representation of RelayedRequest see Figure 6.



Fig. 6. Relayed Request
n+2-Agent ASM RelayedRequest =2-Agent ASM RequestReferralwhere module(Sender) =moduleRequestReferral(Sender) [ fReceivegn Server agents with module fReceive;Send&AuditgwhereSend&Audit = Sends withBasicSend = BasicSends [fif AuditCondition(m) then BasicSends(�ltered(m))g
Using as subcomponent NotifiedRequestReferral yields NotifiedRelayedRequest.

3.8 Dynamic Routing
This pattern comes with a dynamic set of agents: a �rst party which \sends out requests to otherparties" (an instance of OneToManySend) but with the additional requirement that \these par-ties receive the request in a certain order encoded in the request. When a party �nishes processingits part of the overall request, it sends it to a number of other parties depending on the \routingslip" attached or contained in the request. This routing slip can incorporate dynamic conditionsbased on data contained in the original request or obtained in one of the \intermediate steps"."In this way the third parties become additional pattern agents to receive requests, process themand forward them to the next set of recipients. Furthermore, this set of agents is dynamic: \The setof parties through which the request should circulate might not be known in advance. Moreover,these parties may not know each other at design/build time."We therefore have a �rst sender agent with module OneToManySend concerning its setRecipient(sender). We then have a dynamic set of RoutingAgents which can Receive requestmessages m with routingSlip(m) and Consume requests by �rst Processing them and then for-warding a furtherRequest(m; currState(router)), which may depend not only on the received (andthereby without loss of generality of the original) request message, but also on data in the routerstate currState(router) after message processing. Thus also the routingSlip(m; currState(router))may depend on the original request and router data. The Recipient set depends on the routeragent and on the routingSlip information. For the intrinsically sequential behavior we make use ofthe seq operator de�ned for ASMs in [11] (see also [12]).

Multi-Agent ASM DynamicRouting =Agent sender with module OneToManySend(Recipient(sender))Agents router 2 RouterAgent each with module ReceivewhereConsume(m) =Process(m) seq OneToManySend(furtherRequest(m; currState(router)))(Recipient(router ; routingSlip(m; currState(router))))



3.9 De�ning Interaction Flows (Conversations)
In the preceding section the focus for the composition of basic interaction patterns into morecomplex ones was on combination and re�nement of basic interaction pattern ASMs, i.e. on how theinteraction rules (read: the programs) executed by the communicating agents can be adapted to thepatterns under consideration. An equally important di�erent view of interaction patterns is focussedinstead on the run scenarios, that is to say on when and in which order the participating agentsperform interaction steps by applying their interaction rules. This view is particularly importantfor the study of interaction structures which occur in long running processes, whose collaborationsinvolve complex combinations of basic bilateral or multilateral interaction pattern ASM moves.As an example for an interaction structure in a long running process consider a one-to-many-send-receive to short-list candidate service providers, which may be followed by a transactionalmulti-cast to issue service requests to selected providers, where �nally individual providers mayuse relayed requests for outsourcing the work.An elementary example is the well-known coroutining pattern, which is characterized by twoagents a1 and a2 each equipped with a SendnoAck and a Receive module. The typical scenario isa distributed run where an application of SendnoAck by a1 precedes �ring Receive by a2, which(as consequence of the execution of Consume at a2) is followed by an application of SendnoAckby a2 and eventually triggers an execution of Receive at a1.Such interactions structures resemble conversations or interaction 
ows between collaborat-ing parties. This concept is captured by the notion of asynchronous runs of multi-agent serviceinteraction pattern ASMs, i.e. ASMs whose rules consist of some of the basic or composed ser-vice interaction pattern ASMs de�ned in the preceding sections. Such runs, also called distributedruns, are partial orders of moves of the participating agents, each of which is (read: executes) asequential ASM, constrained by a natural condition which guarantees that independent moves canbe put into an arbitrary execution order without changing the semantical e�ect. 17 We thereforede�ne a conversation or interaction 
ow to be a run of an asynchronous service interaction patternASM, where such an ASM is formally de�ned by a set of agents each of which is equipped withsome (basic or complex, bilateral or multilateral) service interaction pattern modules de�ned inthe previous sections.A theory of such interaction 
ow patterns is needed, which builds upon the knowledge ofclassical work
ow analysis [25]. A satisfactory theory should also provide possibilities to studythe e�ect of allowing some agents to Start or Suspend or Resume or Stop such collaborations(or parts of them), the e�ect such conversation management actions have for example on securitypolicies, etc. This naturally leads to investigate the impact of current thread handling methods(see for example [26,23,22]) on business process interaction management.
4 Conclusion and Outlook
We would like to see the ASM models provided here (or modi�ed versions thereof) be implementedin a provably correct way, e.g. by BPEL programs, and be used as benchmarks for existing im-plementations. We would also like to see other interaction patterns be de�ned as combinations ofre�nements of the eight basic bilateral and multilateral service interaction pattern ASMs de�nedhere. In particular we suggest the study of conversation patterns (business process interaction
ows), viewed as runs of asynchronous multi-agent interaction pattern ASMs.
5 Appendix: The Ingredients of the ASM Method
The ASM method for high-level system design and analysis (see the AsmBook [12]) comes witha simple mathematical foundation for its three constituents: the notion of ASM, the concept ofASM ground model and the notion of ASM re�nement. For an understanding of this paper only17 Details on this de�nition of partial order ASM run can be found in [12, pg.208].



the concept of ASM and that of ASM re�nement have to be grasped,18 whose de�nitions supportthe intuitive understanding of the involved concepts. We use here the de�nitions �rst presentedin [7,3] and [5].
5.1 ASMs = FSMs with arbitrary locations
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cond 1

cond nrule

1rule
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jn
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if ctl state = i thenif cond1 thenrule1ctl state := j1� � �if condn thenrulenctl state := jn
Fig. 7. Viewing FSM instructions as control state ASM rules

The instructions of an FSM program are pictorially depicted in Fig. 7, where i ; j1; : : : ; jn areinternal (control) states, cond� (for 1 � � � n) represents the input condition in = a� (readinginput a�) and rule� the output action out := b� (yielding output b�), which goes together with thectl state update to j� . Control state ASMs have the same form of programs and the same notionof run, but the underlying notion of state is extended from the following three locations:a single internal ctl state that assumes values in a not furthermore structured �nite settwo input and output locations in, out that assume values in a �nite alphabetto a set of possibly parameterized locations holding values of whatever types. Any desired level ofabstraction can be achieved by permitting to hold values of arbitrary complexity, whether atomicor structured: objects, sets, lists, tables, trees, graphs, whatever comes natural at the consideredlevel of abstraction. As a consequence an FSM step, consisting of the simultaneous update of thectl state and of the output location, is turned into an ASM step consisting of the simultaneousupdate of a set of locations, namely via multiple assignments of the form loc(x1; : : : ; xn) := val ,yielding a new ASM state.This simple change of view of what a state is yields machines whose states can be arbitrarymultisorted structures, i.e. domains of whatever objects coming with predicates (attributes) andfunctions de�ned on them, structures programmers nowadays are used to from object-orientedprogramming. In fact such a memory structure is easily obtained from the 
at location view ofabstract machine memory by grouping subsets of data into tables (arrays), via an association ofa value to each table entry (f ; (a1; : : : ; an)). Here f plays the role of the name of the table, thesequence (a1; : : : ; an) the role of a table entry, f (a1; : : : ; an) denotes the value currently containedin the location (f ; (a1; : : : ; an)). Such a table represents an array variable f of dimension n, whichcan be viewed as the current interpretation of an n-ary \dynamic" function or predicate (boolean-valued function). This allows one to structure an ASM state as a set of tables and thus as amultisorted structure in the sense of mathematics.In accordance with the extension of unstructured FSM control states to ASM states repre-senting arbitrarily rich structures, the FSM-input cond ition is extended to arbitrary ASM-stateexpressions, namely formulae in the signature of the ASM states. They are called guards sincethey determine whether the updates they are guarding are executed.19 In addition, the usual non-deterministic interpretation, in case more than one FSM-instruction can be executed, is replacedby the parallel interpretation that in each ASM state, the machine executes simultaneously all the18 For the concept of ASM ground model (read: mathematical system blueprint) see [4].19 For the special role of in/output locations see below the classi�cation of locations.



updates which are guarded by a condition that is true in this state. This synchronous parallelism,which yields a clear concept of locally described global state change, helps to abstract for high-levelmodeling from irrelevant sequentiality (read: an ordering of actions that are independent of eachother in the intended design) and supports re�nements to parallel or distributed implementations.Including in Fig. 7 ctl state = i into the guard and ctl state := j into the multiple assignmentsof the rules, we obtain the de�nition of a basic ASM as a set of instructions of the following form,called ASM rules to stress the distinction between the parallel execution model for basic ASMsand the sequential single-instruction-execution model for traditional programs:
if cond then Updates

where Updates stands for a set of function updates f (t1; : : : ; fn) := t built from expressions ti ; tand an n-ary function symbol f . The notion of run is the same as for FSMs and for transitionsystems in general, taking into account the synchronous parallel interpretation.20 Extending thenotion of mono-agent sequential runs to asynchronous (also called partially ordered) multi-agentruns turns FSMs into globally asynchronous, locally synchronous Codesign-FSMs [18] and similarlybasic ASMs into asynchronous ASMs (see [12, Ch.6.1] for a detailed de�nition).The synchronous parallelism (over a �nite number of rules each with a �nite number of to-be-updated locations of basic ASMs) is often further extended by a synchronization over arbitrarymany objects in a given Set , which satisfy a certain (possibly runtime) Property :
forall x 2 Set with Property(x ) dorule(x )

standing for the execution of rule for every object x , which is element of Set and satis�es Property .Sometimes we omit the key word do. The parts 2 Set and with Property(x ) are optional.
ASM Modules Standard module concepts can be adopted to syntactically structure large ASMs,where the module interface for the communication with other modules names the ASMs which areimported from other modules or exported to other modules. We limit ourselves here to consideran ASM module as a pair consisting of Header and Body. A module header consists of the nameof the module, its (possibly empty) import and export clauses, and its signature. As explainedabove, the signature of a module determines its notion of state and thus contains all the basicfunctions occurring in the module and all the functions which appear in the parameters of anyof the imported modules. The body of an ASM module consists of declarations (de�nitions) offunctions and rules. An ASM is then a module together with an optional characterization of theclass of initial states and with a compulsory additional (the main) rule. Executing an ASM meansexecuting its main rule. When the context is clear enough to avoid any confusion, we sometimesspeak of an ASM when what is really meant is an ASM module, a collection of named rules,without a main rule.
ASM Classi�cation of Locations and Functions The ASM method imposes no a priori re-striction neither on the abstraction level nor on the complexity nor on the means of de�nitionof the functions used to compute the arguments and the new value denoted by ti ; t in functionupdates. In support of the principles of separation of concerns, information hiding, data abstrac-tion, modularization and stepwise re�nement, the ASM method exploits, however, the followingdistinctions re
ecting the di�erent roles these functions (and more generally locations) can assumein a given machine, as illustrated by Figure 8 and extending the di�erent roles of in; out ; ctl statein FSMs.20 More precisely: to execute one step of an ASM in a given state S determine all the �reable rules in S(s.t. cond is true in S), compute all expressions ti ; t in S occuring in the updates f (t1; : : : ; tn) := t ofthose rules and then perform simultaneously all these location updates if they are consistent. In thecase of inconsistency, the run is considered as interrupted if no other stipulation is made, like calling anexception handling procedure or choosing a compatible update set.



A function f is classi�ed as being of a given type if in every state, every location (f ; (a1; : : : ; an))consisting of the function name f and an argument (a1; : : : ; an) is of this type, for every argument(a1; : : : ; an) the function f can take in this state.Semantically speaking, the major distinction is between static and dynamic locations. Staticlocations are locations whose values do not depend on the dynamics of states and can be determinedby any form of satisfactory state-independent (e.g. equational or axiomatic) de�nitions. The furtherclassi�cation of dynamic locations with respect to a given machine M supports to distinguishbetween the roles di�erent `agents' (e.g. the system and its environment) play in using (providingor updating the values of) dynamic locations. It is de�ned as follows:controlled locations are readable and writable by M ,monitored locations are for M only readable, but they may be writable by some other machine,output locations are by M only writable, but they may be readable by some other machine,shared locations are readable/writable by M as well as by some other machine, so that aprotocol will be needed to guarantee the consistency of writing.Monitored and shared locations represent an abstract mechanism to specify communicationtypes between di�erent agents, each executing a basic ASM. Derived locations are those whosede�nition in terms of locations declared as basic is �xed and may be given separately, e.g. insome other part (\module" or \class") of the system to be built. The distinction of derived frombasic locations implies that a derived location can in particular not be updated by any rule ofthe considered machine. It represents the input-output behavior performed by an independentcomputation. For details see the AsmBook [12, Ch.2.2.3] from where Figure 8 is taken.A particularly important class of monitored locations are selection locations, which are fre-quently used to abstractly describe scheduling mechanisms. The following notation makes theinherent non-determinism explicit in case one does not want to commit to a particular selectionscheme.
choose x 2 Set with Property(x ) dorule(x )

This stands for the ASM executing rule(x ) for some element x , which is arbitrarily chosen amongthose which are element of Set and satisfy the selection criterion Property. Sometimes we omit thekey word do. The parts 2 Set and with Property(x ) are optional.We freely use common notations like let x = t in R, if cond then R else S , etc. When re�ningmachines by adding new rules, we use the following notation introduced in [6]: M addRule Rdenotes the parallel composition ofM and R. SimilarlyM minusRule R denotes N forM = N ;R.

controlled out

derived

(monitored)
in

(interaction)

static

shared

dynamic

basic

function/relation/location

Fig. 8. Classi�cation of ASM functions, relations, locations



To avoid confusion among di�erent machines, which occur as submachine of machines N ;N 0 butwithin those machines carry the same name M , we use indexing and write MN respectively MN 0 .
Non-determinism, Selection and Scheduling Functions It is adequate to use the chooseconstruct of ASMs if one wants to leave it completely unspeci�ed who is performing the choice andbased upon which selection criterion. The only thing the semantics of this operator guarantees isthat each time one element of the set of objects to choose from will be chosen. Di�erent instancesof a selection, even for the same set in the same state, may provide the same element or maybe not.If one wants to further analyze variations of the type of choices and of who is performing them, onebetter declares a Select ion function, to select an element from the underlying set of Cand idates,and writes instead of choose c 2 Cand do R(c) as follows, where R is any ASM rule:

let c = Select(Cand) in R(c)
The functionality of Select guarantees that exactly one element is chosen. The let construct guar-antees that the choice is �xed in the binding range of the let. Declaring such a function as dynamicguarantees that the selection function applied to the same set in di�erent states may return dif-ferent elements. Declaring such a function as controlled or monitored provides di�erent ownershipschemes. Naming these selection functions allows the designer in particular to analyze and playwith variations of the selection mechanisms due to di�erent interpretations of the functions.
5.2 ASM Re�nement Concept
The ASM re�nement concept is a generalization of the familiar commutative diagram for re�nementsteps, as illustrated in Figure 9.
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Fig. 9. The ASM re�nement scheme.

For an ASM re�nement of an ASM M to an ASM M �, as designer one has the freedom to tailorthe following \handles" to the needs for detailing the design decision which leeds from M to M 0:a notion of re�ned state,a notion of states of interest and of correspondence between M -states S and M �-states S� ofinterest, i.e. the pairs of states in the runs one wants to relate through the re�nement, includingusually the correspondence of initial and (if there are any) of �nal states,



a notion of abstract computation segments �1; : : : ; �m , where each �i represents a singleM -step,and of corresponding re�ned computation segments �1; : : : ; �n , of single M �-steps �j , whichin given runs lead from corresponding states of interest to (usually the next) correspondingstates of interest (the resulting diagrams are called (m;n)-diagrams and the re�nements (m;n)-re�nements),a notion of locations of interest and of corresponding locations, i.e. pairs of (possibly setsof) locations one wants to relate in corresponding states, where locations represent abstractcontainers for data,a notion of equivalence � of the data in the locations of interest; these local data equivalencesusually accumulate to a notion of equivalence of corresponding states of interest.
The scheme shows that an ASM re�nement allows one to combine in a natural way a changeof the signature (through the de�nition of states and of their correspondence, of correspondinglocations and of the equivalence of data) with a change of the control (de�ning the \
ow ofoperations" appearing in the corresponding computation segments).Once the notions of corresponding states and of their equivalence have been determined, onecan de�ne that M � is a correct re�nement of M if and only if every (in�nite) re�ned run simulatesan (in�nite) abstract run with equivalent corresponding states, as is made precise by the followingde�nition. By this de�nition, re�nement correctness implies for the special case of terminating runsthe inclusion of the input/output behavior of the abstract and the re�ned machine.De�nition Fix any notions � of equivalence of states and of initial and �nal states. An ASM M �is called a correct re�nement of an ASM M if and only if for each M �-run S�0 ;S�1 ; : : : there is anM -run S0;S1; : : : and sequences i0 < i1 < : : : ; j0 < j1 < : : : such that i0 = j0 = 0 and Sik � S�jk foreach k and eitherboth runs terminate and their �nal states are the last pair of equivalent states, orboth runs and both sequences i0 < i1 < : : :, j0 < j1 < : : : are in�nite.Often the M �-run S�0 ;S�1 ; : : : is said to simulate the M -run S0;S1; : : :. The states Sik ;S�jk are thecorresponding states of interest. They represent the end points of the corresponding computationsegments (those of interest) in Figure 9, for which the equivalence is de�ned in terms of a relationbetween their corresponding locations (those of interest). Sometimes it is convenient to assumethat terminating runs are extended to in�nite sequences which become constant at the �nal state.M � is called a complete re�nement of M if and only if M is a correct re�nement of M �.This de�nition of ASM re�nement underlies numerous successful applications of ASMs to high-level system desing and analysis (see the survey in the history chapter in [12]) and generalizes andintegrates well-known more speci�c notions of re�nement (see [20,21] for a detailed analysis).
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