A High-Level Specification
for Virtual Providers

M. Altenhofen, A. Friesen, J. Lemcke
SAP Research, CEC Karlsruhe, D-76131 Karlsruhe
E-Mail: {michael.altenhofen, andreas.friesen, jens.lemcke}@sap.com

E. Borger
Universita di Pisa,Dipartimento di Informatica, I-56125 Pisa, Italy
E-Mail: boerger@di.unipi.it

Abstract: In this paper we define a high-level model to mathematically capture the
semantical meaning of abstract Virtual Providers (VP), their instantiation and their
composition into rich mediator structures. We will show how this model can be sucess-
fully applied to two application scenarios, Web service protocol mediation and Semantic
Web Service discovery.

Keywords: Virtual Provider, Mediator, Protocol Mediation, Semantic Web Service
Discovery

Reference to this paper should be made as follows: Altenhofen, M., Borger, E.,
Friesen, A. and Lemcke, J. (2006) ‘A High-Level Specification for Mediators’, Inter-
national Journal on Business Process Integration and Management (IJBPIM), Vol. x,
No. x, pp.XXX—XXX.

Biographical notes: Michael Altenhofen has graduated in Computer Science at the
University of Karlsruhe and is now a Development Architect with SAP Research. His
research topics include Software Engineering, Service-Oriented Architectures, Mod-
elling, and Semantics.

Egon Borger is professor of CS in Pisa (Italy) and has been visiting with IBM, Siemens,
Microsoft, SAP. He is (co)author of four books and of over 100 research papers in Logic
and in CS. His current research interest is in rigorous methods and their industrial ap-
plications for the design and the analysis of computer-based systems.

Andreas Friesen has graduated in Computer Sciences and got his PhD from the Uni-
versity of Siegen and is now a Senior Researcher with SAP Research. His research
topics include Service-Oriented Architectures, Security, and Semantic Web Services.

Jens Lemcke has graduated in Computer Science at the University of Rostock and is
now a Research Associate with SAP Research. His research topics include Semantic
Web Services, Web service composition and their behavioural description.

INTRODUCTION

ios, both at the data and the protocol/process level [3].

In Service-Oriented Architectures (SOA), message-based
interactions promise a new level of flexibility, where the
same service offering can be provided by totally different
implementations, as long as they adhere to the same inter-
action protocol. Focusing on interfaces rather than imple-
mentations reduces the dependencies between the interact-
ing parties, leading to so-called loosely-coupled systems [1],
and new, more complex services can be easily composed
out of using simpler service-oriented building blocks. This
compositional approach can also be used to implement me-
diators [2] that provide solutions in heterogeneous scenar-

In the past, much attention has been spent on providing
specification languages, for such type of compositions, like
BPEL4WS [4] and WS-CDL [5], but their expressive power
is rather high. Also, they tend to focus on implementation
issues with procedural descriptions, but lack the possibility
to specify useful and interesting system properties.

We specify here an abstract execution model, a Virtual
Provider (VP), that can be used to describe compositional,
message-based interaction scenarios. The proposed model
in simpler than those of the languages mentioned above,
but still powerful enough to cover a sufficiently large area

of interesting application scenarios.

We will start with an informal description of the basic
execution model in Sect. 2, and then formalize it using
the Abstract State Machines (ASM) [6] modeling frame-
work. In the following two sections, we prove the applica-
bility of the generic model (applying the refinement con-
cept from [7]) to support two concrete application scenar-
ios. Section 4 exemplifies a real-world protocol mediation
scenario, where we use the formal model to investigate sys-
tem properties of interest. In Sect. 5, we extend the ab-
stract VP model to define a high-level model for Semantic
Web Service discovery.

2 INFORMAL VIRTUAL PROVIDER MODEL

The general architecture of the Virtual Provider (VP)
component is based on the assumption that we mostly
deal with two-way conversations using the Request-Reply
pattern [1]: One application, normally called the re-
questor, sends a message (request) to the second applica-
tion. This second application, in service-oriented scenarios
often called the provider returns a message (an answer or
reply) to the requestor. These two-way messages are ex-
changed via appropriate message channels. The Virtual
Provider can be seen as an intermediary component in the
communication model, intercepting requests from the re-
questor and forwarding them to the provider and, in turn,
collecting replies from the provider and returning them to
the requestor. From the requestor’s point of view it acts
like a provider, hence the name Virtual Provider.

Since we’re only interested in the core functionality of
the VP, we devise the architecture in Fig. 1, where we
abstract from, i.e. externalize, scheduling and message-
passing functionality.

VIRTUALPROVIDER

O
‘ RECEIVEREQ SENDREQ ‘

PROCESS
SENDANSW

Out, |

RECEIVEANSW |

Scheduler

Figure 1: Architecture

For the execution model we build on the assumption un-
derlying the SOA paradigm, that the messages exchanged
between reqestor and provider carry all information to es-
tablish and maintain context and state, i.e. there is no
out-of-band communication between the parties involved
in the interaction. Given that, we limit the processing of
an incoming request to one control structure, namely a
sequence of subrequests, but with a significant modifica-
tion: Fach subrequest in such a processing sequence can
be decomposed into an arbitrary large set of parallel out-
going requests which can be forwarded independently of

each other. This yields a simple hierarchical processing
structure of so-called seq/par trees, that can be used to de-
scribe rich interaction schemes in a modular fashion. More
sophisticated control flows can be achieved via VP compo-
sition as we will see in Sect. 3.4. This control structure may
lead to a different decomposition of the message exchange
with requestors and providers than using the various con-
trol structures available in orchestration languages, such
as BPEL4AWS: The overall processing sequence can be de-
rived from the dependencies between subsequent messages
(request; 11 may require parts from the reply to request;),
but within a sequencing step i we group the outgoing re-
quests that independently may contribute to the result of
i. With the expressive power of BPEL4WS, one can ig-
nore this and combine these interactions in various ways
making it harder to identify these dependencies, or, in the
worst case, ignoring them. Giving the designer the freedom
to choose among a set of alternative approaches makes it
harder to detect inconsistencies or errors.

3 THE COMMUNICATION INTERFACE OF
VIRTUAL PROVIDERS

We now specify the VP model formally using the Abstract
State Machine modeling framework, a form of pseudo-code
coming with a rigorously defined semantics. An introduc-
tion into the ASM method for high-level system design and
analysis is available in textbook form in [6] and in form of
a tutorial in [8], but most of what we use below to model
VP constructs is self-explanatory.

For example, Figure 2 contains traditional flowchart no-
tations to sequentially compose control state ASMs, an
extension of Finite State Machines, where initStatus(M)
and finalStatus(M) denote respectively the initial and fi-
nal control state of M, which usually remain hidden in the
graphical notation. For M seq N we stipulate

initStatus(M seq N) = initStatus(M)
finalStatus(M seq N) = finalStatus(N)

For M until Cond we define

yes(Cond, M) = finalStatus(M until Cond)
no(Cond, M) = initStatus(M)

Following the SOA paradigm, we treat a Virtual Provider
as an interface VIRTUALPROVIDER providing the following
five methods:

= RECEIVEREQ for receiving request messages (ele-
ments of a set InReqMssg of legal incoming request
messages) from requestors,

= SENDANSW for sending answer messages (elements of
a set OQutAnswMssg) back to requestors,

» PROCESS to handle request objects, elements of a
set ReqObj of internal representations of Receive-
dRequests, typically by sending to providers a series
of subrequests to service the currently handled re-
quest currReqObj,!

1Since the underlying message passing system is abstract,

status:=
yes(Cond,M)

status:=
no(Cond,M)

M until Cond

M seq N

Figure 2: Sequential Composition of Control State ASMs

= SENDREQ for sending request messages (elements of
a set OutReqMssg) to providers,

m RECEIVEANSW for receiving incoming answer mes-
sages (elements of a set InAnswMssg) from providers.

This module view of VIRTUALPROVIDER — as a collection
of defined and callable machines, without a main ASM
defining the execution flow — follows the devised architec-
ture in Fig. 1 and separates the specification of the func-
tionality of VP components from that of their schedulers.

MODULE VIRTUALPROVIDER =
choose M € {RECEIVEREQ, SENDANSW} U
{PROCESS, SENDREQ, RECEIVEANSW }
M

We start with formulating a “stateless” communication
model between requestors and (virtual) providers. In this
model, we assume that one incoming request contains all
information that is needed to generate a reply. Opposed
to that, a “stateful” model requires the virtual provider to
store “state” in order to return an answer since that an-
swer is computed from data that is spread across different
requests. This extended model is covered in Sect. 3.3.

3.1 Abstract Message Passing

For sending and receiving request and answer messages
we abstract from a concrete message passing system by
using abstract communication interfaces (predicates) for
mail boxes of incoming and outgoing messages.

m ReceivedReq in RECEIVEREQ expresses that an incom-
ing request message has been received from some re-
questor (supposed to be encoded into the message).

m ReceivedAnsw in RECEIVEANSW expresses that an an-
swer message (to a previously sent supposed to be re-
trievable request message) has been received.

VIRTUALPROVIDER can be instantiated in such a way that also
PROCESS itself can be a provider and thus service a subrequest ‘inter-
nally’. This reflects that the mediation role for a request is different
from the role of actually servicing it.

= An abstract machine SEND is used a) by SENDANSW
for sending out answer messages to requests back to
the requestors where the requests originated, b) by
SENDREQ for sending out requests to providers. We
assume the addressees to be encoded into messages.

We separate the internal preparation of outgoing messages
in PROCESS from their actual sending in SEND by using
the following abstract predicates for mail boxes of outgoing
mail:

n SentAnswToMailer expresses that an outgoing answer
message (elaborated from a PROCESS internal repre-
sentation of an answer) was passed to SEND.

n SentReqToMailer expresses that an outgoing request
message (corresponding to an internal representation
of a request) has been passed to SEND.

3.2 The SEND and RECEIVE Submachines

The interaction between a requestor and a
VIRTUALPROVIDER is triggered by the arrival of a
requestor’s request message: ReceivedReq(inReqMsg)
becomes true and a request object is created which is
appropriately initialised with an internal representation
of the relevant data, which can be extected from the
request message. This includes decorating that object by
an appropriate status, say status(r) := started, to signal
to (the scheduler for) PROCESS its readiness for being
processed.

This requirement for the machine RECEIVEREQ is cap-
tured by the following definition, which is parameterised
by the incoming request message inRegMsg and by the
set ReqObj of current request objects of the VP. For sim-
plicity of exposition we assume a preemptive ReceivedReq
predicate.?

RECEIVEREQ(inReqgMsg, ReqObj) =
if ReceivedReq(inReqMsg) then
CREATENEWREQOBIJ(inReqMsg, ReqObj)
where CREATENEWREQOBIJ(m, R) =
let 7 = new(R)? in INITIALIZE(r, m)

The inverse interaction between a VP and a requestor,
which is sending back an answer message to a previ-
ous request of the requestor, is characterised by the
underlying request object having reached, through fur-
ther PROCESSing, a status where a call to SENDANSW
with corresponding parameter outAnswMsg has been in-
ternally prepared by PROCESS — namely by setting the
answer-mailbox predicate SentAnswToMailer for this ar-
gument to true. Thus one can specify SENDANSW, and
symmetrically SENDREQ with the request-mailbox predi-
cate SentReqToMailer, as follows:

20therwise a DELETE(inRegMsg) has to be added, so
that the execution of RECEIVEREQ(inReqMsg, ReqObj) switches
ReceivedReq(inReqMsg) to false.

3new is assumed to provide at each application a sufficiently fresh
element.

SENDANSW (outAnswMsg, SentAnswToMailer) =
if SentAnswToMailer(outAnswMsg)
then SEND(outAnswMsg)

SENDREQ(outReqMsg, SentReqToMailer) =
if SentReqToMailer(outReqMsg)
then SEND(outReqMsg)

For the definition of RECEIVEANSW we use as param-
eter the AnswerSet function which provides for every
requestor r, which may have triggered sending some subre-
quests to subproviders, the AnswerSet(r), where to insert
(the internal representation of) each answer contained in
the incoming answer message.*

RECEIVEANSW (inAnswMsg, AnswerSet)® =
if ReceivedAnsw(inAnswMsg) then
insert answer(inAnswMsg)
into AnswerSet(requestor(inAnswMsg))

Behavioural interface types. Through the definitions
below, we link calls of RECEIVEREQ and SENDANSW
by the status function value for a currReqObj. Thus
the considered communication interface is of the “pro-
vided behavioural interface” type, discussed in [9]: The
RECEIVEREQ action corresponds to receive an incoming
request, through which a new reqObj is created, and oc-
curs before the corresponding SENDANSW action, which
happens after the outgoing answer message in question
has been SentAnswToMailer when reqObj was reaching
the status deliver. The pair of machines SENDREQ
and RECEIVEANSW in PROCESS realises the symmet-
ric “required behavioural interface” communication inter-
face type, where the SEND actions correspond to out-
going requests and thus occur before the corresponding
RECEIVEANSW actions of the incoming answers to those
requests.

3.3 Refinement by a “State” Component

Given the definitions above, it is easy to extend
RECEIVEREQ to support a “stateful” communication
model where VIRTUALPROVIDERs need to store some state
on previously received requests for further processing at a
later stage. The changes on the side of PROCESS defined
below concern the inner structure of that machine and its
refined notion of state and state actions. We concentrate
our attention here on the refinement of the RECEIVEREQ
machine.

The first addition needed for RECEIVEREQ is a predi-
cate NewRequest to check, when an tnReqMsg is received,
whether that message contains a new request, or whether
it is about an already previously received request. In

4The function requestor(inAnswMsg) is defined below to de-
note the value of seqSubReq in the state when the request mes-
sage outReq2Msg(s) for the parallel subrequest s was sent out to
which the inAnswMsg is received now.

5Without loss of generality we assume this machine to be
preemptive (i.e. ReceivedAnsw(inAnswMsg) gets false by firing
RECEIVEANSW for inAnswMsg).

the first case, CREATENEWREQOBJ as defined above is
called. In the second case, instead of creating a new re-
quest object, the already previously created request ob-
ject corresponding to the incoming request message has to
be retrieved, using some function prevReqObj(inReqgMsg),
to REFRESHREQOBJ by the additional information on
the newly arriving further service request. In particu-
lar, a decision has to be taken upon how to update the
status(prevReqObj (inReqMsg)), which depends on how one
wants the processing status of the original request to be
influenced by the additional request or information pre-
sented through inReqMsg. Since we want to keep the
scheme general, we assume that an external scheduling
function refreshStatus is used in an update status(r) :=
refreshStatus(r, inReqMsg). This leads to the follow-
ing refinement of RECEIVEREQ (we skip the parameters
ReqObj, prevReqObj):

RECEIVEREQ(inReqMsg) =
if ReceivedReq(inReqMsg) then
if NewRequest(inReqMsg) then
CREATENEWREQOBIJ(inReqMsg, ReqObj)
else
let r = prevReqObj(inReqgMsg) in
REFRESHREQOBI(r, inReqMsg)

3.4 Virtual Provider Composition

Combining the inner seq/par structure of our VPs with
their composition, along the communication interfaces for
sending /receiving requests/answers, provides the possibil-
ity to describe in a modular way rich mediator structures
with sophisticated control flows.

SO
®—0©
Figure 3: A Control Flow Example

For example, the control flow of Fig. 3 can be realized
by a composition of three VPs as indicated in Fig. 4: Let
VP1 upon the InitialRequest send a first subrequest for A,
followed by sending two parallel requests to subproviders
VP2 and VP3 respectively, whose answers in turn trigger
VP1 to send the final subrequest for F before eventually
providing its FinalAnswer. VP2 and VP3 themselves can
be sequentially structured, requesting first B and then C
respectively first D and then E. Note that these two se-
quences (and in particular their termination behavior) are
independent of each other. Without the possibility to com-
pose our VPs, the only way to realize such a structured

6What if status(prevReqObj(inReqMsg)) is simultaneously up-
dated by the refined RECEIVEREQ and by PROCESS as defined below?
In case of a conflicting update attempt the ASM framework stops the
computation; at runtime such an inconsistency is notified by ASM
execution engines. Implementations will have to solve this problem
in the scheduler of VP.

control flow would be via programmming the correspond-
ing internal VP behavior.

VP1

InitialRequest FinalAnswer
C n/_.\ | 3
< VP2) <\ VP3)
I

AN A
o

56 B

Figure 4: Virtual Provider Composition

The composition of VPs allows the designer to express
such control flows in a modular fashion, connecting the
communication interfaces in the appropriate way (see also
Fig. 1):

m SENDREQ of VP; with the RECEIVEREQ of VP;,q,
which implies that in the message passing environ-
ment, the types of the sets OutRegMssg of VP; and
InReqMssg of VP;;1 match (via some data media-
tion).

= SENDANSW of VP, with the RECEIVEANSW of VP;,
which implies that in the message passing environ-
ment, the types of the sets OutAnswMssg of VP41
and InAnswMssg of VP; match (via some data medi-
ation).

Such a composition allows one to configure schemes where
each element seq; of a sequential subrequest set SeqSubReq,
of an initial request can trigger a set ParSubReq(seq;) of
parallel subrequests par;, each of which can trigger a set
SeqSubReqs of further sequential subrequests seqs of pary,
each of which again can trigger a set ParSubReq(seqz) of
further parallel subrequests, etc.

3.5 The PrRoOCESsing Submachine

In this section we define the signature and the transition
rules of the ASM PROCESS for the processing kernel of
a VIRTUALPROVIDER. The definition provides a schema,
which is to be instantiated for each particular PROCESSing
kernel of a concrete VP by giving concrete definitions for
the abstract functions and machines we are going to intro-
duce. For an example see Sect. 4.

Since we want to abstract from the scheduler, which
calls PROCESS for particular current request objects, we
describe the machine as parametrised by a global instance
variable currReqObj € ReqObj.

In Fig. 5, each PROCEsSing call for a started re-
quest object currReqObj triggers some form of it-
erative sequential subrequest processing, which will
be detailed below. Once this subrequest processing
has finished (expressed by the fact that the process-
ing status of the request object currReqObj has be-
come compileAnswer), the PROCESS machine compiles

an answer for currReqObj. This internal answer infor-
mation, say outAnswer(currReqObj) is transformed into
an element of OutAnswMssg using an abstract func-
tion outAnsw2Msg(a), ready for delivery. We guard this
answer compilation by a check whether AnswToBeSent for
the currReqObj evaluates to true.

SUBPROCESS-
ITERATOR(currReqObj)

compileAnswer

COMPILEOUTANSWMSG
for
currReqObj

0

Figure 5: PROCESSsing(currReqObj)

This leads to the following textual definition of the
PROCESS machine:

PROCESS(currReqObj) =
if status(currReqObj) = started then
SUBPROCESSITERATOR(currReqObyj)
if status(currReqObj) = compileAnswer then
COMPILEOUTANSWMSG for currReqObj
status(currReqObj) := deliver
where
CoMPILEOUTANSWMSG for o =
if AnswToBeSent(o) then
SentAnswToMailer(
outAnsw2Msg(outAnswer(0))) :=
compileAnswer =
yes(FinishedSubReqProcessg)

true

In a SUBPROCESSITERATOR step, the immediate subre-
quests of currReqObj will be processed in order, as defined
by an iterator over a set SeqSubReq(currReqObj). This re-
flects the first part of the hierarchical VP request process-
ing view, namely that each incoming (top level) request
object currReqObj triggers the sequential elaboration of
a finite number of immediate subrequests, members of a
set SeqSubReq(currReqObj), called sequential subrequests.

SUBPROCESSITERATOR/(currReqObj) =
INITIALIZEITERATOR(currReqObj) seq
ITERATESUBREQPROCESSG(currReqObj) until

FinishedSubReqProcessg
where
yes(FinishedSubReqProcessq) = compile Answer
no(FinishedSubReqProcessg) =
initStatus(ITERATESUBREQPROCESSG)

The machine that performs the processing of a single (se-
quential) subrequest is defined in Fig. 6.

For every current item seqSubReq, it starts to
FEEDSENDREQ with a request message to be sent out for

'

FEEDSENDREQ with
ParSubReq(seqSubReq(currReqObj))

INITIALIZE(AnswerSet(seqSubReq(currReqObj)))

waitingForAnswers

CONCLUDESTEP

|

Figure 6: ITERATESUBREQPROCESSG

every immediate subsubrequest s of the current seqSubReq,
namely by setting SentReqToMailer(outReq2Msg(s)) to
true. Here, outReq2Msg(s) transforms the outgo-
ing request into the format for an outgoing request
message, which has to be an element of OutRe-
qMssg. Since those immediate subsubrequests, ele-
ments of a set ParSubReq(seqSubReq), are assumed
to be processable by other providers independently
of each other, FEEDSENDREQ elaborates simultane-
ously for each s an outReqgMsg(s). Simultane-
ously, ITERATESUBREQPROCESSG also INITIALIZEs the
to be computed AnswerSet(seqgSubReq) before assuming
status value waitingForAnswers, where it remains until
AllAnswersReceived. When AllAnswersReceived, a sub-
machine CONCLUDESTEP lets the iterative subprocess
PROCEEDTONEXTSUBREQ.

As long as during waitingForAnswers, the predi-
cate AllAnswersReceived is not yet true, RECEIVEANSW
inserts for every ReceivedAnsw(inAnswMsg) the re-
trieved internal answer(inAnswMsg) representation into
AnswerSet(seqSubReq) of the currently processed sequen-
tial subrequest seqSubReq, which is supposed to be retriev-
able as requestor of the incoming answer message.

ITERATESUBREQPROCESSG =
if status(currReqObj) =
initStatus(ITERATESUBREQPROCESSG) then
FEEDSENDREQ with
ParSubReq(seqSubReq(currReqObj))
INITIALIZE (AnswerSet (seqSubReq(currReqOby)))
status(currReqOb]) := waitingForAnswers
if status(currReqObj) =
waitingFor Answers then
CONCLUDESTEP
where
FEEDSENDREQ with
ParSubReq(seqSubReq) =
forall s € ParSubReq(seqSubReq)
SentReqToMailer(outReq2Msg(s)) :=
true
CONCLUDESTEP =
if AllAnswersReceived then
PROCEEDTONEXTSUBREQ

status(currReqObj) :=
Nzt (status(currReqObj))
Nzt (waitingForAnswers) =
testStatus(FinishedSubReqProcessg)

For the sake of completeness we now define the remaining
macros used in the definitions above, though their intended
meaning should be clear from the chosen names. The It-
erator Pattern on SeqSubReq is defined by the following
items:

» seqSubReq, denoting the current item in the set
SeqSubReq U { Done(SeqSubReq(currReqObj)) },

m The functions FstSubReq and NztSubReq operat-
ing on the set SeqSubReq and NztSubReq also on
AnswerSet(currReqObj),

s The stop element Done(SeqSubReq(currReqObj)),
constrained by not being an element of any
set SeqSubReq.

INITIALIZEITERATOR(currReqObj) =
let r = FstSubReq(SeqSubReq(currReqObj)) in
seqSubReq :=r
ParSubReq(r) := FstParReq(r, currReqObj)

FinishedSubReqProcessg =
seqSubReq(currReqObj) =
Done(SeqSubReq(currReqObj))

PROCEEDTONEXTSUBREQ =
let 0 = currReqObj
s = NatSubReq(SeqSubReq(0), seqSubReq(0),
AnswerSet(o)) in
seqSubReq(0) := s
ParSubReq(s) =
NzxtParReq(s, o, AnswerSet(o))

This iterator pattern foresees that NzxtSubReq and
NzxtParReq may be determined in terms of the answers
accumulated so far for the overall request object, i.e. tak-
ing into account the answers obtained for preceding sub-
requests.

INITIALIZE(AnswerSet(seqSubReq)) =
(AnswerSet(seqSubReq) := 0)

AllAnswersReceived =
let seqSubReq = seqSubReq(currReqObj) in
for each req €
ToBeAnswered(ParSubReq(seqSubReq))
there is some answ € AnswerSet(seqSubReq)

The definition foresees the possibility that some of the par-
allel subrequest messages, which are sent out to providers,
may not necessitate an answer for the VP: A func-
tion ToBeAnswered filters them out from the condi-
tion waitingForAnswers to leave the current iteration
round.

The answer set of any main request object can be defined
as a derived function of the answer sets of its sequential
subrequests:

AnswerSet(reqObj) =
Combine({ AnswerSet(s) | s € SeqSubReq(reqObj)})

4 APPLICATION SCENARIO: PROTOCOL
MEDIATION

In this section we exemplify the protocol mediation sce-
nario [3] by the use case scenario of a Virtual Internet
Service Provider (VISP). A VISP resells products that are
bundled from offerings of different providers. A typical
example for such a product bundle is an Internet pres-
ence including a personal Web server and a personal e-mail
address, both bound to a dedicated, user-specific domain
name, e.g. michael-altenhofen.de. Such an Internet
presence would require this domain name to be registered
(at a central registry, e.g. DENIC).

Ideally, the VISP wants to handle domain name registra-
tions in a unified manner using a fixed provider interface
for its clients. For the following discussions, we assume
that the VISP has chosen an interface that contains only
one request message RegisterDomain, requiring four input
parameters:

m DomainName, the name of the new domain that should

be registered

m DomainHolderName, the name of the domain owner

m AdministrativeContactName the name of the do-

main administrator

m TechnicalContactName, the name of the technical

contact

On successful registration, the answer will contain four so-
called RIPE handles,” uniquely identifying the four names
provided in the request message in the RIPE database.
We skip the obvious instantiation of VIRTUALPROVIDER
to formalise this VISP. &

Let’s now consider the case that the VISP is extending
it’s business into a new country whose domain name
registry authority implements a different interface for
registering new domain names, say consisting of four
request messages:

m RegisterDH (DomainHolderName),

m RegisterAC (AdministrativeContactName),

m RegisterTC (TechnicalContactName),

» RegisterDN (DomainName, DO-RIPE-Handle,
AC-RIPE-Handle, TC—RIPE—Handle).

Does the VISP now have to revise its provider interface
or can it extend its business using these new registration
authorities without changes?

As depicted in Fig. 7, the VISP can indeed support these
new authorities without changes by using a proper VP in-
stantiation.” Within this VP, the incoming request Reg-
isterDomain is split into a sequence of two subrequests.
The first subrequest, which we call RegAccts, is further di-
vided into three parallel subrequests, each registering one
of the contacts. Once all answers for these parallel sub-
requests have been received, the second sequential subre-
quest, called RegDomain, can be performed, whose out-
going request message is constructed from the answers of

"RIPE stands for “Réseaux IP Européens”, see http://ripe.net.

8 A detailed refinement for this scenario can be found in [10].

9We use mnemonic abbreviations for the request message and pa-
rameter names.

RegAccts and the DomainName parameter from the incom-
ing request.

RegisterDH(DHN)

.
|

DHRH

d
RegisterAC(ACN)
Lk

VP

-
P

ACRH
RegisterTC(TCN)

—
e

TCRH

RegAccts

RegisterDomain(DN,
DHN, ACN,TCN)
B

VISP

DNRH, DHRH,

ACRH, TCRH RegisterDN(DN,

DHRH,ACRH, TCRH)
e

RegDomain
DNRH

Figure 7: VIRTUALPROVIDER Instance

4.1 Proving System Properties

Having a mathematical model of VPs, this can be used to
prove properties of interest for the model and its refine-
ments to executable code. We illustrate this by a proof
sketch that the VP instance defined above correctly sup-
ports the refined interface for the new registration author-
ities.

The claim follows if we can show the correct-
ness of the VPs with respect to the requested ser-
vice, namely that any successful initial inReqMsg to
RegisterDomain(DN, DHN,ACN, TCN) will receive an
outAnswMsg containing four RIPE handles, one for each
of the parameters of RegisterDomain. This is trivial for
the first VP and can be stated for the second VP more
precisely precisely by saying that the following holds for
every successful pair of inReqMsg and its corresponding
outAnswMsg (the correspondence is formally established
by their belonging to one reqObj in VP; successful refers
to the fact that in the example VP instance we only con-
sider the case of successful registrations, without further
interaction between requestor and VP):

Correctness Lemma. For corresponding successful
inReqMsg, outAnswMsg holds:

RIPE-Handle(DomainName(inReqMsg)) =
DomainNameRipeHan (outAnswMsg)

RIPE-Handle(DomainHolder Name(inReqMsg)) =
DomHolderNameRipeHan(outAnswMsg)

RIPE-Handle(AdminContactName(inReqMsg)) =
AdmContactNameRipeHan(outAnswMsg)

RIPE-Handle(TecContactName(inReqgMsg)) =
TecContactNameRipeHan(outAnswMsg)

Here, the function RIPE-Handle denotes a real-life RIPE
handle, which uniquely identifies its argument name in the
RIPE database. DomainNameRipeHan, etc. denote pro-
jection functions, which extract the corresponding infor-
mation from the outAnswMsg = Formatted (DNRH, DHRH,
ACRH, TCRH).

Proof. A simple analysis of VISP runs shows
that an incoming request message RegisterDomain (DN,
DHN, ACN, TCN) triggers the VP instance to first SEND
three subrequests RegisterDH (DHN), RegisterAC(ACN),
RegisterTC(TCN), which are (assumed to be) answered
by RIPE handles DHRH, ACRH, and TCRH. Then the
subrequest RegisterDN (DN, DHRH, ACRH, TCRH) is sent,
which is (assumed to be) answered by a domain name
RIPE handle DNRH. By definition of the answer func-
tion, the outAnswMsg contains a Formatted version of
the four RIPE handles obtained for the parameters in
the inReqMsg, from where the projection functions extract
these RIPE handles.

We want to stress that this proof only works under the
assumption that the real service providers work correctly,
since the VP only acts as a mediator.

What if the VISP had decided to use the interface
with four messages as its provider interface? Could it
then use an authority that supports the interface with
the single message RegisterDomain(DN, DHN, ACN, TCN)?
To relate the four incoming messages to the single pro-
vider message one has to construct a stateful VP instance
that stores the three names provided in RegisterDH (DHN),
RegisterAC(ACN), and Register TC(TCN). Then, after re-
ceiving the RegisterDN (DN, DHRH, ACRH, TCRH) request, it
could forward the RegisterDomain request to the provi-
der with the information collected for that client. A closer
analysis reveals, though, that this is not possible: The
RIPE handles, that the VP would return to the client for
the first three requests, would have to be created by the VP
itself (there is no interaction yet with the registration au-
thority at this stage) and, thus, would not denote real-life
RIPE handles. In other words: The claims for the correct-
ness lemma we would have to formulate for that scenario
would not hold! It is easy to see that this dilemma can-
not be solved by equipping the VP with more powerful
control structures, but only by changing the interaction
protocol. For example, we could change the “semantics”
of the RIPE handles returned by the first three requests
and declare them as being “temporary”. Then, a modified
RegisterDN request could return all four handles, where
the temporary handles are replaced by their official coun-
terparts.

5 APPLICATION SCENARIO: SEMANTIC
WEB SERVICE DISCOVERY

As a second application scenario for the VP model, we
investigate Semantic Web Service (SWS) discovery. SWS
discovery relies on capability-based semantic matchmak-
ing and is an activity within a more general Web service
framework comprising all activities required to find, select
and invoke a Web service [11]. OVerall, such a framework
performs the following three activities:

1. Goal Discovery
2. Semantic Web Service Discovery
3. Service Selection

In this paper, we skip the discussion on goal discovery
and service selection and provide only an overview of
the SWS discovery framework and show how its formal
specification can be realized through refinement of the
VIRTUALPROVIDER model from Sect. 3.

5.1 SWS Discovery Framework

SWS discovery is based on matching semantically de-
scribed goal descriptions (goal queries) with semantic an-
notations of Web services (capability descriptions). Several
capability-based Semantic Web Service discovery solutions
have been proposed in the literature [11, 12, 13, 14]. A
capability description annotates thereby either the inputs
and outputs of a Web service [11, 14] or describes an ab-
stract service capability [11, 12, 13] and can be applied in
the frame of both OWL-S [15] and WSMF/WSMO |3, 16].
The discovery process in the capability-based approaches
can only happen on an ontological level, i.e. it can only
rely on conceptual and reusable things. For this, two pro-
cesses are required:

» the concrete user input has to be generalised to a more
abstract goal description, and

m concrete services and their descriptions have to be ab-
stracted to the classes of services a Web service can
provide.

We believe that this twofold abstraction is essential for
lifting Web service discovery on an ontological level that is
the prerequisite for a scalable and interoperable solution.
However, the above two steps are beyond the scope of SWS
discovery. SWS discovery requires only data/ontology me-
diation. Service selection, for instance, requires in general
also data, protocol, and process mediation. SWS discov-
ery takes as input a goal formulated in the goal discovery
and returns a set of Web services matching this goal. One
could assume that Web services and goals are described by
the same terminology. Then no data or ontology mediation
problem exists during the discovery process. However, it is
unlikely that a potentially huge number of distributed and
autonomous parties will agree before-hand on a common
terminology.

Alternatively, one could assume that goals and Web ser-
vices are described by completely independent vocabular-
ies. Although this case might happen in a real setting,
discovery would be impossible to achieve. In consequence,
only an intermediate approach can lead to a scenario where
neither unrealistic assumptions nor complete failure of dis-
covery has to occur. Such a scenario relies on three main
assumptions:

» Goals and Web services most likely use different vo-
cabularies, or in other words, we do not restrict our
approach to the case where both need to use the same
vocabulary.

» Goals and Web services use controlled vocabularies or
ontologies to describe requested and provided services.

» There is some data/ontology mediation service in
place. Given the previous assumption, we can opti-
mistically assume that a mapping has already been

established between the used terminologies, not to fa-
cilitate our specific discovery problem but rather to
support the general information exchange process be-
tween these terminologies.
Under these assumptions, we do not simply neglect the
mapping problem by assuming that it does not exist and,
at the same time, we do not simply declare discovery
as a failure. We rather look for the minimal assumed
data/ontology mediation support that is a prerequisite for
successful discovery. A framework for Semantic Web Ser-
vice discovery taking into account ontology mediation and
search distribution over different discovery locations is il-
lustrated in Fig. 8.

< Requestor>
S

0 \

List of
< -
descriptions_

[

Mechanism

Search I
Search
Distribution

I

Search
Distribution
Mechanism

H Discovery Location

External Semantic
Data/Ontology . Web
Mediation - Service
Service Discovery

Ontologies

WS Descriptions

Figure 8: SWS Discovery Framework

A user sends a goal (initial goal) to the SWS discovery
service and expects as a result a set of Web service descrip-
tions matching this goal. A SWS discovery service may be
distributed over several search locations. In that case, the
SWS discovery service has a search distribution mecha-
nism identifying external discovery locations and querying
them as well as the local search location with the goal
as a search parameter. The distribution mechanism must
be able to detect search loops and terminate search for
duplicate requests coming from external discovery loca-
tions. The distribution mechanism waits until search re-
sults from all search locations have arrived or a timeout
occurs (Fig. 9).

Goal

’ -
4 y Inital end o
<. (tlc) ! Goal Settothe

! (@t Ioc)

Identification and querying
of WS discovery locations

External [
Discovery
Location(s)

| Collect search results

Local
Semantic
Web
Service
Discovery

Figure 9: Search Distribution Mechanism

A local discovery location performs two steps in order
to match the goal with the locally available Web service

descriptions (Fig. 10).

8
Listof
) e
~—— descriptions
\ =
Semantic Web Service Discovery
(Non-)semantic prefiltering
Semantic Matchmaking
Static QoS Discovery
(Static NF properties in WSD descriptions)

I

External
Data
Mediation
Service

Ontologies
&

WS Descriptions

Figure 10: Local Service Discovery Process

In the first optional step, a “(non-)semantic prefiltering”
reduces the set of Web services to be semantically matched
in the second step “Semantic Matchmaking”. The filtering
procedures applied in the first step must guarantee that no
potentially matching Web services are filtered out. In the
second step, the set of Web services is matched against the
goal and the resulting set of matching Web services is de-
livered to the distribution mechanism collecting the search
results. Both steps may require an external data/ontology
mediation service for the reasons already described above.
Optionally, the set of services matching the goal can be
further reduced or ranked by matching non-functional QoS
properties of the goal and Web services, e.g. security or
reliability requirements.

5.2 A Possible VIRTUALPROVIDER Refinement for
SWS Discovery

To formalise the Semantic Web Service discovery frame-
work as a refinement of our VP model we adjust our ter-
minology in the definitions to clarify the intended interpre-
tation of the abstractions by applying the following syn-
tactical mappings:

n Req — Goal
s Answ, Answer, AnswerSet — {Setof WS, WS}
s PROCESS — PROCESSGOAL
» ParSubReq(seqSubReq(currReqObj))
— ParGoalQuery(currGoalObj)

Applying this renaming scheme,!’ the communication in-
terface described in Sect. 3 is turned into the following
description for SWS discovery:

DISCOVERYSERVICEPROVIDER =
choose M € {RECEIVEGOAL, SENDSETOFWS} U
{PROCESSGOAL, SENDGOAL, RECEIVESETOFWS}
M

10Below we will include into these purely notational changes re-
namings like mailer into requestor or provider, etc.

5.3 Refinement of the SEND and RECEIVE Subma-
chines

In the SWS discovery scenario, we assume the “stateless”
model described in Sect. 3.2. The notion of state within
the VP is restricted to the detection of loops, which can
be caused by other discovery service providers sending a
goal that is already in the processing by the receiving pro-
vider. Therefore, a goal must be uniquelly identifiable in
the global context.

This “loop detection” feature is captured in the refine-
ment of the RECEIVEGOAL submachine which is derived
from the RECEIVEMSG submachine defined in Sect. 3.2.
To illustrate this refinement we repeat the definition of
the RECEIVEGOAL submachine for comparison:

RECEIVEREQ(inRegMsg, ReqObj) =
if ReceivedReq(inReqMsg) then
CREATENEWREQOBIJ(inReqgMsg, ReqObj)
where CREATENEWREQOBJ(m, R) =
let 7 = new(R)!! in
INITIALIZE(7, m)

Next, we present the refined version with the changes high-
lighted:

RECEIVEGOAL(inGoalMsg, GoalObj) =
if ReceivedGoal(inGoalMsg) then
CREATENEWGOALOBI(inGoalMsg, GoalObyj)
where
CREATENEWGOALOBIJ(m, R) =
let g = new(R) in
INITIALIZE(g, m)
INITIALIZE(SetOfWS(g))
if NewGoal(g, m) then
status(g) := started
else
status(g) := loopDetected

INITIALIZE(SetOfWS(g)) =
SetOfWS(g) :=0

When the predicate NewGoal returns false, the status of
the goal g is set to loopDetected which will influence the
processing of the goal as described in the section below.

The remaining three submachines directly correspond
to the VP machines in Sect. 3 after applying the following
additional renamings:

= In SENDGOAL :

SentReqToMailer — SentGoalToProvider.
= In SENDSETOFWS :

SentAnswToMailer — SentSetOfWSTorequestor.
= In RECEIVESETOFWS :

answer — setOf WS,

requestor — goal,

AnswerSet — SetOfWS.

Hpew is assumed to provide at each application a sufficiently fresh

element.

5.4 The PROCESSGOAL Submachine

As the name implies, the PROCESGOAL submachine is
a refinement of the VP PROCESS submachine defined in
Sect. 3.5.

As one can see in Fig. 11, the overall processing model
from Fig. 5 is just extended by an additional rule involv-
ing the new controlstate loopDetected. As outlined above,
this status indicates that a request for an already pro-
cessed goal has been received. If such a “loop” is de-
tected, the processing status for that goal is changed to
compileAnswer, indicating that the goal queries don’t have
to be sent again.

SUBPROCESS-
ITERATOR(currGoalObj)
COMPILEOUTSETOFWSMSG
Carter D"t
currGoalObj

Figure 11: PROCESSGOAL

In the discovery scenario, the sequence of subrequests
suggested by the generic VP process model reduces to
just one element that is determined by the incoming
goal request and thus by currReqGoal. Therefore there
is no iteration and we immediately FEEDSENDGOAL
with a goal query to all relevant discovery locations [
known to currReqGoal and set FinishedSubReqProcessing
to true. Formally this comes up to refine the machine
SUBPROCESSITERATOR in the following way:

INITIALIZEITERATOR = skip
FinishedSubReqProcessing = true

Correspondingly the ITERATESUBREQPROCESSG subma-
chine is refined as follows:

FEEDSENDREQ with
ParSubReq(seqSubReq(currReqObj)) =
FEEDSENDGOAL with
ParGoalQuery(currGoalObj)
INITIALIZE(AnswerSet(. . .)) = skip

Finally, we put the second submachine CONCLUDESTEP
under an additional new guard, namely that a certain
BreakCondition (e.g. a timeout) does not hold:

if status = waitingForAnswers then
if not BreakCondition then CONCLUDESTEP

In case BreakCondition is true, a new submachine
GENERATEEXCEPTION is called that will generate the ap-
propriate exception message to be sent back to the re-
questor. Note that in both cases the sub-processing will

stop since the status condition FinishedSubReqProcessing
is true and the status will process to compileAnswer as
depicted in Fig. 12.

¥

FEEDSENDGOAL with
ParGoalQuery(currGoalObj)

waitingForAnswers

y Break- n
‘ Condition J
GENERATE-
EXCEPTION CONCLUDESTEP

| |

Figure 12: Refinement of ITERATESUBREQPROCESSG

5.5 DISCOVERYENGINE ASM

Similar to DISCOVERYSERVICEPROVIDER, we see the dis-
covery engine performing the local Web service discovery
(Fig. 10) as an interface, which is defined by the following
methods:

m RECEIVEGOAL for receiving goal queries from a re-
questor, 2

m SENDSETOFWS for sending sets of found Web ser-
vices back to the associated DSP,

s MATCHGOAL to handle ReceivedGoals (elements of
a set GoalObj of internal representations of received
goals, say as goal objects), typically by filtering
and matching the locally available set of Web ser-
vices to service the currently handled goal request
currGoalObj

We define a discovery engine as an ASM, which at each
moment non-deterministically chooses one of its subma-
chines for execution (where we abstain from representing
here the selection of the parameters involved in such sub-
machine calls):

DISCOVERYENGINE =
choose M € {RECEIVEGOAL, SENDSETOFWS} U
{MATCHGOAL}
M

The machine SENDSETOFWS has been simply reused
from DISCOVERYSERVICEPROVIDER. The machine
RECEIVEGOAL from DISCOVERYSERVICEPROVIDER has
been slightly modified.

2Fach instance of the abstract machines DISCOVERYENGINE
we are going to define here is associated with a
DISCOVERY SERVICEPROVIDER, only the associated Discov-
ery Service Provider (DSP) asking for servicing a goal query of a
goal received by DSP will be served.

i.e.

RECEIVEGOAL(inGoalMsg, GoalObj) =
if ReceivedGoal(inGoalMsg) then
let g = New(GoalObj) in
INITIALIZE(g, inGoalMsg, inSet Of WS13)
INITIALIZE(SetOf WS (g))
status(g) := started

The machine MATCHGOAL executes sequentially the
machines PREFILTERING, SEMANTICMATCHMAKING and
QOSMATCHMAKING reducing stepwise the initial set of
Web services inSetOfWS to the final set of Web services
matching the goal. The final set is sent to the DSP
as soon as currGoalObj is set to status(currGoalObj) :=
compileAnswer.

MATCHGOAL(currGoalObj) =

if status(currGoalObj) = started then
PREFILTERING (CURRGOALOBJ)
status(currGoalObj) := filtered

if status(currGoalObj) = filtered then
SEMANTICMATCHMAKING (CURRGOALOBJ)
status(currGoalObj) := matched

if status(currReqObj) = matched then
QOSMATCHMAKING (CURRGOALOBJ)
status(currGoalObj) = compileAnswer

if status(currGoalObj) = compileAnswer then
CoMPILEOUTSETOFWSMSG from currReqObj
status(currGoalObj) := deliver

The machines PREFILTERING, SEMANTICMATCH- MAKING
and QOSMATCHMAKING can now be further refined in
order to implement different filtering and matchmaking
methods or strategies.

6 CONCLUSION

This paper provides a formal, high-level model of an Vir-
tual Provider execution engine. We have strived for a
simple execution model with limited expressive power, yet
powerful enough to support interesting application scenar-
ios. Successive refinements towards executable descrip-
tions could easily mapped to existing orchestration lan-
guages, like BPEL4WS.

This model has originally been designed to support pro-
cess mediation scenarios in the context of Service-Oriented
Architectures and we have shown in Sect. 4 how this model
can be refined to support real-world scenarios providing
means to study important system properties.

We could also show in Sect. 5 that the VP has proven to
be useful as a basis for formal specifications of distributed
semantic discovery frameworks. Here, only minor changes
on the VP structure were required in order to specify a
formal, high-level ASM model of distributed semantic dis-
covery services. The different distribution and semantic
matchmaking strategies, depending on the technology used

13 inSetOfWS is assumed to contain an initial set of Web services
to be matched with the goal g.

for an implementation of a discovery service, can be derived
as different refinements of the same abstractions.

We can also imagine more involved practical instanti-
ations of VIRTUALPROVIDER than the simple one illus-
trated in Sect. 4. Another direction of research concerns
replacing the simple communication patterns used by VP
by more complex ones. RECEIVEREQ and SENDANSW
are identified in [17] as basic bilateral service interaction
patterns, namely as mono-agent ASM modules RECEIVE
and SEND; The FEEDSENDREQ submachine together with
SENDREQ in PROCESS realise an instance of the ba-
sic multilateral mono-agent service interaction pattern
called ONETOMANYSEND in [17], whereas the execution
of RECEIVEANSW in ITERATESUBREQPROCESSG until
AllAnswersReceived is an instance of the basic multilateral
mono-agent ONEFROMMANYRECEIVE pattern from [17].
One can refine VP to concrete business process applica-
tions by enriching the communication flow structure built
from basic service interaction patterns as analysed in [17].

REFERENCES

[1] G. Hohpe and B. Woolf. Enterprise Integration Pat-
terns: Designing, Building, and Deploying Messaging
Solutions. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2003.

G. Wiederhold. Mediators in the architecture of
future information systems. In Michael N. Huhns
and Munindar P. Singh, editors, Readings in Agents,
pages 185-196. Morgan Kaufmann, San Francisco,
CA, USA, 1997.

D. Fensel and C. Bussler. The web service modeling
framework WSMEF. FElectronic Commerce Research
and Applications, 1(2):113-137, 2002.

Business process execution language for web
services, version 1.1. http://www.ibm.com/
deverloperworks/library/ws-bpel/.

N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher,
and Y. Lafon. Web services choreography description
language version 1.0 — w3c working draft, 17 Decem-
ber 2004. http://wuw.w3.org/TR/ws-cdl-10/.

E. Borger and R. F. Stark. Abstract State Machines.
A Method for High-Level System Design and Analysis.
Springer, 2003.

E. Borger. The ASM refinement method. Formal
Aspects of Computing, 15:237-257, 2003.

E. Borger. The ASM method for system design and
analysis. A tutorial introduction. In B. Gramlich, ed-
itor, Frontiers of Combining Systems, volume 3717 of
Lecture Notes in Artificial Intelligence, pages 264-283.
Springer, 2005.

[9]

[10]

A. Barros, M. Dumas, and P. Oaks. A critical
overview of the Web Serives Choreography Descrip-
tion Language (WS-CDL). White paper, 24 January
2005.

M. Altenhofen, E. Bérger, and J. Lemcke. A high-level
specification for mediators. 1st International Work-
shop on Web Service Choreography and Orchestration
for Business Process Management, BPM 2005, 2005.

U. Keller, R. Lara, and A. Polleres. D5.1,v0.1 WSMO
web service discovery. White paper, 12 November
2004. http://www.wsmo.org/TR/d5/d5.1/v0.1/.

B. Motik, S. Grimm, and C. Preist. Variance in e-
business service discovery. In Proc. 1st Intl. Workshop
SWS2004 at ISWC 2004, 2004.

L. Li and I. Horrocks. A software framework for
matchmaking based on semantic web technology. In
Proc. of the Twelfth World Wide Web Conference,
2003.

M. Paolucci, T. Kawamura, T. Payne, and K. Sycara.
Semantic matching of web service capabilities. In
Proc. of the 1st Intern. Semantic Web Conf. (ISWC),
pages 333-347, 2002.

OWL-S: Semantic markup for web services. Technical
Overview, 2004. http://www.daml.org/services/
owl-s/1.1/overview/.

D. Roman, H. Lausen, and U. Keller. D2v1.2. Web
Service Modeling Ontology (WSMO). WSMO final
draft. Digital Enterprise Research Institute (DERI),
10 February 2005. http://www.wsmo.org/TR/d2/v1.
1/.

A. Barros and E. Borger. A compositional framework
for service interaction patterns and communication
flows. In K.-K. Lau and R. Banach, editors, Formal
Methods and Software Engineering. Proc. 7th Inter-
national Conference on Formal Engineering Methods
(ICFEM 2005), volume 3785 of LNCS, pages 5-35.
Springer, 2005.

http://www.ibm.com/deverloperworks/library/ws-bpel/
http://www.ibm.com/deverloperworks/library/ws-bpel/
http://www.w3.org/TR/ws-cdl-10/
http://www.wsmo.org/TR/d5/d5.1/v0.1/
http://www.daml.org/services/owl-s/1.1/overview/
http://www.daml.org/services/owl-s/1.1/overview/
http://www.wsmo.org/TR/d2/v1.1/
http://www.wsmo.org/TR/d2/v1.1/

