
Abstract State Machines Method

Bridging the Gap bw Specification and Design

Egon Börger

Dipartimento di Informatica, Universita di Pisa
http://www.di.unipi.it/~boerger

© Egon Börger: The ASM Method 2

Overall Research & Technology Transfer Goal

Couple specification & design by
rigorous high-level (hw/sw co-) modeling which
is linked seamlessly, in a way the practitioner
can verify and validate, to executable code
– Develop succinct ground models with precise,

unambiguous, yet understandable meaning
to support implementation independent, application
oriented system analysis: verification/validation

- Refine models into a hierarchy of intermediate
models, modularizing orthogonal design decisions
(“for change”) and justifying them as correct,

• linking the ground model to the implementation
• documenting the entire design for reuse and maintenance

© Egon Börger: The ASM Method 3

Key Strategy for Hierarchy of Models: Divide et Impera

• Separation of Different Concerns
– Separating orthogonal design decisions

• to keep design space open (specify for change: avoiding premature
design decisions & documenting design decisions to enhance
maintenance)

• to structure design space (rigorous interfaces for system (de)composition,
laying the ground for the system architecture)

– Separating design from analysis
• Separating validation (by simulation) from verification
• Separating verification levels (degrees of detail)

– reasoning for human inspection (design justification)

– rule based reasoning systems
» interactive systems

» automatic tools: model checkers, automatic theorem provers

• Linking system levels by abstraction and refinement

© Egon Börger: The ASM Method 4

What is provided by ground models for requirements

code

design
3. Makes requirements traceable

by relating them to design

Informal
requirems

Ground
Model

1.

1. Requirements capture
documenting relevant application
domain knowledge for designer

2.2. Requirements inspection makes
correctness & completeness
checkable for system user & customer
• Verification of properties
• Validation: mental/machine simulation

(of user scenarios or components)
supported by operational nature of model

4. Provides test plan basis
testing

© Egon Börger: The ASM Method 5

Properties of Ground Models

- precise at the right level of detailing, yet:
- flexible:

- adaptable to different application domains

- easily modifiable/extendable to serve as prototype & for reuse

- simple & concise:
- to be understandable by domain expert & system user

- for mathematical analyzability of consistency, completeness,minimality
- resembling the structure of the real-world problem (oo credo!)

- to be falsifiable (by experiment) and thus validatable (NB. No infinite
purely mathematical justification chain is possible)

- abstract, yet:
- complete: containing all semantically relevant params as interface

- operational: to support process oriented understanding & simulation

- rigorous foundation for reliable tool development & prototyping

© Egon Börger: The ASM Method 6

Calibrating degree of formality
wrt application (system user or customer)

• Language must be appropriate (natural) for application domain

– easy to understand/use for practitioner, supporting
• concentration on problem instead of notation
• manipulations for execution & analysis of terms, consistency,

completeness, etc.

– tunable to (and apt to integrate) any
• data oriented application (e.g. using entity relationship model)
• function oriented application (e.g. using flow diagrams)
• control oriented application (automata: sequential, multiple agents, time

sensitive, …)

• Spec must resemble structure of the real-world problem & provide
– data model (conceptual, application oriented)
– function model (defining dynamics by rule executing agents)
– interface to

• user for communication with data/fct model by dialogue or batch operation
• environment (neighboring systems/applications)

© Egon Börger: The ASM Method 7

Verify implementation to meet design properties

Abstract

Refined

Method: divide & conquer (ancient math paradigm)

Use correctness of refinement

Prove properties
from assumptions

Prove assumptions

© Egon Börger: The ASM Method 8

The Scheme for a Correct Refinement/Abstraction Step

State
τ1 …τm State’

≡

• relating the locations of interest
• in states of interest
• reached by comp segments of interest

≡ defined

RefState RefState’
σ1 …σn

ref absabs ref

© Egon Börger: The ASM Method 9

The refinement task
• Find/formulate the right refinement /abstraction that

– faithfully reflects the intended design decision (or
reengineering idea)

– can be justified to implement the given model correctly (or
abstract from the given code), namely through

• Verification
• Validation testing model-based runtime assertions to show that

design assumptions hold in the implementation

• Effect: enhancement of
– communication of designs and system documentation (report

of analysis)

– effective reuse (exploiting orthogonalities, hierarchical levels)

– system maintenance based upon accurate, precise, richly
indexed & easily searchable documentation

See E.B.: High Level System Design and Analysis using ASMs
LNCS 1012 (1999), 1-43 (Survey)

© Egon Börger: The ASM Method 10

Using ASMs for test case generation

definition of
Testing Strategy

code
samples

ground
model

Creative, application domain driven selection/definition of test cases: guided by ground model
support user to specify relevant env parts & props to be checked, to discover req gaps

Oracle

Definition of oracle to determine expected results for samples : by running the ground model

Comparator

Definition of comparator using the refinement of oracle to code: determine
states of interest to be related (spied) & locations of interest to be watched
& when their comparison is considered successful (equivalence relation)

© Egon Börger: The ASM Method 11

Using ASMs for maintenance

• Documentation: accurate, precise, richly
indexed & easily searchable
– reading off the relevant design features from the

• ground model description (independent from the
language chosen for the implementation)

• refinement step descriptions
• model-based runtime assertions appearing in the test

reports

• Support
– examine the model for fault analysis
– use the model to recognize where to correct bugs

which have been reported

• Versioning
– reuse the model (exploiting orthogonalities, hierarchical levels)

© Egon Börger: The ASM Method 12

From Specification via Design to Code: an Iterative Process

© Egon Börger: The ASM Method 13

The ASM language: truly abstract “code”

• Def. A (basic) ASM is a finite set of “rules” of the form
If Condition Then Updates

with Updates a finite set of f(t1,…,tn):=t with arbitrary functions,

Condition a Boolean valued expression (1st order formula).
See separation of basic events (guarded assignments) from scheduling
in event-B

• In the current state (structure) S:
– determine all the fireable rules in S (s.t. Cond is true in S)

– compute all exprs ti,t occuring in updates f(t1,…,tn):=t
– execute simultaneously all these function updates

• The updating yields the next state S’
• NB. The parallelism of basic ASMs can be extended to

synchronous or asynchronous multi-agent ASMs

© Egon Börger: The ASM Method 14

Standard Notation choose/forall in Basic ASMs

• Supporting non-determinism by non-controlled
selection functions:

choose x satisfying Cond
R

where Cond is a Boolean valued expression and R a rule.

• Supporting synchronous parallelism by
simultaneous execution of function updates:

forall x satisfying Cond
R

to simultaneously execute R(x), for all x satisfying Cond in the
given state S, to form the next state S’

© Egon Börger: The ASM Method 15

Exl: Creating new parallel processes (from Occam model)

if instr(pos(a))=par S1... Sn pos(a) = current “pc” value of agent a

and running(a)
then let x1,..., xn = new(AGENT) in create n new agents

forall 1≤i ≤n
running(xi):= true start each new agent to run

pos(xi):= next(pos(a),i) place each agent on its code

env(xi):= env(a) equip each agent with its env, inherited from a

parent(xi):= a record for each agent the parent process to whom

to report upon termination

count(a):=n parent process records how many subagents have to

report to him before he will proceed

running(a):= false parent process remains idle until all created
subprocesses have terminated and reported to him

See AsmBook Ch.6.5

© Egon Börger: The ASM Method 16

Exl: Co-Design FSMs Sangiovanni-Vincentelli

ASMs of rules of the form

i

cond1

condn

…

rule1

rulen

j1

jn

Often with global
agent scheduler

and/or with
timing conditions

for agents
performing

durative instead of
atomic actions

Exl: Production Cell with 6 agents

For verification and validation see ASM Book Ch.5.1

© Egon Börger: The ASM Method 17

Verifiable Co-Design Lift: control state ASM agents L

halting moving
floor(L):=floor(L)+/-1

attracted_dir(L) (L)

not canContinue_dir(L)(L)

cancelRequest
(L,floor(L),dir(L))

DEPART

C
H
A
N
G
E

C
O
N
T
I
N
U
E

STOP

dir(L):=dir(L)’
cancelRequest

(L,floor(L),dir(L)’)

not attracted_dir(L)(L)
& attracted_dir(L)’(L) canContinue_dir(L)(L)

floor(L):=floor(L)+/-1

See AsmBook Ch.2.3

© Egon Börger: The ASM Method 18

Control structure of execution semantics of SpecC pipe
statements pipe(Init,cond,Incr,p1,…,pn)

(Mueller, Doemer, Gerstlauer ISSS 2002)

init filling

finished flushing

running

cond
FillLoop

(cond,Incr,
p1...pn)

yesno

FlushLoop
(p1...pn)

Init

advance
stm

no
cond

Spawn(p1...pn)
seq Incr

yes

© Egon Börger: The ASM Method 19

FETCH

Operand

Fetch

Mem
Addr

Jump
Branch

AluJumps IAR
I2S

IAR
S2I

OPERAND

Alu
Set

IAR
S2I

Load
Store

IAR
I2S

WRITEBACK

ALU

Write
Back

C←←←←IAR

IF

ID

EX

MEM

WB

Pipelining Stages DLXseq

IAR←←←←A

Jump
Link

TrapBranch

JUMP
LINK

Link C←←←←PC

BRANCH TRAP

no

Store

STORE

LOADSubword
SUB

WORD

yes

Store

MEMADDR

MDR←←←←B

PassBtoMDR

Mem
Acc

no

© Egon Börger: The ASM Method 20

FETCH

WRITEBACK

IF

ID

EX

MEM

WB

Pipelining Stages DLXpar Rules

ALU MOVI2SMEMADDR PassBtoMDR

JUMP
LINK

LINKBRANCH TRAP Preserve1

MOVS2I

OPERAND Preserve

STORELOAD Preserve2

• Ideally all rules fire
simultaneously
• one per instruction in its

successive stages

• The problem: how to
guarantee that no
conflicts arise when
an instruction exec
uses data which have
to be computed by a
preceding instruction
whose pipelined
execution is not yet
terminated

Verified stepwise refinement
see AsmBook Ch.3.3

© Egon Börger: The ASM Method 21

Fault-tolerant Group Membership Protocol Verification

Status(p)
= sober

Status (p)
= crashed

Recover(p) Status (p) =
recovered

Initialize(p)

MS(p)-Crash

BS(p)-Crash

Two reasons for crashing (processor
interrupt): p missed the deadline of a

- broadcast : BS(p) was scheduled too
late

-- new-group msg because MS(p) was
scheduled too late to handle it

Clock(p) > BCastTime(p)

Clock(p) > Timestamp(CurMsg(p))

MS(p)-rule

Scheduler(p)-rule

Each real-time processor p with multiple agents Clock(p),
CurProc(p), Membership Server MS(p), Broadcast Server

BS(p), Scheduler(p), …

See
Asm
Book
Ch.
6.3

© Egon Börger: The ASM Method 22

Illustrating sequential submachine refinements
refining the control state ASM model for a debugger

onNonEmpty

EventQueue

RunQ
onAnyEvent

Break Run

onBreakingCommand

onRunningCommand

onStoppingEvent

OnNonStoppingEvent

TryToBreak

onEmptyEventQueue

Init

onExit

onStart

Slide courtesy
M. Barnett
M. Veanes

See AsmBook Ch.3.3

© Egon Börger: The ASM Method 23

debugger

Init

initializeCOM

Sequential submachine refinement of machine onStart
into a sequence of three submachines

createNewShell

Break

setDbgCallback

env

���

Process=Null
Thread =Null
Frame =Null

…
BPs ={}

Shell

dbg services

callbacks

Break

initializeCOM createNewShell setDbgCallback

Slide courtesy
M. Barnett
M. Veanes

© Egon Börger: The ASM Method 24

Parallel and sequential refinement of callback(LoadModule)

callback(LoadModule (proc,mod)) =
displayMessage("Loaded module: " ++ mod.name()) record mod in shell
forall bp in shell.BPs bind all breakpoints to the mod (in any order)

bp.bind(mod)
seq

mod.enableClassLoadCallbacks()

proc.resume() continue via external call

Analogously for UnloadModule

Run

Resume execution

Enable class load
callbacks

Display message

Try to bind bp1

Try top bind bn

Slide courtesy
M. Barnett
M. Veanes

See
Asm
Book
Ch.
3.1

© Egon Börger: The ASM Method 25

The practical benefits of ASMs

• The definition provides rigorous yet practical (process oriented
& easy to use) semantics for pseudocode on arbitrary data
structures, which
– has clear notion of state & state transition,
– can be made executable (in various natural ways, compatible with cross-

language interoperable implementations, e.g. in .NET),
– is tunable to desired level of abstraction with

• well defined interfaces (rigor without formal overkill)

• a most general refinement notion supporting a method of stepwise
development by traceable links bw different abstraction levels

The parallel ASM execution model
– easens specification of “macro” steps (refinement & modularization)
– avoids unnecessary sequentialization of independent actions
– easens parallel/distributed implementations

© Egon Börger: The ASM Method 26

Validation of ASM behavior
Make models executable by implementing the abstractions

abstr exec
refined

Falko
at Siemens
Munich ‘98

AsmWorkbench

compiler to C++

Java/JVM AsmGofer
1999-2000

object model
Debugger

AsmHugs
‘01: AsmL

MSR 99-00

Prolog-based ASM Compiler at UniDo’90
ISO Prolog Interpreter at Quintus

© Egon Börger: The ASM Method 27

Examples for Design & Verification of ASM Hierarchies

Architectures: Pipelining of microprocessors, model for VHDL,…

Control Systems: Production Cell (model checked), Steam Boiler
(refinements to C++ code) Light Control (executable requirements model)

Compiler correctness
ISO Prolog to WAM: 12 refinement steps, KIV verified

backtracking, structure of predicates, structure of clauses, structure of
terms & substitution, optimizations

Occam to Transputer :15 models exhibiting channels,
sequentialization of parallel procedures, pgm ctrl structure, env, transputer
datapath and workspace, relocatable code (relative instr addresses &
resolving labels)

Java to JVM: language and security driven decomposition into

5 horizontal sublanguage levels (imperative, modules, oo, exceptions,
concurrency) and

4 vertical JVM levels for trustful execution, checking defensively at run time
and diligently at link time, loading (modular compositional structuring)

© Egon Börger: The ASM Method 28

Reusability of ASM Specifications and Verifications

Reuse of layered components (submachines) and of lemmas

OUP 95
CLP(R) IBM-CLAM

JAVA JVM
Java/JVM Book 2001

OCCAM TRANSPUTER
Comp.J. 96

PROLOG WAM
SCP 95

FACS 96
PROTOS-L IBM-PAM

© Egon Börger: The ASM Method 29

References

ASM Book E. Börger, R. Stärk
Abstract State Machines

A Method for High-Level System Design and Analysis
Springer-Verlag 2003

web page http://www.di.unipi.it/AsmBook

ASM Case Study Book
R. Stärk, J. Schmid, E. Börger

Java and the Java Virtual Machine: Definition,
Verification, Validation

Springer-Verlag 2001

web page http://www.inf.ethz.ch/~jbook

