
Egon Börger (Pisa)

The Abstract State Machines Method

for Modular Design and Analysis of Programming Languages

A Survey

Università di Pisa, Dipartimento di Informatica, I-56127 Pisa, Italy
boerger@di.unipi.it

Copyright c© Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 1



Evolution of the ASM method

1984-1995/2000: Foundational concern: sharpen Church-Turing thesis
by “an alternative computation model which explicitly recognizes
finiteness of computers” (Gurevich 1984)

– finding an appropriate definition of ASM

Fall 1989-1992: Recognition of practical potential of ASM concept for
building and analyzing reliable ground models and their provably
correct ASM refinements to executable code (‘bridge the gap’)

– experiments with ASM models to relate in a verifiable way semantics
of programming languages to their implementation

Fall 1992-1995: Scalability test (test of ASM thesis) thru variety of
case studies (architectures, hw, VMs, protocols, controller sw)

– influenced the final definition of ASMs (Lipari Guide 1995)

Since Fall 1995: Integration of ASM method into industrial software
development environments

– tool support by exec/debug engines, model checkers, thm provers

Copyright c© Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 2



Notion of ASM: generalizing Finite State Machines

FSM = if Defined(in) then // do in parallel!

ctl state := δ(ctl state, in) // static function δ

out := λ(ctl state, in) // static function λ

FSMs come with five characteristic restrictions:

only 3 locations, furthermore 0-ary (variables without parameters):

– in: monitored (only read by FSM, but written by environment)

– ctl state: controlled (read and written by FSM)

– out : output (only written by FSM, but read by environment)

no shared locations (mono-agent view: strict separation of in-/output)

only 2 simultaneous updates

only 3 special data types: finite sets of

– input/output symbols (letters of an alphabet)

– control states (labels/integers) representing bounded memory

only 2 background functions (furthermore static) δ, λ

Copyright c© Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 3



Notion of ASM: extend FSM states to abstract states

ASMs withdraw those restrictions, permitting in a machine

to read and update in each step simultaneously (synch. parallelism)

– arbitrarily many locations (instead of 2)

– parameterized locations (‘array variables’)

– shared locations (read/written by multiple agents)

arbitrary data structures

– location values of arbitrary type

– arbitrary background functions (possibly dynamic and > 2)

– arbitrary conditions as rule guards (not only input definedness)

This leads to the definition: ASM = finite set of rules

if Cond then Updates

Updates is a set of simultaneous assignments f (t1, . . . , tn) := t

ti , t arbitrary exps, Cond arbitrary Boolean-valued exp

Copyright c© Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 4



Notion of ground models

Accurate blueprints —‘golden models’ in semiconductor industry—of
to-be-implemented piece of real world (here: pgg lg) which

define ‘the conceptual construct/the essence’ of the software system
(Brooks) prior to coding, abstractly and rigorously

– at application-problem-determined (here: programming) level of
detailing (minimality)

– formulated in application domain (here: language user) terms
(precision, informal accuracy)

– authoritatively for the further development activities: design
contract/process/evaluation and maintenance (simplicity)

ground the design in reality by justifying the definition as

– correct: model elems reliably convey original intentions (the manual)

– complete: every semantically relevant feature is present, no gap in
understanding of ‘how to use’ resp. ‘what to build’

– consistent: conflicting objectives in requirements identified/resolved

Copyright c© Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 5



Ground model justification must solve three problems

Communication (language) problem: mediate between

– sw designers, domain experts and customers for common
understanding prior to coding of ‘precisely what to build’

– problem domain and world of models, requiring

• capability to calibrate degree of model precision to the problem

• most general data type and interface concept

Verification method problem: no infinite regress (Aristotle)

– no math. transition from informal to precise descriptions, BUT

– inspection can provide evidence of direct correspondence bw ground
model and reality the model has to capture (completeness,
correctness, empirical interpretation of extra-logical terms)

– domain-specific reasoning can check consistency issues

Validation problem: need for repeatable experiments to validate
(falsify) model behaviour (runtime verification and analysis, testing)

Copyright c© Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 6



Exls of ground model ASMs for programming languages

ground model ASMs defining industrial standards of

– ISO for Prolog: Börger/Rosenzweig: 1991-95

– IEEE for VHDL93: Müller/Glässer/Börger:1994-95

– ITU-T for SDL-2000: Glässer/Prinz et al. 1998-2003

– ECMA for C#: Börger/Fruja/Gervasi/Stärk: TCS 336 (2006)

– OASIS for BPEL: Farahbod et al. ASM’04 and IJBPMI 1 (2006)

– OMG for BPMN (1.0/2.0): Börger/Thalheim/Sörensen 2007-11

ground model ASMs as basis for verifiably correct refinements of
language semantics to its implementation

– Java/JVM (including bytecode verifier, see JBook) & C#/.NET CLR

– Occam-to-Transputer: Börger/Durdanovic/Rosenzweig: 1994-96

including machine verification of Prolog-to-WAM compilation scheme
using KIV(Schellhorn/Ahrendt 1997-98) and of compiler
front/back-ends using PVS (Goos/Langmaack/von Henke 1996-2000)

Copyright c© Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 7



Exl: Mixing execution engines for model validation

Compiler−ASM Sun−Compiler

Jasmin

.j .class

.java

Sun−JVM

Java−ASM

JVM−ASM

BCEL

Copyright c© Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 8



Notion of ASM refinement: freedom to define:

abstract/refined state

states of interest and correspondence bw pairs (S , S∗) of
abstract/refined states of interest

abstract/refined computation segments of m/n single abstract/refined
steps τi/σj leading from/to corresponding states of interest

locations of interest and corresponding abstract/refined locs of interest

equivalence of values in corresponding locations of interest

σ1 · · · σn︸ ︷︷ ︸
n steps of M ∗

-State S∗ S∗′

6

?

≡
6

?

≡

-State S S ′

m steps of M︷ ︸︸ ︷
τ1 · · · τm

Copyright c© Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 9



Main usages of ASM refinements

construct hierarchical levels for

– horizontal piecemeal extensions and adaptations (design for change)

• e.g. of ISO Prolog model by constraints (Prolog III), polymorphism
(Protos-L), narrowing (Babel), o-orientation, parallelism (Parlog,
Concurrent Prolog, Pandora), abstract execution strategy (Gödel)

– (provably correct) vertical stepwise detailing of models (design for
reuse) to their implementation, e.g. model chains leading from

• Prolog to WAM (13 levels), Occam to Transputer (15 levels), Java
to JVM (5 horizontal, 4 vertical levels), C# to CLR

reuse justifications (proofs) for system properties, e.g.

– reusing Prolog-to-WAM compiler correctness proof for IBM’s
CLP(R)-to-CLAM, Protos-L-to-PAM

– verification for software product lines (Batory/Börger)

capture orthogonalities by modular (maintainable) components

– e.g. Java/JVM components (interpreters, compiler, verifier, ... )

Copyright c© Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 10



Exl: Language-Oriented Horizontal Refinements of Java/JVM

JVMI

C

T

E

O

Java I

C

E

T

O

imperative

static class features
(procedures)

exception
handling

concurrent
threads

oo features

compile

compile

compileO

compile

compileC

I

E

T

Java

Java

Java

Java

JVM

JVM

JVM

JVM

Layers are conservative extensions of each other and thus support
componentwise design and analysis (validation & verification).
Combination with an appropriate parameterization provides an
orthogonal treatment of language constructs (“instructionwise”).
Copyright c© Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 11



Exl: JavaI Expression Evaluation Component

NB. One rule group per grammar clause (feature-based approach)

Copyright c© Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 12



Exl: JavaI Statement Execution Component

NB. Some rules trigger execution of exp evaluation rules

Copyright c© Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 13



Exl: Vertical Refinements of Java/JVM Components

Components involved in compiler correctness verification (we omit
standard grammar components):

JavaInterpreter , JvmInterpreter , JavaToJvmCompiler ,Theorem

NB. Theorem conveniently split into Statement/Proof components

Java
Program

Java
AST

parser byte
code

compiler

InterpRun

interpreter

JVMRun

JVM
interpreter

proof

Similarly for other components (class loader, bytecode verifier,
preparator) and their properties

Copyright c© Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 14



Compatibility of horizontal with vertical Jbook refinements

Vertical Components are

definable at each horizontal level (modular design principle)

verifiable at each horizontal level (compositional proof technique)

Exl: Tuple representation of components for imperative expressions:

(JavaExpI
, JvmExpI

, JavaToJvmExpI
,ThmExpI

)

Refinement of tuples, e.g. by components for imperative statements, is
componentwise composition ◦ of horizontal refinements:

(JavaStmI
, JvmStmI

, JavaToJvmStmI
,ThmSStmI

,ThmPStmI
)

◦(JavaExpI
, JvmExpI

, JavaToJvmExpI
,ThmSExpI

,ThmPExpI
)

=

(JavaStmI
◦ JavaExpI

, JvmStmI
◦ JvmExpI

,

JavaToJvmStmI
◦ JavaToJvmExpI

,

ThmSStmI
◦ ThmSExpI

,ThmPStmI
◦ ThmPExpI

)

Copyright c© Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 15



Integrating verification into feature-based development

JavaExpI
has 6 interpreter rule groups, 1 per grammar clause

– JavaStmI
adds nine interpreter rule groups for stm clauses

JavaToJvmExpI
has 6 recursive equations (plus 11 for non-strict

(Boolean) exps exploited by the bytecode verifier)

– JavaToJvmStmI
adds eight recursive equations for stm clauses

ThmSExpI
has 5 invariants: about val equiv (of local variables/JVM

registers) & equiv positions and computed intermediate vals at
begin/end of exp eval (2 for strict, 2 for non-strict exps)

– ThmSStmI
adds 3 invariants about begin resp. (normal or abrupted)

end of stm exec

ThmPExpI
verification has 13 (feature-determined) cases

– ThmPStmI
adds verification of 22 new cases concerning stm exec

NB. ThmPStmI
uses ThmPExpI

when invoking induction hypo for exps

NB. Some refinements add to resp. change given rules/invariants/proofs

Copyright c© Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 16



PC

PC

PC

Part II

(T
he

or
em

s 
7.

3.
1 

an
d 

8.
4.

1)
T

hr
ea

d 
S

yn
ch

ro
ni

za
tio

n 
an

d 
T

yp
e 

S
af

et
y

Type Safety and Compiler Soundness
(Theorems 8.4.1 and 14.2.1)

semantical equivalence

compile

Part IIIP
ar

t I

P
Java program

execJava
runs P

JVM program

(T
he

or
em

 1
6.

5)

C
om

pl
et

en
es

s
C

om
pi

le
r

typable
bytecode

(Theorem
 17.1)

Byte
co

de
 V

er
ifie

r

Com
pleteness/Soundness

assignment
bytecode type

defensiveVM
run−time checks

propagate type information
propagateVM

acceptsverifyVM

trustfulVM
runs in
diligentVM

no
 r

un
−

tim
e 

ch
ec

k 
vi

ol
at

io
ns

(T
he

or
em

 1
6.

4.
1)

B
yt

ec
od

e 
ty

pe
 a

ss
ig

nm
en

t S
ou

nd
ne

ss(Chap. 15) (Chap. 16)

(Chap. 17)

Copyright c© Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 17



Mechanical Verification Technology Transfer Challenge

Starting from the structured and high-level ASM definition of Java and
of its implementation on the Java Virtual Machine

Verify : Theorem. Under explicitly stated conditions, any well-formed and
well-typed Java program:

upon compliant compilation

passes the verifier (Compiler completeness)

is executed on the JVM

– without violating any run-time checks (Bytecode Verifier correctness)

– correctly wrt Java source pgm semantics (Compiler correctness)

in a way that can be applied by language developers supporting stepwise
model/theorem refinements, e.g. reuse for language extensions/variations

NB. Fruja (2005-08) reused Java/JVM models and proofs for proving
properties about .NET CLR exception handling and .NET CIL type
safety (MSR Cambridge ROTOR project)

Copyright c© Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 18



Modeling parallel systems programming

Synchronous parallelism is part of ASM semantics (forall construct)

APE architecture reengineering project (Börger/DelCastillo 94-95):

– programmer’s view ground model ASM (with Rosenzweig/Glavan)

– stepwise refinement (along APE100 compilation chain introducing
pipelining and VLIW parallelism) to VLSI-implemented
microprocessor zCPU

Verification of RISC pipelining techniques:

– Proven-to-be-correct stepwise refinement of sequential ground model
to pipelined DLX architecture (Börger/Mazzanti 1996-97)

– Applied to ARM2 microprocessor (Huggins/VanCampenhout 1998)

– Extended in Teich’s arch/compiler co-generation project (2000-01)

• modeling application specific instruction set processors (read:
register transfer descriptions) by ASM refinement hierarchies
leading to Xasm-executable (Anlauff 2000-01) models

Copyright c© Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 19



Modeling lgs for programming distributed systems

Lipari Guide (1995) definition of distributed (asynchronous) ASMs
replaced preceding ad hoc definitions to model concurrency with ASMs

Variations of ASMs tailored for Occam (Gurevich/Moss 1990),
Chemical Abstract Machine and π-calculus (Glavan/Rosenzweig 1993)

Two early examples of using Lipari Guide (asynchronous) ASMs:

Ground model for PVM at C-interface level (Glässer/Börger 94-95)

– PVM: env for programming heterogeneous distributed processes

Ground model ASM interpreting concurrent non-deterministic Occam
programs and its proven-to-be-correct stepwise refinement to a
processor that runs high-/low-priority queues of Occam processes
(Börger/Durdanovic/Rosenzweig 1994)

Hierarchy of further proven-to-be-correct refinement steps leading to
Transputer code (Börger/Durdanovic 1996)

– following Inmos’ Occam-to-Transputer compilation scheme

Copyright c© Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 20



Exls of interpreter ASMs for domain specific languages

HERA lg to program schedulers for business processes, obtained by a
refinement of the Prolog ground model (Sauer 1993)

lg to program control for event-driven database applcs (Behrend 1995)

IEEE standard of hardware design language VHDL93
(Börger/Glässer/W. Müller 1994-95). The model has been reused for

– pictorial extension PHDL of VHDL’93 (W. Müller 1996)

– extension to analog VHDL and Verilog (at Toshiba 1997-1999)

– adaptation to SystemC and SpecC (W. Müller et al. 2001-03)

driver specification lg at UBS (Kutter/Schweizer/Thiele 1998)

ITU-T standard of SDL2000 to design distributed real-time (in
particular industrial telecommunication) systems (Glässer et al.)

– ground model ASM refined to an AsmL-executable model (Prinz)

Copyright c© Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 21



Exls of interpreter ASMs for BPM/web service languages

UML Activity Diagrams version 1.3 (Börger/Cavarra/Riccobene 2000)

– extension to ground model for richer version 2.0 (Sarstedt 2006)

• implemented and integrated into a software development env where
activity diagrams are executed (and visualized) directly (ibid.)

– integration of other behavioral UML 2.0 diagrams by refining ASM
models defined by different authors (Kohlmeyer/Guttmann 2009)

• resulting in a rather practical, rigorous, ground model driven
development approach for business process design

(basic features of) OASIS executable lg BPEL to program BPs using
web services as actions—also used as BPMN compilation target
(Farahbod/Glässer/Vajihollahi 2004-06)

graphical lg BPMN 2.0 : proposing a rational reconstruction of OMG
standard (Börger/Sörensen/Thalheim 2008-10)

S-BPM : feature-based stepwise refined interpreter ASM (Börger 2011)

– CoreAsm executable version under development at U Linz (Lerchner)
Copyright c© Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 22



S-BPM communication component Perform(ComAct)

In S-BPM diagrams each node (before Proceeding) Performs until
completion either an InternalAction or an Alternative(Send/Receive)

Copyright c© Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 23



S-BPM TryAlternative(Send) refinement

Copyright c© Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 24



S-BPM TryAlternative(Receive) refinement

Copyright c© Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 25



References

E. Börger and R. F. Stärk: Abstract State Machines. Springer 2003

R. Stärk, J. Schmid, E. Börger: Java and the Java Virtual Machine.
Definition, Verification, Validation. Springer 2001

A. Fleischmann et al.: Subject-Oriented Business Process Management.
Open Access Book www.springer.com/978-3-642-32391-1

D. Batory and E. Börger: Modularizing Theorems for Software Product
Lines: The Jbook Case Study . J.UCS 2008

E. Börger: The Abstract State Machines Method for Modular Design
and Analysis of Programming Languages (submitted)

Copyright c© Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 26


