
Egon B�orger (Pisa)

A uniform approach to teach the principles of

. computation

. programming

. system design and analysis

Universit�a di Pisa, Dipartimento di Informatica, I-56127 Pisa, Italy
boerger@di.unipi.it

Copyright c 2004 Egon B�orger, Dipartimento di Informatica, Universit�a di Pisa, Pisa, Italy. 1



What are the basic concepts?

virtual machines for any kind of computational system, whether
stand-alone or cooperating: most general (universal) `architecture'

{ states: data structures for such machines and data sharing structures
for their cooperation

programs (algorithms) for most general virtual machines

{ control structures

{ communication means

{ runs, sequential or distributed, formed by executing instructions for
state-transforming or communication steps

basic properties like functionality, computational power, memory or
time complexity, etc. What are the languages to appropriately express
these properties?

basic means of analysis: experimental validation and
mathematical veri�cation to establish properties of computational
systems

Copyright c 2004 Egon B�orger, Dipartimento di Informatica, Universit�a di Pisa, Pisa, Italy. 2



The divide-and-conquer principle (separation of concerns)

stepwise re�nement: piecemeal introduction of design and
ver�cation details, identifying orthogonal system elements

separation of design from analysis

separation of di�erent analysis types and levels

{ separation of experimental validation (system simulation and testing)
from mathematical veri�cation

{ distinction between veri�cation levels and the characteristic concerns
each of it comes with, e.g.

� reasoning for human inspection: proof ideas/sketches or completely
carried out detailed proofs

� rule-based reasoning systems: mechanical inferences, operated by
humans or as computerized systems, interactively or automatically

{ separation of static program analysis from a run-time-based analysis
of dynamic program properties (runtime ver�cation)

Copyright c 2004 Egon B�orger, Dipartimento di Informatica, Universit�a di Pisa, Pisa, Italy. 3



Starting with ASMs: Why?

ASMs represent a most general de�nition of VMs, namely
transition systems transforming structures, as evidenced by

{ over ten years of experience with modeling and analysing outstanding
real-life virtual machines in terms of ASMs

{ Gurevich's ASM thesis, a resource-bound-aware generalization of the
thesis of Church and Turing, and its proof from basic postulates

ASMs provide a framework for a theoretically well-founded, coherent
and uniform practical combination of abstract operational
descriptions with functional and axiomatic de�nitions

{ eventually overcoming an alleged (unjusti�ed and destructive)
dichotomy between declarative and operational design elements

ASMs based upon three fundamental computational features

{ conditional update (IF Cond THEN f (t1; : : : ; tn) := t )

{ parallelism (simultaneous updates, forall-construct)

{ nondeterminism (choose-construct)

Copyright c 2004 Egon B�orger, Dipartimento di Informatica, Universit�a di Pisa, Pisa, Italy. 4



Classical automata as variations of ASMs

MealyFsm(in; out ;Nxtctl ;Nxtout) =

ctl state := Nxtctl(ctl state; in)

out := Nxtout(ctl state; in)

TwoWayFsm(in; out ;Nxtctl ;Nxtout ;Move; head) =

MealyFsm(in(head); out ;Nxtctl ;Nxtout)

head := head +Move(ctl state; in(head))

TuringMachine(tape;Nxtctl ;Write;Move; head) =

TwoWayFsm(tape; tape(head);Nxtctl ;Write;Move; head)

TuringInteractive(tape;Nxtctl ;Write;Move; head ; input) =

TuringMachine(tape;Nxtctlinput ;Writeinput ;Moveinput ; head)

Output(input ; ctl state; tape(head))

Copyright c 2004 Egon B�orger, Dipartimento di Informatica, Universit�a di Pisa, Pisa, Italy. 5



Making modes explicit in control state ASMs

Fsm(i ; if cond then rule; j ) =

if ctl state = i and cond then

rule

ctl state := j

Written in this way, MealyFsm can be de�ned as a set of control state
ASM rules of the following form:

MealyFsmInstr(i ; a; b; j ) =

Fsm(i ; if Reading(a) then Output(b); j ) where

Reading(a) = (in = a)

Output(b) = (out := b)

Copyright c 2004 Egon B�orger, Dipartimento di Informatica, Universit�a di Pisa, Pisa, Italy. 6



Classical automata as variations of control state ASMs

TimedAutomatonInstr(i ; a;Reset ; j ) =

Fsm(i ; if Reading(a) then ClockUpdate(Reset); j ) where

Reading(a) = (in = a and Constraint(time�) = true)

ClockUpdate(Reset) =

forall c 2 Reset do c := 0

forall c 62 Reset do c := c + time�

PushDownAutomatonInstr(i ; a; b;w ; j ) =

Fsm(i ; if Reading(a; b) then StackUpdate(w ); j ) where

Reading(a; b) = [in = a] and [top(stack ) = b]

StackUpdate(w ) = stack := push(w ; [pop](stack ))

TmLikeInstr(mem; pos ; env ) = (Thue,Post,Wang,Minsky,...)

Fsm(i ; if ReadingCond then Update(mem(env (pos)); pos); j )

where ReadingCond = Condition(mem(env (pos)))

Copyright c 2004 Egon B�orger, Dipartimento di Informatica, Universit�a di Pisa, Pisa, Italy. 7



Two advanced examples

PetriTransition =

if Cond(prePlaces) then Updates(postPlaces)

where

Updates(postPlaces) = a set of function updates

AlternatingTm(tape;Nxtctl ;Write;Move; head) =

if type(self :ctl state) = normal then

TuringMachine(tape;Nxtctl ;Write;Move; head)(self)

if type(self :ctl state) 2 fexistential ; universalg then

AltTmSpawn(self)

TmYieldExistential(self)

TmYieldUniversal(self)

if type(self :ctl state) 2 faccept ; rejectg then

yield(self) := type(self :ctl state)

Copyright c 2004 Egon B�orger, Dipartimento di Informatica, Universit�a di Pisa, Pisa, Italy. 8



Spawning submachine of alternating TMs

AltTmSpawn(a) = if a:mode = running then

forall j 2 Nxtctl(a:ctl state; a:tape(a:head)) do

let b = new (Agent) in

Activate(b; a; j ); parent(b) := a

a:mode := idle

Activate(b; a; j ) =

b:mode := running ; b:yield := undef ; b:ctl state := j

CopyTapeProgram(b; a)

CopyTapeProgram(b; a) =

forall pos 2 domain(a:tape) do b:tape(pos) := a:tape(pos)

b:head := a:head

b:Nxtctl := a:Nxtctl ; b:Write := a:Write

b:Move := a:Move; b:type := a:type

Copyright c 2004 Egon B�orger, Dipartimento di Informatica, Universit�a di Pisa, Pisa, Italy. 9



Existential and Universal submachines of alternating TMs

TmYieldExistential(a) =

if a:mode = idle and type(a:ctl state) = existential then

if 8c 2 children(a) yield(c) = reject then

yield(a) := reject

if 9c 2 children(a) yield(c) = accept then

yield(a) := accept

TmYieldUniversal(a) =

if a:mode = idle and type(a:ctl state) = universal then

if 8c 2 children(a) yield(c) = accept then

yield(a) := accept

if 9c 2 children(a) yield(c) = reject then

yield(a) := reject

Copyright c 2004 Egon B�orger, Dipartimento di Informatica, Universit�a di Pisa, Pisa, Italy. 10



Turbo ASMs and submachines

Turbo ASMs de�ned via seq, while from basic ASMs with only

one non-controlled (a 0-ary in-put) function; its value is �xed by the
initial state

one (a 0-ary) out-put function

as static fcts only the initial fcts of recursion theory U n
i ;C n

i ; S

The de�nition (see B�orger/Schmid CSL'2000) matches the synchrony
hypothesis of synchronous programming languages (a sequence of
micro-steps makes up an instantaneous program reaction). It yields a
succinct treatment of recursive functions.

Turbo submachines R(x1; : : : ; xn) = body with meaning:

Yield(R(a1; : : : ; an) = Yield(body(a1; : : : ; an))

This de�nition allows one to abstractly introduce the concepts of
encapsulation, hiding, local state, error handling, returning values,
recursion, etc.

Copyright c 2004 Egon B�orger, Dipartimento di Informatica, Universit�a di Pisa, Pisa, Italy. 11



Turbo ASMs computing recursive functions

FctCompo(G ;H1; : : : ;Hm) =

fH1(inF ); : : : ;Hm(inF )g seq outF := G(outH1
; : : : ; outHm)

PrimitiveRecursion(G ;H ) = let (x ; y) = inF in

fival := G(x ); rec := 0g seq

(while (rec < y) fival := H (x ; rec; ival); rec := rec + 1g) seq

outF := ival

MuOperator(G) = fG(inF ; 0); rec := 0g seq

(while (outG 6= 0) fG(inF ; rec + 1); rec := rec + 1g) seq

outF := rec

where

out := F (in) � (inF := in seq F seq out := outF )

F (in) � (inF := in seq F )

Copyright c 2004 Egon B�orger, Dipartimento di Informatica, Universit�a di Pisa, Pisa, Italy. 12



Halting problem for any computation-universal language

Assume the following closure properties for a language L:

sequential composition: P ;Q 2 L implies (P seq Q) 2 L

iteration: P 2 L implies (while b = 1 P) 2 L for boolean valued b

calling : P 2 L implies Call P(in) 2 L for input variable in

L-programs can have program text as input

Then for every h 2 L the following program Diag with input/output
variables in; out is an L-program:

Diag = Call h(in; in) seq (while out = 1 Call h(in; in))

Therefore there is no h 2 L computing the Halt predicate for
L-programs since otherwise:

Halt(Diag;Diag) i� not Halt(Diag;Diag)

Halt(p,in) i� p started with input in eventually terminates

p computes H i� Halt(p; in) and out = H (in) upon termination
for every input in

Copyright c 2004 Egon B�orger, Dipartimento di Informatica, Universit�a di Pisa, Pisa, Italy. 13



ASM models for programming languages/constructs

The literature contains ASM models for languages of every
major programming paradigm:

object-oriented: Java, C#, C++, Oberon

design languages: BPEL (web services), SDL2000 (telecommunication),
SystemC, VHDL'93, PHDL, Analog VHDL, Verilog (hardware)

imperative: C, Modula-2, Cobol

parallel: PVM, Occam, Parlog, Concurrent Prolog, Guarded Horn
Clauses, Pandora, CHAM, etc.

functional: Standard ML, Babel

logical: Prolog, Prolog III, Protos-L, G�odel, CLP(R), etc.

The ASM models for Java/C# come as hierarchy of submodels
(for imperative, procedural, object-oriented, exception handling,
concurrency, etc. features) isolating single programmg
constructs and instruction patterns one can describe
independently of each other

Copyright c 2004 Egon B�orger, Dipartimento di Informatica, Universit�a di Pisa, Pisa, Italy. 14



ASM models for high-level system design constructs

The literature contains ASM models for the core or fundamental
constructs of

some executable high-level design languages, e.g. UNITY, COLD

some widely used state-based speci�cation languages, e.g. B, SCR
(Parnas tables), Petri nets

numerous dedicated real-life virtual machines

Copyright c 2004 Egon B�orger, Dipartimento di Informatica, Universit�a di Pisa, Pisa, Italy. 15



Exploiting ASMs for high-level system design and analysis

The ASM method naturally supports and uniformly links

within a single precise yet simple conceptual framework

the major activities occuring during the software life cycle

requirements capture by constructing rigorous ground models, i.e.
accurate concise high-level system blueprints (contracts)

architectural and component design bridging the gap between
speci�cation and code by piecemeal, systematically documented
detailing of abstract models via intermediate models to code

validation of models by their tool-supported simulation

veri�cation of model properties by tool-supported proof techniques

documentation for inspection, reuse and maintenance by providing,
through the intermediate models and their analysis, explicit
descriptions of the software structure and of the major design decisions

Copyright c 2004 Egon B�orger, Dipartimento di Informatica, Universit�a di Pisa, Pisa, Italy. 16



Variety of applications of ASMs (1)

industrial standards: ground models for the standards of

{OASIS for Business Process Execution Language for Web Services

{ ECMA for C#

{ ITU-T for SDL-2000

{ IEEE for VHDL93

{ ISO for Prolog

design, reengineering, testing of industrial systems:

{ railway and mobile telephony network component software at
Siemens

{ �re detection system in German coal mines

{ implementation of behavioral interface speci�cations on the .NET
platform and conformence test of COM components at Microsoft

{ compiler testing and test case generation tools

Copyright c 2004 Egon B�orger, Dipartimento di Informatica, Universit�a di Pisa, Pisa, Italy. 17



Variety of applications of ASMs (2)

programmming languages: de�nition and analysis of the
semantics and the implementation for the major real-life
programmming languages, among many others for example

{ SystemC

{ Java/JVM (including bytecode veri�er) and C#

{ domain-speci�c languages used at the Union Bank of Switzerland

including the veri�cation of numerous compilation schemes and
compiler back-ends

architectural design: veri�cation (e.g. of pipelining schemes or of
VHDL-based hardware design at Siemens), architecture/compiler
co-exploration

protocols: for authentication, cryptography, cache-coherence,
routing-layers for distributed mobile ad hoc networks,
group-membership etc.

modeling e-commerce and web services

Copyright c 2004 Egon B�orger, Dipartimento di Informatica, Universit�a di Pisa, Pisa, Italy. 18



References and course material: AsmBook

E. B�orger and R. F. St�ark: Abstract State Machines

Springer 2003. pp.X+438.

Slides for courses on single chapters, themes and case studies are to
be found in ppt and pdf format on the CD coming with the book and
are also downloadable from the website:

http://www.di.unipi.it/AsmBook/

Copyright c 2004 Egon B�orger, Dipartimento di Informatica, Universit�a di Pisa, Pisa, Italy. 19



Hello World

Copyright c 2004 Egon B�orger, Dipartimento di Informatica, Universit�a di Pisa, Pisa, Italy. 20


