
Egon Börger (Pisa)

The Abstract State Machines Method

for High-Level System Design and Analysis

An Introduction with an Application to Modeling Workflow Patterns

Università di Pisa, Dipartimento di Informatica, I-56127 Pisa, Italy
boerger@di.unipi.it

Copyright c© 2007 Egon Börger (ER’07 Keynote) 1

The question addressed in this talk

What characterizes the ASM method, a latecomer among the practical
and scientifically well-founded systems engineering methods?

We do not speak about special-purpose techniques, like static analysis,
bytecode verification, model checking, run-time verification, etc., which
draw their success from being tailored to particular types of problems.

We focus on wide-spectrum methods, which assist system engineers in
every aspect of an effectively controllable construction of reliable
computer-based systems and thus bridge the gap between the two ends
of system development:

– human understanding and formulation of real-world problems

– deployment of their solutions by code-executing machines on
changing platforms

Copyright c© 2007 Egon Börger (ER’07 Keynote) 2

A coherent divide-and-conquer approach

The ASM method comes with a simple practical framework, where in a
coherent and uniform way the system engineer can

systematically separate multiple concerns, concepts and techniques,
which are inherent in the large variety of system development activities,

freely choose for each task an appropriate combination of concepts and
techniques from the stock of engineering (including formal) methods,
at the given level of abstraction and precision where the task occurs.

This allows one to coherently integrate into best sw engg practice:

combination of design and analysis in a consistent way, integrating

– mathematical verification by a variety of reasoning techniques,
applicable to system models at different levels of precision

– experimental validation of system behaviour through simulation
(model-checking, run-time verification, testing) of rigorous models,
at various levels of abstraction

mathematical rigour to the degree needed for certifiable reliability

Copyright c© 2007 Egon Börger (ER’07 Keynote) 3

Ingredients: nothing new under the sun

abstract (richly structured) states: abstract data types, algebraic specs

abstract instructions for changing states: pseudo-code, VMs

synchronous parallel execution model, including conditional multiple
assignments: UNITY, COLD, B, etc.

locality principle: programming languages

functional definitions: mathematics and functional programming

declarative (axiomatic) definitions: logic, declarative programming and
specification languages

refinement concept: generalizing method of Wirth/Dijkstra and
numerous formal specification methods: Z, B, etc.

decomposition & hierarchy concepts: automata theory, algebraic
specifications, layered architectures,

function classification: programming, Parnas’ SCR method

verification of model properties by proofs at various levels of precision

simulation (experimental validation) by model execution
Copyright c© 2007 Egon Börger (ER’07 Keynote) 4

The three fundamental constituents of the ASM method

notion of ASM: extension of FSM by Tarski structures as states

ASM ground models: accurate descriptions of requirements at
application-domain-determined abstraction level, providing
authoritative reference for further system development activities:

– detailed design via a series of design and coding decisions

– design evaluation via analysis, including testing/inspection/review
process, to certify consistency, correctness, completeness properties
needed to establish and document desired degree of reliability

– system maintenance, including requirements change management

ASM refinements linking more detailed descriptions at successive
development stages in an organic and effectively maintainable chain of
rigorous and coherent system models. Refinement links must guarantee
that ground model system properties are preserved via series of design
decisions leading to code—and document this for maintenance (reuse
and change management)

Copyright c© 2007 Egon Börger (ER’07 Keynote) 5

Notion of ASM: extend FSM states to Tarski structures

FSMs come with three characteristic restrictions:

MealyFsm(in, out , δ, λ) = if Defined(in) then

ctl state := δ(ctl state, in)

out := λ(ctl state, in)

only three locations read or updated: in, ctl state, out ,

only three special data types: finite sets of

– input/output symbols (letters of an alphabet)

– abstract control states (labels/integers) representing bounded
memory

strict separation of input and output

ASMs withdraw those restrictions, permitting a machine in each step

to read and update arbitrarily many, possibly parameterized, locations
whose values can be of arbitrary type

to have arbitrary conditions as rule guard (not only input definedness)

Copyright c© 2007 Egon Börger (ER’07 Keynote) 6

Structuring abstract state memory yields Tarski structures

Group subsets of data into tables (in logic: interpretation of functions)

associating a value to each table entry (l , (a1, . . . , an)), called location

l(a1, . . . , an) denotes the value currently contained in the table entry
(l , (a1, . . . , an)) (read: array variable)

Tarski structure = a set of tables

NB. Tarski structures represent a most general notion of structure

The structures of mathematics are Tarski structures

The models of abstract data types are Tarski structures

The object-oriented understanding of classes and class instances
corresponds to Tarski structures

Thus FSMs operating over Tarski structures update tables:

ASM = finite set of rules if Cond then Updates where
Updates is a set of simultaneous assignments f (t1, . . . , tn) := t

in each step updates (consequently also rules) are executed in parallel

Copyright c© 2007 Egon Börger (ER’07 Keynote) 7

Control State ASMs

Control State ASM = ASM all of whose rules have the form

if ctl state = i and cond then

rule

ctl state := j

n

cond 1

cond nrule

1rule

i

j

jn

1

control-states i , j , . . . represent an overall system status (mode, phase),
which allows the designer to

structure the set of states into subsets

– visualize this overall structure

refine control-state transitions by control-state submachines (modules)

Copyright c© 2007 Egon Börger (ER’07 Keynote) 8

Exl: Sluice Gate Control (M. Jackson: Problem Frames)

Requirements Description:

A small sluice, with a rising and falling gate, is used in a simple
irrigation system. A computer system is needed to control the sluice
gate: the requirement is that the gate should be held in the fully
open position for ten minutes in every three hours and otherwise kept
in the fully closed position.

The gate is opened and closed by rotating vertical screws. The
screws are driven by a small motor , which can be controlled by
clockwise, anticlockwise, on and off pulses.

There are sensors at the top and bottom of the gate travel; at the
top it’s fully open, at the bottom it’s fully shut.

The connection to the computer consists of four pulse lines for
motor control and two status lines for the gate sensors.

Copyright c© 2007 Egon Börger (ER’07 Keynote) 9

Ground Model to capture user requirements

Ground model, displayed in FSM-style graphical notation, abstracts from

screws, motor, sensors, pulses, reducing the device to switching from
phase fullyClosed to fullyOpen when time closedPeriod has passed,
and back when openPeriod has elapsed

timing model , using monitored boolean-valued locations
Passed(openPeriod), Passed(closedPeriod) with appropriate
interpretation

motor actions Open = Shut = skip (placeholder for refinement)

Copyright c© 2007 Egon Börger (ER’07 Keynote) 10

Refinement SluiceGateMotorCtl defining motor actions

controlled locs motor : {on, off }, dir : {clockwise, anticlockwise}
Boolean-valued monitored locations Event(Top),Event(Bottom)
with appropriate Input Locations Assumption (for correctness proof)

StartToRaise = (dir := clockwise, motor := on)

StartToLower = (dir := anticlockwise, motor := on)

StopMotor = (motor := off)

closedPeriod = period

−(StartToRaiseTime + OpeningTime + StopMotorTime)

−(StartToLowerTime + ClosingTime + StopMotorTime)

Copyright c© 2007 Egon Börger (ER’07 Keynote) 11

Refinement SluiceGate defining status lines and pulses

Environment machine describing equipment actions when pulses appear

Pulses = upon Event(Clockwise) do dir := clockwise

upon Event(AntiClockwise) do dir := anticlockwise

upon Event(MotorOn) do motor := on

upon Event(MotorOff) do motor := off

SluiceGateMotorCtl with Emit(Pulse(. . .)) submachines

StartToRaise = Emit(Pulse(Clockwise))

Emit(Pulse(MotorOn))

StartToLower = Emit(Pulse(AntiClockwise))

Emit(Pulse(MotorOn))

StopMotor = Emit(Pulse(MotorOff))

Copyright c© 2007 Egon Börger (ER’07 Keynote) 12

Proving correctness of the refinement

Correctness proof, which relates runs, relies upon:

Pulse Output Assumption: each Emit(Pulse(p)) in
SluiceGateCtl yields Event(p) to happen in the env machine

Input Locations Assumption reinterpreted, reflecting that the
information detected by the sensors arrives at SluiceGateCtl as
input Event(Top),Event(Bottom) via two status lines

Usual convention that events are consumed by triggering the rule
guarded by them

NB. Refinement type is (1,2), meaning that:

every segment consisting of one step of SluiceGateMotorCtl is
refined by

a segment of two corresponding steps of SluiceGate consisting of

– one step of software machine SluiceGateCtl

– followed by one step of environment machine Pulses

Copyright c© 2007 Egon Börger (ER’07 Keynote) 13

Classification of locations/functions

controlled out

derived

(monitored)
in

(interaction)

static

shared

dynamic

basic

function/relation/location

supporting the separation of concerns: information hiding, data
abstraction, modularization and stepwise refinement

Copyright c© 2007 Egon Börger (ER’07 Keynote) 14

Notation for non-determinism and parallelism

selection functions (describing non-determinism) supported by
dedicated notation for rule(select {x : φ(x)}):
choose x with φ in rule

to execute rule for one element x , which is arbitrarily chosen among
those satisfying the selection criterion φ

symmetric notation to enhance synchronous parallelism:

forall x with φ do rule

to execute rule simultaneously for every element x satisfying the
property φ

For asynchronous multi-agent ASMs it suffices to generalize the notion
of run from sequences of moves (execution of rules) of just one basic
ASM to partial orders of moves of multiple agents, each executing a
basic ASM, subject to a natural coherence condition.

Copyright c© 2007 Egon Börger (ER’07 Keynote) 15

What are ground models?

Accurate blueprints of the to-be-implemented piece of real world

defining ‘the conceptual construct/the essence’ of the software system
(Brooks) abstractly and rigorously

– at an application-problem-determined level of detailing (minimality)

– formulated in application domain terms (precision)

– authoritatively for the further development activities: design
contract/process/evaluation and maintenance (simplicity)

grounding the design in reality by justifying the definition as

– correct: model elements reliably convey original intentions

– complete: every semantically relevant feature is present (env,arch,
domain knowledge), no gap in understanding of ‘what to build’

– consistent: conflicting objectives in requirements resolved

epistemological problem: ‘matching some significant part and aspect of
an activity in the real world to the formal symbol manipulation that
can be done by a program running on a computer’ (Naur 1985)

Copyright c© 2007 Egon Börger (ER’07 Keynote) 16

Epistemological problem: ground model justification

Communication problem: mediate between

– sw designers & domain experts/customers for common
understanding prior to coding of ‘precisely what to build’

– problem domain & world of models, requiring

• capability to calibrate degree of model precision to the problem

• general data & operation framework and general interface concept
(to represent system environments)

Verification method problem: no infinite regress

– no math. transition from informal to precise descriptions, BUT

– inspection can provide evidence of direct correspondence bw ground
model and reality the model has to capture (completeness,
correctness, empirical interpretation of extra-logical terms)

– domain-specific reasoning can check consistency issues

Validation problem: need for repeatable experiments to validate
(falsify) model behaviour (runtime verification and analysis, testing)

Copyright c© 2007 Egon Börger (ER’07 Keynote) 17

Variety of real-life ASM ground models (1)

industrial standards: ground models for the standards of

– OASIS for Business Process Execution Language for Web Services

– ECMA for C#

– ITU-T for SDL-2000

– IEEE for VHDL93

– ISO for Prolog

design, reengineering, testing of industrial systems:

– railway and mobile telephony network component software (at
Siemens)

– fire detection system in German coal mines

– implementation of behavioral interface specifications on the .NET
platform and conformence test of COM components (at Microsoft)

– business systems interacting with intelligent devices (at SAP)

– compiler testing and test case generation tools

Copyright c© 2007 Egon Börger (ER’07 Keynote) 18

Variety of ASM ground models and their refinements (2)

programmming languages: definition and analysis of the
semantics and the implementation for the major real-life
programmming languages, among many others for example

– SystemC

– Java/JVM (including bytecode verifier)

– domain-specific languages used at the Union Bank of Switzerland

including the verification of numerous compilation schemes and
compiler back-ends

architectural design: verification (e.g. of pipelining schemes or of
VHDL-based hardware design at Siemens), architecture/compiler
co-exploration

protocols: for authentication, cryptography, cache-coherence,
routing-layers for distributed mobile ad hoc networks,
group-membership etc.

modeling e-commerce and web services (at SAP)

Copyright c© 2007 Egon Börger (ER’07 Keynote) 19

ASM Refinements (Reflecting Design Decisions)

practice-oriented method to systematically separate, structure and
document orthogonal design decisions, relating different system
aspects and (system architect’s to programmer’s) views

supports cost-effective system maintenance and management of
system changes

supports piecemeal system validation and verification techniques

σ1 · · · σn| {z }
n steps of M ∗

-State S∗ S∗′

6

?

≡
6

?

≡

-State S S ′

m steps of Mz }| {
τ1 · · · τm

With an equivalence notion ≡ between data in
locations of interest in corresponding states.

Copyright c© 2007 Egon Börger (ER’07 Keynote) 20

The parameters for defining an ASM refinement step

a notion of refined state

a notion of states of interest and of correspondence between M -states
S and M ∗-states S∗ of interest, including usually initial/final states (if
there are any)

a notion of abstract computation segments τ1, . . . , τm , where each τi
represents a single M -step, and of corresponding refined computation
segments σ1, . . . , σn , of single M ∗-steps σj , which in given runs lead
from corresponding states of interest to (usually the next)
corresponding states of interest (the resulting diagrams are called
(m, n)-diagrams and the refinements (m, n)-refinements)

a notion of locations of interest and of corresponding locations, i.e.
pairs of (possibly sets of) locations one wants to relate in
corresponding states

a notion of equivalence ≡ of the data in the locations of interest

Copyright c© 2007 Egon Börger (ER’07 Keynote) 21

Language-Oriented Refinement of Java/JVM into Layers

JVMI

C

T

E

O

Java I

C

E

T

O

imperative

static class features
(procedures)

exception
handling

concurrent
threads

oo features

compile

compile

compileO

compile

compileC

I

E

T

Java

Java

Java

Java

JVM

JVM

JVM

JVM

Layers are conservative extensions of each other and thus support
componentwise design and analysis (validation & verification).
Combination with an appropriate parameterization provides an
orthogonal treatment of language constructs (“instructionwise”).
Copyright c© 2007 Egon Börger (ER’07 Keynote) 22

Models and methods in an ASM-based development process

TEST
CASES

domains
transition system

stepwise
refinement
reflecting
design

dynamic functions
external functions

decisions

manual

mechanized

PROVER

adding assumptionsadding definitions

SIMULATOR

using data from
application domain

Verification

Application Domain Knowledge

Ground Model

Informal Requirements

Code

Validation

+

Copyright c© 2007 Egon Börger (ER’07 Keynote) 23

ASM Analysis Techniques (Validation and Verification)

Practitioner supported to analyze ASM models by reasoning and
experimentation at the appropriate degree of detail, separating

orthogonal design decisions and complementary methods: abstract
operational vs declarative/functional/axiomatic, state- vs event-based

design from analysis (definition from proof)

validation (by simulation) from verification (by reasoning)

– e.g. ASM Workbench (ML-based, DelCastillo 2000), AsmGofer
(Gofer-based, Schmid 1999), XASM (C-based, Anlauff 2001), AsmL
(.NET-based, MSR 2001), CoreASM (Glässer et al. 2005)

verification levels (degrees of detail)

– reasoning for human inspection (design justification)

– rule based reasoning systems (e.g. Stärk’s Logic for ASMs)

– interactive proof systems, e.g. KIV, PVS, Isabelle, AsmPTP

– automatic tools: model checkers, automatic theorem provers

Copyright c© 2007 Egon Börger (ER’07 Keynote) 24

References

E. Börger and R. F. Stärk: Abstract State Machines Springer 2003.
pp.X+438. See http://www.di.unipi.it/AsmBook/

R. Stärk, J. Schmid, E. Börger: Java and the Java Virtual Machine.
Definition, Verification, Validation. Springer-Verlag, 2001. See
http://www.inf.ethz.ch/personal/staerk/jbook

E. Börger: Construction and Analysis of Ground Models and their
Refinements as a Foundation for Validating Computer Based Systems.
Formal Aspects of Computing J. 2006

E. Börger: The ASM Refinement Method Formal Aspects of Computing
15 (2003), 237-257

G. Schellhorn: Verification of ASM Refinements Using Generalized
Forward Simulation JUCS 7.11 (2001) 952–979

G. Schellhorn: ASM Refinement and Generalizations of Forward
Simulation in Data Refinement: A Comparison TCS 336/2-3 (2005)
403-436

Copyright c© 2007 Egon Börger (ER’07 Keynote) 25

Egon Börger (Pisa)

Modeling Workflow Patterns

Università di Pisa, Dipartimento di Informatica, I-56127 Pisa, Italy
boerger@di.unipi.it

Copyright c© 2007 Egon Börger (ER’07 Keynote) 26

The sources

Wil M.P. van der Aalst and A.H.M. ter Hofstede and B. Kiepuszewski
and A.P. Barros: Workflow Patterns
Distributed and Parallel Databases 13 (4) (2003) 5-51

– Definition of 20 individually named patterns

N. Russel and A.H.M. ter Hofstede and Wil M.P. van der Aalst and N.
Mulyar: Workflow Control-Flow Patterns. A Revised View
BPM-06-22, BPMCenter.org, July 2006

– Definition of 23 additional individually named patterns

Used “to identify comprehensive workflow functionality ... for an indepth
comparison of a number of commercially available workflow management
systems” and “to systematically address workflow requirements, from
basic to complex”.

But: descriptions are partly ambiguous or incomplete or overspecified by
implementation features (belonging to coloured Petri nets)

Copyright c© 2007 Egon Börger (ER’07 Keynote) 27

The pattern classification proposed in op.cit.

Control Flow (Basic and Additional)

Advanced Branching and Synchronization

Structural

Multiple Instances

Cancellation

State-Based

Reasons for choice of patterns unclear

20 in 2003, 43 in 2006, doubling every 3 years?

We identify parameters turning numerous patterns into instances of one
generic pattern. This provides a better understanding and classification:

4 standard sequential programming concepts applied to control flows

– sequentialization, iteration, begin/termination, choice

4 parallel control flow patterns

– splitting, merging, interleaving, trigger

Copyright c© 2007 Egon Börger (ER’07 Keynote) 28

Underlying basic concepts

What is the meaning of:

activity

process (often used as synonym for activity?!)

thread

– being active, enabled, completed

points in the workflow process where some action is performed

Apparently it suffices to consider

activities/processes as high-level executable programs (ASMs)

threads as agents that execute ASMs and may be active, enabled, etc.
or have completed their run

pattern actions, at points in the workflow process, as described by
pseudo-code (ASMs)

Copyright c© 2007 Egon Börger (ER’07 Keynote) 29

Parallel Split

A point in the workflow process where a single thread of control splits
into multiple threads of control which can be executed in parallel,
thus allowing activities to be executed simultaneously or in any order .

The parameters:

Activity : static (‘known at design-time’) or dynamic (‘known at
run-time’) set

Thread : dynamic set, extendable using new function

parallelism: left open whether synchronous, interleaved, asynchronous.
Therefore we use an abstract machine TriggerExec(t , a), refinable
in various ways, to trigger thread t to execute activity a

ParSplit(Activity ,Thread ,TriggerExec) =

forall a ∈ Activity

let t = new (Thread) in TriggerExec(t , a)

Copyright c© 2007 Egon Börger (ER’07 Keynote) 30

Instances of Parallel Split: Synchronous Parallelism

Synchronous parallelism is the default parallelism of ASMs

no multiple agents need to be mentioned and Threads can be skipped

SyncParSplit(Activity ,TriggerExec)

= ParSplit(Activity ,Thread ,TriggerExec)

= forall a ∈ Activity

let t = new (Thread) in TriggerExec(t ,a)

= forall a ∈ Activity TriggerExec(a)

Copyright c© 2007 Egon Börger (ER’07 Keynote) 31

Instances of Parallel Split: multiple Instances of act

‘multiple instances (of one activity) without synchronization’:

Within the context of a single case (i.e., workflow instance) multiple
instances of an activity can be created, i.e. there is a facility to
spawn off new threads of control. Each of these threads of control is
independent of other threads. Moreover, there is no need to
synchronize these threads.

Instantiation: Activity = multiSet(act ,mult)

MultInstWithoutSync(act ,mult ,Thread ,TriggerExec) =
ParSplit(multiSet(act ,mult),Thread ,TriggerExec)

Variations by design-time/run-time knowledge of how many instances
are to be created

– matter of declaring mult itude as static or dynamic

Copyright c© 2007 Egon Börger (ER’07 Keynote) 32

Basic Merge Pattern Merge

A point in the workflow process where multiple parallel
subprocesses/activities converge into one single thread of control ...
once ... completed some other activity needs to be started .

specific convergence action upon MergeEvent (at merge phase start)

completion (later) by some further actions

NB. Make explicit also the set Exec(a) of agents that execute a: their
runs are merged, not the activities.

Copyright c© 2007 Egon Börger (ER’07 Keynote) 33

Control State ASM code for Merge

Merge

(Activity ,Exec,MergeEv ,StartMerge,CompleteMerge) =

if ctl state = mergeStart and MergeEv (Exec) then

StartMerge

ctl state := mergeCompl

if ctl state = mergeCompl then

CompleteMerge

ctl state := mergeStart

NB. Control state ASMs extend FSMs by simultaneous elaboration
(reading/writing) of arbitrarily many locations storing values of arbitrary
type

Copyright c© 2007 Egon Börger (ER’07 Keynote) 34

‘Discriminator’ instantiation of Merge

... a point in a workflow process that waits for one of the incoming
branches to complete before activating the subsequent activity. From
that moment on it waits for all remaining branches to complete and
“ignores” them. Once all incoming branches have been triggered, it
Resets itself so that it can be triggered again...

Qu: what happens when multiple branches complete simultaneously?

Discriminator(Activity ,Exec,Completed ,Proceed,Reset)

=
Merge(Activity ,Exec,MergeEv ,Proceed(ComplAct),Reset)

where MergeEv = | ComplAct |≥ threshold

ComplAct =

{a ∈ Activity | Completed(a, t) forsome t ∈ Exec(a)}
Pattern presents the three aspects of Merge:

– duration, threshold synchronization, othw no synchronization

Copyright c© 2007 Egon Börger (ER’07 Keynote) 35

Discriminator with Threshold Variations

Structured N-out-of-M Join
instantiate Discriminator by threshold = N and M =| Activity |

Generalized AND-Join
instantiate Structured N-out-of-M Join by N = M

Copyright c© 2007 Egon Börger (ER’07 Keynote) 36

Discriminator Variations with Cancelling

Triggering the discriminator (join) also cancels the execution (Sic) of
all of the other incoming branches and resets the construct

Two versions are considered in op.cit., which turn out to be variations of
two discriminator patterns defined above:

Cancelling Discriminator : a refinement of Discriminator

Cancelling N-out-of-M Join: a refinement of
Structured N-out-of-M Join

It suffices to refine Reset by a Cancel concept:

Reset = forall a ∈ Activity \ ComplAct Cancel(Exec(a))

NB. The Cancel machine deliberately remains abstract

Copyright c© 2007 Egon Börger (ER’07 Keynote) 37

‘Structured Discriminator’ Variation by Durative Reset

Reset is refined as durative action of waiting for other activities to
complete: check which activities have not yet been detected as
completed until every activity has been detected

waiting

ForOtherAct

ToComplete

there is a

NotYetDetected

Activity

there is a

NotYetDetected

Completed

Activity

MARKASDETECTED

(NotYetDetectedComplAct)

yes

no

MARKAS

UNDETECTED

(Activity)

MarkAsDetected(A) =forall a ∈ A NotYetDetected(a) := false

Copyright c© 2007 Egon Börger (ER’07 Keynote) 38

StructuredDiscriminatorReset =

if mode = init then

MarkAsUnDetected(Activity)

mode := waitingForOtherActToComplete

if mode = waitingForOtherActToComplete then

if NotYetDetected 6= ∅
then let A = ComplAct ∩ NotYetDetected

if A 6= ∅ then MarkAsDetected(A)

else mode := exit

where

MarkAsDetected(A) =

forall a ∈ A NotYetDetected(a) := false

MarkAsUnDetected(A) =

forall a ∈ A NotYetDetected(a) := true

Copyright c© 2007 Egon Börger (ER’07 Keynote) 39

Blocking variations of Discriminator

Blocking Discriminator , Blocking N-out-of-M Join are defined in op.cit.
by adding the following requirement:

Subsequent enablements of incoming branches are blocked until the
discriminator (join) has reset.

It suffices to instantiate each discriminator round for fstCompleted, the
first t ∈ Exec(a) that Completed(a, t), to block the subsequent
executions t ′ ∈ Exec(a) of a.

delete fstCompleted from Exec(a) at the end of each round:
a refinement of StructuredDiscriminatorReset to
BlockStructDiscrReset by adding the following update in the
last else branch:

forall a ∈ Activity

let f = fstCompleted({t ∈ Exec(a) | Completed(a, t)})
Delete(f ,Exec(a))

Copyright c© 2007 Egon Börger (ER’07 Keynote) 40

Instantiating Merge to Synchronizing Merge

A point in the workflow process where multiple paths converge into
one single thread. If more than one path is taken, synchronization of
the active threads needs to take place. If only one path is taken, the
alternative branches should reconverge without synchronization ...
assumption ... that a branch that has already been activated, cannot
be activated again while the merge is still waiting for other branches
to complete ... the thread of control is passed to the subsequent
branch when each active incoming branch has been enabled.

the merge event is instantiated to a concept of all active threads being
SyncEnabled, generalizing the threshold property in the discriminator
pattern instances

the dynamic set Exec(a) is assumed to contain for each merge round
at most one thread (which may be Active)

what happens to non-active branches when multiple active threads
synchronize via Converge? Should they Reconverge?

Copyright c© 2007 Egon Börger (ER’07 Keynote) 41

SynchronizingMerge

SynchronizingMerge

(Activity ,Exec, Active, SyncEnabled ,Converge,Reconverge) =

Merge(Activity ,Exec,MergeEv ,

Converge(Active),Reconverge(Activity \ Active))

where

MergeEv =

forsome a ∈ Activity Active(Exec(a)) and

forall a ∈ Activity if Active(Exec(a))

then SyncEnabled(Exec(a))

assuming at most one thread per activity per round

– forall a ∈ Activity | Exec(a) |≤ 1

Copyright c© 2007 Egon Börger (ER’07 Keynote) 42

Variations of syncNumber in SynchronizingMerge

Determination of how many branches require synchronization is made
on the basis of information locally available to the merge construct.
This may be communicated directly to the merge by the preceding
diverging construct or alternatively it can be determined on the basis
of local data such as the threads of control arriving at the merge.

AcyclSynchrMerge = SynchronizingMerge where

MergeEv =

| {a | Active(Exec(a)) and SyncEnabled(Exec(a))} |
≥ syncNumber

Variations depend on how syncNumber is defined

Synchronizer = SynchronizingMerge where

syncNumber =| Activity |
Reconverge = skip all branches are synchronized!

Copyright c© 2007 Egon Börger (ER’07 Keynote) 43

‘Simple’ (Selection) Instances of Merge

Case with unique activity, without need for synchronization:

SimpleMerge ... two or more alternative branches come together
without synchronization. It is an assumption of this pattern that
none of the alternative branches is ever executed in parallel.

Case with multiple activities, synchronization by selecting one:

MultiMerge (also called RelaxSimpleMerge)... two or more branches
reconverge without synchronization. If more than one branch gets
activated, possibly concurrently, the activity following the merge is
started for every activation of every incoming branch.

SelectMerge = Merge where

mergeCompl = mergeStart CompleteMerge = skip

StartMerge = Converge(select(Activity))

SimpleMerge = SelectMerge where select = id

Copyright c© 2007 Egon Börger (ER’07 Keynote) 44

An Instance of SelectMerge: Thread Merge

At a given point in a process, a ... number of execution threads in a
single branch of the same process instance should be merged
together into a single thread of execution

ThreadMerge(. . . ,MergeEnabled ,mergeNo) =

SelectMerge(. . .)

where

Activity = {t | t executes the given branch activity}
MergeEv = (| {t ∈ Activity | MergeEnabled(t)} |= mergeNo)

| select(Activity) |= mergeNo

what if more than mergeNo threads are MergeEnabled?

Design/Run-Time Knowledge variations

– a question of declaring mergeNo as “nominated” (static? derived?)
or “not known until run-time” (dynamic)

Copyright c© 2007 Egon Börger (ER’07 Keynote) 45

Patterns to Join Previously Split Multiple Instances

Static/Dynamic (Cancelling) N-out-of-M Join for Multiple Instances:
Link ParSplit for ‘multiple instances without sync’ with Merge:

... once all (resp. N out of mult = M) instances are completed
some other activity needs to be started.

MultInstNMJoin

(act ,mult ,Thread ,Completed ,TrigExec,Proceed,N)

= Merge(multiSet(act ,mult),−, true,Start,Complete)

where

Start =

MultInstWithoutSync(act ,mult ,Thread ,TrigExec)

Complete = if CompletionEv then Proceed

CompletionEv = (| {t ∈ Thread | Completed(t , act)} |≥ N)

variations depending on declaration/definition of mult
(static/dynamic) and on inclusion of Cancel submachine

Copyright c© 2007 Egon Börger (ER’07 Keynote) 46

Instances of MultInstNMJoin (1)

Multiple Instances With a Priori Design Time Knowledge:

MultInstNMJoin(. . . , | Thread(act) |)

Multiple Instances With a Priori Run Time Knowledge: mult itude

of instances of a given activity for a given case varies and may
depend on characteristics of the case or availability of resources, but
is known at some stage during runtime, before the instances of that
activity have to be created.

MultInstNMJoin(. . . , | Thread(act) |)
where mult is defined as dynamic

Copyright c© 2007 Egon Börger (ER’07 Keynote) 47

Instances of MultInstNMJoin (2)

Multiple Instances Without a Priori Run Time Knowledge: dto but

the number of instances of a given activity for a given case is not
known during design time, nor is it known at any stage during
runtime, before the instances of that activity have to be created ... at
any time, whilst instances are running, it is possible for additional
instances to be initiated

This means that as part of the execution of a Run(t , act), it is allowed
that the set Thread(act) may grow by new agents t ′ to Run(t ′, act),
all of which however will be synchronized when Completed .

Copyright c© 2007 Egon Börger (ER’07 Keynote) 48

Instances of MultInstNMJoin (3)

Complete Multiple Instance Activity

It is necessary to synchronize the instances at completion before any
subsequent activities can be triggered. During the course of
execution, it is possible that the activity needs to be forcibly
completed such that any remaining instances are withdrawn and the
thread of control is passed to subsequent activities.

This is captured by adding in MultInstAPrioriDesignKnowl to
the Complete submachine the following machine:

if Event(ForcedCompletion) then

forall a ∈ (Thread(act) \ Completed) do Cancel(a)

Proceed

Copyright c© 2007 Egon Börger (ER’07 Keynote) 49

Classification of Merge Instantiations

Discriminator versions, refined by adding

– threshold variations: one, N-out-of-M, all

– Cancelling not synchronized activities upon Resetting

– durative Reset, waiting for not synchronized activities to complete

– blocking activity threads per round, deleting fstCompleted thread(s)
(depending on threshold variations) from Exec(a) upon Resetting

SynchronizingMerge versions, refined by syncNumber variations

– AcyclSynchrMerge

– Synchronizer

selection variations, named without synchronization or ‘simple’

– SimpleMerge selecting the unique one

– SelectMerge selecting one out of many

– ThreadMerge selecting mergeNo many (see Synchronizer)

MultInstNMJoin versions joining previously split mult instances

– variations depending on definition of mult and Cancel
Copyright c© 2007 Egon Börger (ER’07 Keynote) 50

Lesson: Use Standards to Express Pattern Variety

Doable:

– 23 patterns formalized in BPMN and BPEL (S. A. White 2007)

– 43 patterns formalized in a slightly extended sublanguage of BPMN
(Grosskopf Master Thesis HNI 2007)

Problem: Widely accepted standards, like BPMN, BPEL, UML2.0, are
without precise semantics (except some proposed implementation to
which the standard constructs are transformed)

– Recent Formalization Proposals are Incomplete and Biased by
Imposing Implementation Details, e.g. Petri Nets, YAWL, CSP

Proposal: Use ASMs for semantical ground model of standards that is

uniform capturing commonalities/differences of BPMN, UML2.0, ...

extendable (to easily capture new enriched patterns) by feature-based
modular approach (construct-wise definition)

integrates event/data and control at needed level of abstraction

– ongoing work with Bernhard Thalheim
Copyright c© 2007 Egon Börger (ER’07 Keynote) 51

References

E. Börger, Modeling Workflow Patterns from First Principles.

– ER 2007 Conference Proceedings, LNCS 4801, 2007

E. Börger and R. Stärk, Abstract State Machines.
A Method for High-Level System Design and Analysis.

– Springer-Verlag 2003.
See http://www.di.unipi.it/AsmBook for downloadable material
including slides for lecturing

Copyright c© 2007 Egon Börger (ER’07 Keynote) 52

