
Egon Börger (Pisa)

Service Interaction Patterns and Interaction Flows

An ASM-Based Compositional Framework

Università di Pisa, Dipartimento di Informatica, I-56127 Pisa, Italy
boerger@di.unipi.it

Joint work with Alistair Barros, SAP Research, Brisbane, Australia

Copyright c© 2007 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 1

Goal

Support software-engineered business process management in multi-party
collaborative environments

We define

ground models for fundamental service interaction patterns

composition schemes to build complex service-based business process
interconnections and interaction flows

providing a rigorous basis for

execution-platform-independent analysis (e.g. benchmarking of web
services functionalities)

implementations by refinements of standard specifications (e.g. to
BPEL programs)

Copyright c© 2007 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 2

Technical Results

precise high-level basic models for eight fundamental service
interaction patterns

– four basic bilateral business process interaction patterns

– refinements to four basic multilateral interaction patterns

combinations and refinements of fundamental patterns defining
arbitrarily complex interaction patterns of distributed service-based
business processes that

– go beyond simple request-response sequences

– may involve a dynamically evolving number of participants

Method:

construction of ASM ground models for basic patterns

application of ASM refinements for instantiation and combination of
basic patterns to complex schemes

Copyright c© 2007 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 3

Abstract State Machine = FSM with Generalized State

n

cond 1

cond nrule

1rule

i

j

jn

1 if ctl state = i then
if cond1 then

rule1

ctl state := j1
· · ·

if condn then
rulen

ctl state := jn

instructions Fsm(i , if condν then ruleν, jν) updating

a single internal ctl state assuming values i , j1, . . . , jn in a not
furthermore structured finite set

in/output locations in, out assuming values in finite alphabets

are extended by allowing

a set of parameterized locations holding values of whatever types

simultaneous updates of arbitrary many locations via multiple
assignments loc(x1, . . . , xn) := val

resulting in rules of form if cond then assignments with

non-determinism replaced by synchronous parallelism

Copyright c© 2007 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 4

4 Basic Components of Bilateral Interaction Patterns

Each pattern describes one side of an interaction, resulting in a
mono-agent ASM (or module) defined below.

Refinements of those 4 basic patterns suffice to compose any other
bilateral interaction pattern, of whatever structural complexity.

Copyright c© 2007 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 5

Requirements for Send Pattern

Variations depending on whether

delivery is reliable (guaranteed) or not

action is blocking or non-blocking (in case of reliable delivery)

sending may result in a fault message in response

periodic resending of a message is performed

’Counter-party may or may not be known at design time’ reflected by
possibly dynamic function

recipient : Message → Recipient

recipient : Message × Param → Recipient

Unspecified message delivery system reflected by abstract submachines

BasicSend(m),BasicSend(m, r)

where r = recipient(m, param)

Copyright c© 2007 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 6

Requirements for Send Pattern (Cont’d)

Regular behavior by FirstSend(m) without further resending,
triggered by a monitored guard SendMode(m) typically assuming:

SendMode(m) and not OkSend(m) (read: there is no open channel
connecting sender to recipient) implies SendFaultMode(m) = true

Faulty behavior

originating at the sender’s side, during an attempt to send m: triggers
an abstract SendFaultHandler submachine guarded by
SendFaultMode(m)

originating at the receiver’s side as result of sending m: reflected by an
abstract monitored predicate Faulty(m)

incorporated into an abstract machine HandleSendFault(m).

Copyright c© 2007 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 7

Sender Scheme

Send&Check =

FirstSend(m)

HandleSendFault(m)

where

FirstSend(m) = if SendMode(m) then

if OkSend(m) then

BasicSend(m)

if AckRequested(m) then SetWaitCondition(m)

if BlockingSend(m) then status := blocked(m)

HandleSendFault(m) =

if SendFaultMode(m) then SendFaultHandler(m)

assuming preemptive rule firing (for notational convenience)

SetWaitCondition typically Initializes a shared predicate
WaitingFor (m) an acknowledgement

Copyright c© 2007 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 8

Instantiating the Sender ASM

Send Without Guaranteed Delivery

MODULE SendnoAck = Send&Check
where forall m

AckRequested(m) = BlockingSend(m) = false

Guaranteed Non-Blocking Send

MODULE SendackNonBlocking = Send&Check where
forall m

AckRequested(m) = true and BlockingSend(m) = false
SetWaitCondition(m) =

Initialize(WaitingFor (m))
Set(deadline(m), sendTime(m), frequency(m), . . .)

WaitingFor (m) reset to false typically by recipient(m)

typically Timeout(m) = (now − sendTime(m) > deadline(m))

frequent scheduler requirement: SendFaultMode(m) implied by a
(often monitored) predicate Timeout(m)

Copyright c© 2007 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 9

Instantiation to Guaranteed Blocking Send

MODULE SendackBlocking =
Send&Check ∪ {UnblockSend(m)} where

forall m AckRequested(m) = BlockingSend(m) = true

SendMode(m) = (status = readyToSend)

SetWaitCondition(m) =

SetWaitConditionSendackNonBlocking
(m)

UnblockSend(m) = if UnblockMode(m) then

{Unblock(status),PerformAction(m)}
UnblockMode(m) =

status = blocked(m) and not WaitingFor (m)

SendFaultMode(m) = Faulty(m) and

status = blocked(m) and WaitingFor (m)

Copyright c© 2007 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 10

Adding Resending to Send

Add new machine ReSend(m), triggered periodically, at
ResendTime(m)

until WaitingFor (m) = false or a Faulty(m) event triggers
HandleSendFault(m), typically stopping ReSending

ResendTime(m) typically depends on lastSendTime(m), now

message copies newVersion(m, now) may vary in time

MODULE SendtResend = Sendt ∪ {ReSend(m)}
where

ReSend(m) = if ResendMode(m) then

BasicSend(newVersion(m, now))

lastSendTime(m) := now

ResendMode(m) = ResendTime(m) and WaitingFor (m)

Copyright c© 2007 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 11

Blocking Send with Acknowledgement and Resend

Generalizes the Alternating Bit Sender

Copyright c© 2007 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 12

Receive Pattern Requirements

Variations depending on whether

receive action is blocking or non-blocking,

messages that upon arrival cannot be received are buffered for further
consumption or discarded

an acknowledgement is required or not

receive action may result in a fault message or not

reflected using abstract predicates and related submachines

Arriving(m) (read: m in message channel or buffer)

ReadyToReceive(m)

ToBeDiscarded(m)

ToBeBuffered(m)

ToBeAcknowledged(m)

Copyright c© 2007 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 13

Receive Pattern ASM

Receive(m) = if Arriving(m) then

if ReadyToReceive(m) then

Consume(m)

if ToBeAcknowledged(m) then

BasicSend(Ack (m), sender (m))

elseif ToBeDiscarded(m) then

Discard(m)

else Buffer(m)

where Buffer(m) =

if ToBeBuffered(m) then

Enqueue(m)

enqueueTime(m) := now

if DequeueTime then Dequeue

Copyright c© 2007 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 14

Instantiating Variations of Receive

Receiveblocking = Receive

where forall m

ToBeDiscarded(m) = false = ToBeBuffered(m)

DequeueTime = false

no message is discarded or buffered

therefore an Arriving(m) upon not ReadyToReceive(m) blocks the
machine until ReadyToReceive(m)

Receivediscard = Receive where forall m

ReadyToReceive(m) = false ⇒ ToBeDiscarded(m) = true

Receivebuffer = Receive where forall m

ReadyToReceive(m) = false ⇒
ToBeDiscarded = false

ToBeBuffered(m) = true

Copyright c© 2007 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 15

Pattern Send/Receive: combining Send and Receive

receiving a response to a previously sent request

“a common item of information in the request and the response that
allows these two messages to be unequivocally related to one another”:
captured by dynamic sets RequestMsg , ResponseMsg with functions
requestMsg : ResponseMsg → RequestMsg identifying
requestMsg(m) to which m is the responseMsg

MODULE SendReceives ,t = Sends ∪ {Receivet(m)}
where

Arriving(m) = Arrived(m) and m ∈ ResponseMsg

ResponseMsg = {m | m = responseMsg(requestMsg(m))}
typical assumption: after having Initialized WaitingFor (m)
through FirstSend(m), WaitingFor (m) is set at the recipient(m)
to false when responseMsg(m) is defined—so that Receive and
UnblockSend can be called for responseMsg(m)

Copyright c© 2007 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 16

Pattern Receive/Send: combining Receive and Send

symmetric to Send/Receive but letting receiving a request precede
sending the answer

refining SendMode(m) by adding the condition m ∈ ResponseMsg to
guarantee that sending out an answer message is preceded by having
received a corresponding request message

MODULE ReceiveSendt ,s = {Receivet(m)} ∪ Sends

where

SendMode(m) = SendModet(m) and m ∈ ResponseMsg

ResponseMsg = {responseMsg(m) | ReceivedMsg(m)}

An example appears in the web service mediator model by
Altenhofen-Boerger-Lemcke (ICFEM 2005)

Copyright c© 2007 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 17

4 Basic Components of Multilateral Interaction Patterns

allowing multiple recipients or senders in each basic bilateral
interaction pattern

again each pattern describes one side of an interaction, resulting in a
mono-agent ASM (or module)

Refinements of those 4 basic patterns suffice to compose any other
multilateral interaction pattern, of whatever structural complexity.

Copyright c© 2007 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 18

One-to-many Send Pattern: refining BasicSend

broadcast action: one agent sends messages to several recipients

”number of parties to whom a message is sent may or may not be
known at design time”: captured by a dynamic set Recipient

message contents may differ from one recipient to another,
”instantiating a template with data that varies from one party to
another”:

msgContent : MsgTemplate × Recipient → Message

variations by refining the abstract predicates like FaultMode(m) or
SendMode(m) accordingly

OneToManySends = Sends where

BasicSend(m) = forall r ∈ Recipient(m)

AtomicSendtype(m,r)(msgContent(m, r))

Copyright c© 2007 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 19

One-from-many Receive Pattern

correlate messages, received from autonomous multiple parties, into
groups of given types, whose consolidation may complete successfully,
e.g. into a single logical request, or trigger a failure process

MODULE OneFromManyReceivet =

{Receivet} ∪GroupRules where

ReadyToReceive(m) = Accepting(type(m))

determining which incoming mssgs should be grouped together

permits one open correlation group per mssg type

Consume(m) = let t = type(m) in

if Accepting(currGroup(t)) stop condition: number of

mssgs to be received not necessarily known in advance

then insert m into currGroup(t)

else InitializeInsert(m, new (Group(t)))

ToBeDiscarded(m) = not Accepting(type(m)) no buffering
Copyright c© 2007 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 20

Group Rules: Creation and Initialization

GroupRules = {CreateGroup(type),Consolidate(group),

CloseCurrGroup(type),CloseGroup(type)}

CreateGroup(type) = Requirement: can occur at any time

if GroupCreationEvent(type) then

let g = new (Group(type)) in InitializeGroup(g)

InitializeGroup(g) =

Accepting(g) := true

currGroup(type(g)) := g

timer (g) := now

InitializeInsert(m, g) =

InitializeGroup(g)

insert m into g

Copyright c© 2007 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 21

Group Rules: Consolidation and Closure

Consolidate(group) = if Completed(group) then

if Success(group) correlation may complete successfully or not

depending on the set of messages gathered

then ProcessSuccess(group)

else ProcessFailure(group)

CloseCurrGroup(type) =

if Timeout(currGroup(type)) or Completed(currGroup(type))

Requirement: The arrival of mssgs needs to be timely enough

for their correlation as a single logical request

then Accepting(currGroup(type)) := false

CloseGroup(type) =

if ClosureEvent(type) then Accepting(type) := false

Copyright c© 2007 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 22

One-to-many Send/Receive Pattern

receiving responses from multiple recipients to a previously sent
request: composing OneToManySend and
OneFromManyReceive

responses are expected within a given timeframe: include
SetWaitCondition update sendTime(m) := now into Send
machine to determine the Accepting predicate in
OneFromManyReceive

some parties may not respond , either not at all or not in time

MODULE OneToManySendReceives ,t =

OneToManySends ∪OneFromManyReceivet

where

Arriving(m) = Arrived(m) and m ∈ ResponseMsg

An instance appears in the web service mediator model by
Altenhofen-Boerger-Lemcke (ICFEM 2005)

Copyright c© 2007 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 23

One-from-many Receive/Send Pattern

Composing OneFromManyReceive/OneToManySend

SendMode refined to guarantee that in any round, sent messages are
responses to completed groups of received requests

responseMsg is defined not on received messages, but on their
correlation groups formed by OneFromManyReceive

MODULE OneFromManyReceiveSendt ,s =

OneFromManyReceivet ∪OneToManySends

where SendMode(m) =

SendMode(m)s and m = responseMsg(g)

for some g ∈ Group with Completed(g)

Generalizes abstract communication model for distributed systems
proposed by Glässer et al.(IEEE Trans.SwEngg 2004): communicators
route messages through a network by forwarding into the mailboxes of
the Recipients the mssgs found in the communicator’s mailbox

Copyright c© 2007 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 24

Composition of basic interaction patterns

Two ways to define complex business process interaction patterns,
whether

mono-agent (bilateral and multilateral) patterns or

asynchronous multi-agent patterns

from the eight basic interaction pattern ASMs:

refining the interaction rules to tailor them to the needs of particular
interaction steps

investigating the order and timing of single interaction steps in
(typically longer lasting) runs of interacting agents

– leading to the analysis of runs of async ASMs (Co-Design FSMs with
generalized state), extending classical workflow analysis by studying
the effect of allowing some agents to Start or Suspend or
Resume or Stop such collaborations (thread handling analysis)

Copyright c© 2007 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 25

Competing Receive Pattern: Requirements

racing between incoming messages of various types

exactly one among possibly multiple received messages will be chosen
for a Continuation

simultaneously one should also ProcessRemainingResponses

an EscalationProcedure should be triggered in case of a
Timeout

no buffering is foreseen in this pattern

Copyright c© 2007 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 26

Competing Receive ASM: Refining Consume in Receive

CompetingReceive = Receive where

ReadyToReceive(m) = (independent of m)

waitingForResponse(Type) and not Timeout

Arriving(m) = true (independent of m)

Consume =

let ReceivedResponse(Type) =

{r | Received(r) and Response(r , t) forsome t ∈ Type}
if ReceivedResponse(Type) 6= ∅ then

let resp = select(ReceivedResponse(Type))

Continuation(resp)

ProcessRemainingResp

(ReceivedResponse(Type) \ {resp})
waitingForResponse(Type) := false

Copyright c© 2007 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 27

Competing Receive (Cont’d): Refining Discarding

ToBeDiscarded(m) =

Timeout or not waitingForResponse(Type)

Discard =

if not waitingForResponse(Type) then

ProcessLateResponses

if Timeout then EscalationProcedure

Copyright c© 2007 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 28

Multi-response Pattern

A multi-transmission instance of SendReceive where the requester
may receive multiple responses from the recipient “until no further
responses are required”

no further responses r for a request m will be accepted (and
presumably discarded) for any of the following reasons:

– a response informing that no FurtherResponseExpected(m)
(predicate to be set during the initialization rule in
SetWaitCondition(m))

– expiry of the request deadline(m): time elapsed since the
sendTime(m), set in SetWaitCondition(m) when the
request m was sent

– expiry of the lastResponseDeadline(m): time that elapsed since the
last response to request message m has been received. To define this
it suffices to refine Consume(m) by setting
lastResponseTime(requestMsg(m)) := now

Copyright c© 2007 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 29

Multi-response ASM: Refining SendReceive

MODULE MultiResponses ,t = SendReceives ,t

where

SetWaitCondition(m) =

SetWaitConditionSendReceives ,t
(m)

addRule FurtherResponseExpected(m) := true

ReadyToReceive(m) =

FurtherResponseExpected(requestMsg(m)) and

not Timeout(requestMsg(m))

Consume(m) = ConsumeSendReceives ,t
(m)

addRule lastResponseTime(requestMsg(m)) := now

ToBeDiscarded(m) = not ReadyToReceive(m)

Timeout(m) = Expired(deadline(m)) or

Expired(lastResponseDeadline(m))

Copyright c© 2007 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 30

Transactional Multicast Notify (Generalized Master-Slave)

notification Recipient(m)s are arranged in groups, allowing in groups
also further groups as members (arbitrary nesting)

within each group g a certain number of members, typically between a
minimum acceptMin(m, g) and a maximum acceptMax (m, g)
(initialized in SetWaitcondition), are expected (by the master)
to “accept” the request m within a certain timeframe Timeout(m)

NB. Nested group structure represented as a recipientTree(m).
Leaves are pictorially represented by circles, groups by rectangles

Copyright c© 2007 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 31

Transactional Multicast Notify: Acceptance notion

in the recipientTree(m)

– nodes (except the root) stand for groups or recipients

– children(n) represents a group for each non-leaf n. Since each inner
node has a unique such group, every corresponding currGroup(t) is
kept open by defining it as Accepting .

– Leaves(recipientTree(m)) defines the set Recipient(m)

Acceptance computed by master as part of PerformAction(m),
specified as derived predicate by a recursion on recipientTree(m),
abstracting from the underlying tree walk algorithm:

Accept(n) ⇔| {c ∈ children(n) | Accept(c)} |≥
acceptMin(m, children(n))

Accept(leaf) ⇔ from leaf some r ∈ ResponseMsg(m)
was received such that AcceptMsg(r)

By defining type(r) = r for any response mssg r , currGroup(r)
collects all the AcceptMsgs received from brothers of sender (r)

Copyright c© 2007 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 32

Transactional Multicast Notification: priority driven selection

at Timeout(m) more than acceptMax (m, g) accepting messages may
have arrived

a “priority” function chooseAccChildren selects an appropriate set of
accepting children among the elements of children(n)

chooseAccChildren(n) = ∅ if | AcceptChildren(n) |< acceptMin(m, children(n))

⊆min,max AcceptChildren(n) else

where

AcceptChildren(n) = {c ∈ children(n) | Accept(n)}
min = acceptMin(m, children(n))

max = acceptMax (m, children(n))

A ⊆l ,h B ⇔ A ⊆ B and l ≤| A |≤ h

Copyright c© 2007 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 33

Transactional Multicast Notification: chosenAccParty(root)

the elements of all the selected sets constitute the
chosenAccParty(root) of recipients, defined as derived set by
recursion on recipientTree(m) as follows:

chosenAccParty(leaf) =

 {n} if Accept(n)

∅ else

chosenAccParty(n) =
⋃

c∈chooseAccChildren(n) chosenAccParty(c)

Copyright c© 2007 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 34

TransactionalMulticastNotify Master ASM

MODULE TransactionalMulticastNotifyt =
OneToManySendReceiveackBlocking ,t where

WaitingFor (m) = not Timeout(m)

status=blocked(m) to receive AcceptMsges from Recipients

SetWaitCondition(m) = SetWaitconditionOTMSR(m)

addRule

InitializeMinMax(m)

InitializeCurrGroup(m) where

InitializeMinMax(m) =

forall g = children(n) ∈ recipientTree(m)

Initialize(acceptMin(m, g), acceptMax (m, g))

InitializeCurrGroup(m) = forall r ∈ Recipient(m)

currGroup(r) := ∅

Copyright c© 2007 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 35

TransactionalMulticastNotify Master ASM (Cont’d)

type(response) = response

Accepting(response) = response ∈ AcceptMsg and

not Timeout(requestMsg(response))

currGroup(response) = currGroup(sender (response))

currGroup(recipient) = derived set, depending on Accept(leaf)

brothers&sisters(recipient) ∩ {leaf | Accept(leaf)}
Accepting(currGroup(r)) = true

PerformAction(m) =

if Accept(root(recipientTree(m))) then let

accParty = chosenAccParty(root(recipientTree(m)))

others = Leaves(recipientTree(m)) \ accParty in

Process(fullRequest(m), accParty , others)

else RejectProcess(m)

Copyright c© 2007 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 36

Multi-round One-to-many Send/Receive: Requirements (1)

multiple one-to-many sends, each followed by one-from-many receives

no a priori bound on number of receiving/responding parties: dynamic
set Recipient

no a priori bound on number of previously sent requests

– dynamic set ReqHistory where currReq has to be stored when a
new currRequest is sent out

– WaitingFor , sendTime and blocked may depend on both the
message template m and the recipient r

each response message is assumed to be a response to (exactly) one of
the sent requests: define type(m) for m ∈ ResponseMsg as the
requestMsg(m) that triggered the response m

Copyright c© 2007 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 37

Multi-round One-to-many Send/Receive: Requirements (2)

every request r is allowed to trigger more than one response m from
each recipient (apparently without limit)

– generalize responseMsg to a relation responseMsg(m, r)

– therefore currGroup(request) represents the current collection of
responses received to request

“the latest response . . . overrides the latest status of the data . . .
provided, although previous states are also maintained”

– abstract derived set ResponseSoFar

– additional machine MaintainDataStatus keeping track of the
dataStatus of previous states for any request (submachine of
Consume)

– ResponseSoFar =⋃
{Group(m) | m ∈ ReqHistory} ∪ {currGroup(currReq)}

Copyright c© 2007 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 38

MultiRoundOneToManySendReceive ASM

MODULE MultiRoundOneToManySendReceive =

OneToManySendReceive where

SendMode(m) = SendMode(m)OTMSR and

forall r ∈ Recipient(m) ReadyToSendTo(m, r)

SetWaitCondition(m) =

forall r ∈ Recipient(m)

Initialize(WaitingFor (m, r))

sendTime(m, r) := now

status := blocked(m, r)

insert currRequest into ReqHistory

currRequest := m

type(m) = requestMsg(m)

Consume(m) = Consume(m)OTMSR

addRule MaintainDataStatus(Group(requestMsg(m)))

Copyright c© 2007 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 39

Request With Referral: a 2-agent Pattern

a sender of requests, apparently without any reliability assumption:
SendnoAck module

a receiver (called referral agent) from where “any follow-up response
should be sent to a number of other parties . . .”

– refine Consume submachine of Receive to contain
OneToManySend for the set Recipient(m) encoded as set of
followUpResponseAddressees extracted from m

– since the follow-up response parties (read: Recipient(m)) may be
chosen depending on the evaluation of certain conditions,
followUpResponseAddr can be thought of as a set of pairs of form
(cond , adr) where cond enters the definition of SendMode(m)

faults “could alternatively be sent to another nominated party or in
fact to the sender”

– followUpResponseAddr may be split into disjoint subsets
failureAddr and normalAddr

Copyright c© 2007 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 40

2-Agent ASM RequestReferral

2-Agent ASM RequestReferral =

Sender agent with module SendnoAck

Referral agent with module Receive

where

Consume(m) = OneToManySend(Recipient(m))

Recipient(m) = followUpResponseAddr (m)

Copyright c© 2007 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 41

Enriching RequestReferral by Advanced Notification

an advanced notification should be sent by the original sender to the
other parties informing them that the request will be serviced by the
original receiver

sender may first send his request m to the receiver and only later
inform the receiver (and the to-be-notified other parties) about
Recipient(m)

Refine in RequestReferral

SendnoAck by a machine with blocking acknowledgment, where
WaitingFor (m) means that Recipient(m) is not yet known and that
Timeout(m) has not yet happened

PerformAction(m) as a OneToManySend of the notification,
guarded by known(Recipient(m)

Copyright c© 2007 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 42

2-Agent ASM NotifiedRequestReferral

Sender module SendackBlocking ∪ {OneToManySend} where

WaitingFor (m) =

not known(Recipient(m)) and not Timeout(m)

PerformAction(m) =

if not known(Recipient(m)) then SendFailure(m)

else OneToManySend(advancedNotif (m))

Referral module Receive as in RequestReferral

Copyright c© 2007 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 43

Relayed Request: Another Refinement of RequestReferral

Additional requirements:

the other parties continue interacting with the original sender

original receiver “observes a ‘view’ of the interactions including faults”

interacting parties are aware of this ‘view’

Refinements to capture the new requirements:

equip the sender also with a machine to Receive messages from
third parties

introducing a set Server of third party agents, each equipped with

– Receive

– Send&Audit refining Send by the required observer mechanism

Copyright c© 2007 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 44

Multiple Agent ASM RelayedRequest

n+2-Agent ASM RelayedRequest =

2-Agent ASM RequestReferral

where module(Sender) =

moduleRequestReferral(Sender) ∪ {Receive}
n Server agents with module {Receive,Send&Audit}

where

Send&Audit = Sends with

BasicSend = BasicSends ∪
{if AuditCondition(m) then BasicSends(filtered(m))}

Copyright c© 2007 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 45

Dynamic Routing: Requirements

a first party “sends out requests to other parties”

– an instance of OneToManySend to Recipient(sender)

“these parties receive the request in a certain order encoded in the
request. When a party finishes processing its part of the overall
request, it sends it to a number of other parties depending on the
‘routing slip’ attached or contained in the request. This routing slip
can incorporate dynamic conditions based on data contained in the
original request or obtained in one of the ‘intermediate steps’.”

– third party agents Receive request mssgs m with routingSlip(m),
Consume requests by Processing them, forward a
furtherRequest(m, currState(router)) possibly depending on data
in currState(router)

“The set of parties through which the request should circulate might
not be known in advance. Moreover, these parties may not know each
other at design/build time”: dynamic set RoutingAgents

Copyright c© 2007 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 46

Multiple Agent ASM DynamicRouting

Multi-Agent ASM DynamicRouting =

Agent sender with module OneToManySend(Recipient(sender))

Agents router ∈ RouterAgent each with module Receive

where

Consume(m) =

Process(m) seq
OneToManySend(furtherRequest(m, currState(router)))

(Recipient(router , routingSlip(m, currState(router))))

Recipient set depends on the router agent and on the routingSlip
information

use of the ASM seq operator reflects an intrinsically sequential
behavior

Copyright c© 2007 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 47

What we would like to see to be done

a provably correct implementation of the pattern ASMs, e.g. by BPEL
programs, using the ASM model defined by
Farahbod-Glaesser-Vajihollahi for the semantics of BPEL

using the pattern ASMs for benchmarking existing implementations

defining rigorous ASM ground models for other interaction patterns by
combining refinements of basic bilateral and multilateral service
interaction pattern ASMs

mathematical study of conversation patterns (business process
interaction flows), viewed as runs of asynchronous multi-agent
interaction pattern ASMs

Copyright c© 2007 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 48

References

A. Barros and M. Dumas and A.H.M. ter Hofstede: Service Interaction
Patterns: Towards a reference framework for service-based business
process interconnection. FIT-TR-2005-02 Queensland University of
Technology, Brisbane (Australia)

A. Barros and E. Börger: A Compositional Framework for Service
Interaction Patterns and Communication Flows. Proc. ICFEM 2005,
Springer LNCS 3785 (2005) 5-35

AsmBook
E. Börger and R. F. Stärk: Abstract State Machines. A Method for
High-Level System Design and Analysis
Springer-Verlag. 2003

ASM Tutorial
E. Börger: The ASM Method for System Design and Analysis. A
Tutorial Introduction
Springer LNAI 3717 (2005), 264-283

Copyright c© 2007 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 49

