Egon Borger (Pisa)

Teaching ASMs

to practice-oriented students with limited mathematical background

References and course material can be found in the AsmBook:

E. Borger and R. F. Stark: Abstract State Machines
Springer 2003. pp.X+438.

Slides for courses on single chapters, themes and case studies are to
be found in ppt and pdf format on the CD coming with the book and
are also downloadable from the website:

http:/ /www.di.unipi.it/AsmBook/

Copyright (© 2003 Egon Borger, Dipartimento di Informatica, Universita di Pisa, Pisa, Italy. 1



3 principles for using rigorous mathematical methods (‘FMs’)

= Be problem and practice oriented (a didactical concern)

— Problem orientation. Study complex real-life systems by
mathematical methods, e.g. industrial case studies, real-life
architectures and programming languages, relevant and widely-used
protocols

— Practice orientation. Use ordinary mathematical notation and start
with an intuitive “working” definition of FMs, one a practitioner can
rely upon in his everyday work, without needing a PhD in logic

m Use state-based run-time oriented abstractions

— supporting the practitioners’ understanding of system behavior by
succinct, purely mathematical (read: platform-independent) but
Intuitive operational models

— supporting experimentation with abstract models instead of code,
using simulation and verification tools supporting validation and
verification of abstract models

Copyright (© 2003 Egon Borger, Dipartimento di Informatica, Universita di Pisa, Pisa, Italy.



3 principles for using rigorous math. methods (Cont’d)

s Separate different concerns

— Separate design from analysis avoiding restrictions imposed by
specific verification or validation methods

e to keep the design space open
e to keep structuring the design space open

— Separate different analysis types and levels (as we are used to
distinguish different design levels)

e separate experimental validation (system simulation and testing)
and mathematical verification

e separate distinct levels of verification

- reasoning for human inspection: proof ideas or proof sketches or
complete mathematical proofs

- mechanical design justification: interactive or automatic (theorem
proving or model checking)

Copyright (© 2003 Egon Borger, Dipartimento di Informatica, Universita di Pisa, Pisa, Italy. 3




3 reasons to use accurate methods in practice: abstraction

s Show the practical yield of abstractions, namely their help to

— exhibit bugs and gaps in real-life systems found through a verification
attempt or a simulation that exhibits a different behavior than the
expected or the real one

— provide maximal freedom to the implementor without hiding relevant
system features,

— provide precise flexible descriptions, at the appropriate level of
detailing and ready for reuse (in versioning, extensions, adaptations
to different application domains)

— simplify the design itself or its analysis. BUT: avoid to abstract from
relevant system details.

Copyright (© 2003 Egon Borger, Dipartimento di Informatica, Universita di Pisa, Pisa, Italy. 4



3 reasons to use accurate methods in practice: ground models|

» Show the practical usefulness of validatable and
verifiable “ground models”

— construct behavioral system ‘blueprints’ to rigorously capture the
intended meaning of the informal requirements

— use validation and verification of system behavior to exhibit, prior to
coding

e ambiguities,

® inconsistencies,

e incompleteness,

e misunderstanding (by humans)

Copyright (© 2003 Egon Borger, Dipartimento di Informatica, Universita di Pisa, Pisa, Italy.



3 reasons to use accurate methods in practice: refinement

s Show the practical role of refinement: a systematic way to

— separate orthogonal design decisions as support for a modular system
development, driven by design-for-change and design-for-reuse

— structure the design space by defining precise interfaces for the
system decomposition (software architecture)

— make design decisions and the design structure communicatable and
documentable for later reference

— explain different system views (e.g. for customer, developer, end
user, maintainer) In a coherent manner

— port generic programs to their instantiations in different
programmming languages and on different platforms in a
semantically transparent way

Copyright (© 2003 Egon Borger, Dipartimento di Informatica, Universita di Pisa, Pisa, Italy. 6



Basic ASMs: A Definition for the Working System Engineer

= Transition system transforming structures (sets of function
tables representing ‘abstract states') by rules of the form

if Condition then f(t),...,t,) =1
to be executed in parallel (abstract from unnecessary sequentialization)

= Allow also non-determinism and unbounded synchronous parallelism:

choose = with Property in Rule
forall z with Property do Rule

Asynchronous (distributed) ASMs

Generalize runs from sequences of moves of a basic ASM to partial
orders of moves of multiple agents, each executing a ‘basic’ ASM,
subject to a natural coherence condition.

Copyright (© 2003 Egon Borger, Dipartimento di Informatica, Universita di Pisa, Pisa, Italy.



}Alternative Definition: (Control State) ASMs Extending FSMs

‘Internal states’ 7 are generalized to structures

These structures contain in particular the ‘control state’ ct/ which may
assume as value each of the internal states ctl = 1

transitions are generalized to synchronous parallel updates of locations

including the update of ctl. A location is a table entry (pair of function
name and an argument), a structure is a set of function tables, where
a function table is an association of values to each location, also called
the ‘interpretation of the function (name)’ in the structure

Copyright (© 2003 Egon Borger, Dipartimento di Informatica, Universita di Pisa, Pisa, Italy. 8



Some real-life case studies

m Control systems: ground models for Production Cell (validated and
verified), Steam Boiler (validated), Falko (train scheduling and control
software at Siemens: validated), . ..

m Architectures: verifying pipelining of DLX, APE100, architecture
and compiler co-generation project (Teich), PVM, . ..

s Programming languages: semantics and compiler verification for
— Prolog on the WAM, Occam on the Transputer, Java on the JVM
—VHDL, SystemC, SDL-2000, ...

» Reuse of ASMs: adapting models and correctness proofs
— for Prolog/WAM to CLP(R)/CLAM and Protos-L /PAM
—for Java to C#

m Protocol verification: Kermit, group membership, (mobile)
network protocols, Kerberos (authentication), Needham-Schroeder
(cryptographic), cache-coherence for FLASH multiprocessor, . . .

m... (See AsmBook)

Copyright (© 2003 Egon Borger, Dipartimento di Informatica, Universita di Pisa, Pisa, Italy. 9



Tool Support for Simulation and Testing of ASMs

m ASM engines executing certain classes of ASMs:
— ML-based Workbench (G. Del Castillo, 2nd half of 90'ies),

extensively used for testing purposes and user-scenario simulations in
the Falko project at Siemens/Munich (5'98-3'99)

— Gofer-based AsmGofer (J. Schmid, 1998-2000), used among
others for experimenting with the Java/JVM models in Jbook

— C-based XASM (M. Anlauff, 1998-2001), used with Montages and
Teich's architecture and compiler co-generation method

— NET-based AsmL (FSE at MSR Redmond, since 2000) used in
particular for ground model validation at MS

m Coding-free user-scenario simulation: provide values of external fcts
from user-scenario (ExI: Falko project) (student homework!)

= Code ASMs directly in your favorite language (student homework!)

m Compile classes of ASMs, e.g. to C (Anlauff), C++ (J.Schmid), VHDL
(J.Schmid), C# (FSE), ...

Copyright (© 2003 Egon Borger, Dipartimento di Informatica, Universita di Pisa, Pisa, Italy. 10



Tool Support for Verification of ASMs

m Interactive theorem provers
— PVS (verified compiler back-ends: Verifix project)
— KIV (Prolog-to-WAM compilation completely verified)
— Isabelle (some steps of Prolog-to-WAM compilation verified)

= Model checkers (SMV model checker linked to ASM Workbench)

m Logic for ASMs (Stark/Nanchen, implementation ongoing by extension
of the KeY theorem proving environment, University of Karlsruhe)

See AsmBook Ch.8 for details

Copyright (© 2003 Egon Borger, Dipartimento di Informatica, Universita di Pisa, Pisa, Italy. 11



Reference: The AsmBook

E. Borger and R. F. Stark

Abstract State Machines

Springer 2003. pp.X+438.

Slides for lectures on single chapters, themes and case studies and
for an entire course on the CD coming with the book and downloadable

from the AsmBook Website (ppt and pdf):

http:/ /www.di.unipi.it/AsmBook/

Copyright (© 2003 Egon Borger, Dipartimento di Informatica, Universita di Pisa, Pisa, Italy. 12



