
Egon B�orger (Pisa)

Teaching ASMs

to practice-oriented students with limited mathematical background

References and course material can be found in the AsmBook:

E. B�orger and R. F. St�ark: Abstract State Machines

Springer 2003. pp.X+438.

Slides for courses on single chapters, themes and case studies are to
be found in ppt and pdf format on the CD coming with the book and
are also downloadable from the website:

http://www.di.unipi.it/AsmBook/

Copyright c 2003 Egon B�orger, Dipartimento di Informatica, Universit�a di Pisa, Pisa, Italy. 1



3 principles for using rigorous mathematical methods (`FMs')

Be problem and practice oriented (a didactical concern)

{ Problem orientation. Study complex real-life systems by
mathematical methods, e.g. industrial case studies, real-life
architectures and programming languages, relevant and widely-used
protocols

{ Practice orientation. Use ordinary mathematical notation and start
with an intuitive \working" de�nition of FMs, one a practitioner can
rely upon in his everyday work, without needing a PhD in logic

Use state-based run-time oriented abstractions

{ supporting the practitioners' understanding of system behavior by
succinct, purely mathematical (read: platform-independent) but
intuitive operational models

{ supporting experimentation with abstract models instead of code,
using simulation and veri�cation tools supporting validation and
veri�cation of abstract models

Copyright c 2003 Egon B�orger, Dipartimento di Informatica, Universit�a di Pisa, Pisa, Italy. 2



3 principles for using rigorous math. methods (Cont'd)

Separate di�erent concerns

{ Separate design from analysis avoiding restrictions imposed by
speci�c veri�cation or validation methods

� to keep the design space open

� to keep structuring the design space open

{ Separate di�erent analysis types and levels (as we are used to
distinguish di�erent design levels)

� separate experimental validation (system simulation and testing)
and mathematical veri�cation

� separate distinct levels of veri�cation

� reasoning for human inspection: proof ideas or proof sketches or
complete mathematical proofs

�mechanical design justi�cation: interactive or automatic (theorem
proving or model checking)

Copyright c 2003 Egon B�orger, Dipartimento di Informatica, Universit�a di Pisa, Pisa, Italy. 3



3 reasons to use accurate methods in practice: abstraction

Show the practical yield of abstractions, namely their help to

{ exhibit bugs and gaps in real-life systems found through a veri�cation
attempt or a simulation that exhibits a di�erent behavior than the
expected or the real one

{ provide maximal freedom to the implementor without hiding relevant
system features,

{ provide precise exible descriptions, at the appropriate level of
detailing and ready for reuse (in versioning, extensions, adaptations
to di�erent application domains)

{ simplify the design itself or its analysis. BUT: avoid to abstract from
relevant system details.

Copyright c 2003 Egon B�orger, Dipartimento di Informatica, Universit�a di Pisa, Pisa, Italy. 4



3 reasons to use accurate methods in practice: ground models

Show the practical usefulness of validatable and
veri�able \ground models"

{ construct behavioral system `blueprints' to rigorously capture the
intended meaning of the informal requirements

{ use validation and veri�cation of system behavior to exhibit, prior to
coding

� ambiguities,

� inconsistencies,

� incompleteness,

�misunderstanding (by humans)

Copyright c 2003 Egon B�orger, Dipartimento di Informatica, Universit�a di Pisa, Pisa, Italy. 5



3 reasons to use accurate methods in practice: re�nement

Show the practical role of re�nement: a systematic way to

{ separate orthogonal design decisions as support for a modular system
development, driven by design-for-change and design-for-reuse

{ structure the design space by de�ning precise interfaces for the
system decomposition (software architecture)

{make design decisions and the design structure communicatable and
documentable for later reference

{ explain di�erent system views (e.g. for customer, developer, end
user, maintainer) in a coherent manner

{ port generic programs to their instantiations in di�erent
programmming languages and on di�erent platforms in a
semantically transparent way

Copyright c 2003 Egon B�orger, Dipartimento di Informatica, Universit�a di Pisa, Pisa, Italy. 6



Basic ASMs: A De�nition for the Working System Engineer

Transition system transforming structures (sets of function
tables representing `abstract states') by rules of the form

if Condition then f (t1; : : : ; tn) := t

to be executed in parallel (abstract from unnecessary sequentialization)

Allow also non-determinism and unbounded synchronous parallelism:

choose x with Property in Rule
forall x with Property do Rule

Asynchronous (distributed) ASMs

Generalize runs from sequences of moves of a basic ASM to partial
orders of moves of multiple agents, each executing a `basic' ASM,
subject to a natural coherence condition.

Copyright c 2003 Egon B�orger, Dipartimento di Informatica, Universit�a di Pisa, Pisa, Italy. 7



Alternative De�nition: (Control State) ASMs Extending FSMs

`internal states' i are generalized to structures

These structures contain in particular the `control state' ctl which may
assume as value each of the internal states ctl = i

transitions are generalized to synchronous parallel updates of locations

including the update of ctl . A location is a table entry (pair of function
name and an argument), a structure is a set of function tables, where
a function table is an association of values to each location, also called
the `interpretation of the function (name)' in the structure

Copyright c 2003 Egon B�orger, Dipartimento di Informatica, Universit�a di Pisa, Pisa, Italy. 8



Some real-life case studies

Control systems: ground models for Production Cell (validated and
veri�ed), Steam Boiler (validated), Falko (train scheduling and control
software at Siemens: validated), : : :

Architectures: verifying pipelining of DLX, APE100, architecture
and compiler co-generation project (Teich), PVM; : : :

Programming languages: semantics and compiler veri�cation for

{ Prolog on the WAM, Occam on the Transputer, Java on the JVM

{ VHDL, SystemC, SDL-2000, : : :

Reuse of ASMs: adapting models and correctness proofs

{ for Prolog/WAM to CLP(R)/CLAM and Protos-L/PAM

{ for Java to C#

Protocol veri�cation: Kermit, group membership, (mobile)
network protocols, Kerberos (authentication), Needham-Schroeder
(cryptographic), cache-coherence for FLASH multiprocessor, : : :

: : : (See AsmBook)

Copyright c 2003 Egon B�orger, Dipartimento di Informatica, Universit�a di Pisa, Pisa, Italy. 9



Tool Support for Simulation and Testing of ASMs

ASM engines executing certain classes of ASMs:

{ML-based Workbench (G. Del Castillo, 2nd half of 90'ies),
extensively used for testing purposes and user-scenario simulations in
the Falko project at Siemens/Munich (5'98-3'99)

{ Gofer-based AsmGofer (J. Schmid, 1998-2000), used among
others for experimenting with the Java/JVM models in Jbook

{ C-based XASM (M. Anlau�, 1998-2001), used with Montages and
Teich's architecture and compiler co-generation method

{ .NET-based AsmL (FSE at MSR Redmond, since 2000) used in
particular for ground model validation at MS

Coding-free user-scenario simulation: provide values of external fcts
from user-scenario (Exl: Falko project) (student homework!)

Code ASMs directly in your favorite language (student homework!)

Compile classes of ASMs, e.g. to C (Anlau�), C++ (J.Schmid), VHDL
(J.Schmid), C# (FSE), : : :

Copyright c 2003 Egon B�orger, Dipartimento di Informatica, Universit�a di Pisa, Pisa, Italy. 10



Tool Support for Veri�cation of ASMs

Interactive theorem provers

{ PVS (veri�ed compiler back-ends: Veri�x project)

{ KIV (Prolog-to-WAM compilation completely veri�ed)

{ Isabelle (some steps of Prolog-to-WAM compilation veri�ed)

Model checkers (SMV model checker linked to ASM Workbench)

Logic for ASMs (St�ark/Nanchen, implementation ongoing by extension
of the KeY theorem proving environment, University of Karlsruhe)

See AsmBook Ch.8 for details

Copyright c 2003 Egon B�orger, Dipartimento di Informatica, Universit�a di Pisa, Pisa, Italy. 11



Reference: The AsmBook

E. B�orger and R. F. St�ark

Abstract State Machines

Springer 2003. pp.X+438.

Slides for lectures on single chapters, themes and case studies and
for an entire course on the CD coming with the book and downloadable
from the AsmBook Website (ppt and pdf):

http://www.di.unipi.it/AsmBook/

Copyright c 2003 Egon B�orger, Dipartimento di Informatica, Universit�a di Pisa, Pisa, Italy. 12


