
Egon Börger (Pisa)

Contributions of the ASM method to program verification

and some future challenges

Università di Pisa, Dipartimento di Informatica, I-56127 Pisa, Italy
boerger@di.unipi.it

Copyright c© 2006 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 1



Origin: Gurevich’s Idea of Sharpening Turing’s Thesis

1985 Notices of the Am.Math.Soc. 6(4):317 (TR UMich 1984)
First, we adapt Turing’s thesis to the case when only devices with
bounded resources are considered. Second, we define a more
general kind of abstract computational device, called dynamic
structures, and put forward the following new thesis: Every
computational device can be simulated by an appropriate dynamic
structure – of appropriately the same size – in real time; a uniform
family of computational devices can be uniformly simulated by an
appropriate family of dynamic structures in real time. In particular,
every sequential computational device can be simulated by an
appropriate sequential dynamic structure.

1995 : Definition of Evolving Algebras (Lipari Guide, OUP Book)

2000 : Proof of the sequential ASM thesis from three natural
postulates (ACM Trans.Comp.Logic 1(1):77-111).

– sequential ASMs correspond to quantifier-free interpretations in logic

Copyright c© 2006 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 2



1990-1992: Recognizing the Practical Relevance of ASMs

formulate ASM ground models (read: system blueprints capturing
requirements) & relevant properties in traditional math. terms, free
from formalization concerns for a specific logic lg or proof calculus

validate, experimentally, ground model properties and behavior by
simulation, performing experiments as systematic attempts to

– “falsify” the model in the Popperian sense against the to-be-encoded
piece of reality

– “inspect” ground model to check completeness and correctness wrt
requirements

– “check” model behavior by runtime verification and analysis, e.g.
testing characteristic sets of scenarios

verify , mathematically, desired ground model properties (e.g.
consistency, resolving conflicting objectives in requirements)

refine ground models in a mathematically verifiable way to compilable
code via hierarchies of ASM refinements reflecting design details

Copyright c© 2006 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 3



ASM Ground Models and their Provably Correct Refinements

ISO-PROLOG (method adopted for C, Cobol, Smalltalk, C++, . . .)

– horizontal refinements: Prolog core and built-in layers

• adding constraints: Colmerauer’s Prolog III and IBM’s CLP(R)

• adding polymorphic types: IBM’s Protos-L (FACJ ’96)

• adding functional programming: Babel (Madrid)

• adding declarative programming: Gödel (Lloyd/Hill)

• adding oo-features: OO-Prolog (B. Müller, Oldenburg)

• adding parallelism: Parlog, Concurrent Prolog, Guarded Horn
Clauses, Pandora

– vertical refinements:

• Prolog2WAM: 12 refinement steps, correctness proofs KIV-verified

• reused for CLP(R)2CLAM and Protos-L2PAM models/proofs

ITU-T SDL-2000, OASIS BPEL4WS (2006), ECMA C# (TCS’05),
IEEE VHDL93 refined to pictorial extension PHDL, to analog
VHDL/Verilog (Toshiba 1998/9), SystemC and SpecC (2001)

Copyright c© 2006 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 4



Starting 1992: Practicability Test of ASMs beyond Progg Lgs

Experimenting with ASM models beyond language interpreters

Architecture Design and VMs (method enhanced in Teich’s
architecture and compiler co-generation project since 2000)

– APE100 : programmer’s view ground model refined to
VLSI-implemented microprocessor with pipelining/VLIW parallelism

– DLX one-instruction-at-a-time RISC processor ground model refined
by standard pipelining methods: structural, data, control hazards

– PVM (Oak Nat Lab): distributed ground model at C-interface with
characteristic event handling and message-passing interface

– Transputer : 14 refinement steps linking Occam programmers’ ground
model to instruction set architecture (Computer J. 1996)

• Enhanced in German Verifix project for DEC-Alpha processor
family and compiler back-ends based on realistic intermediate lgs

Protocols: authentication, cryptography, cache-coherence,
routing-layers for mobile networks, group-membership, etc.

Copyright c© 2006 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 5



Starting 1994: ASMs for Industrial System Development (a)

From ASM ground models via refinement to control software:

– Steam Boiler Dagstuhl Seminar 1995 & LNCS 1165 with goal to
“contribute to a realistic comparison, from the point of view of
practicality for applications under industrial constraints, of the
major techniques which are currently available for formally
supported specification, design, and verification of large programs
and complex systems”

• ASM ground model, checkable to capture the requirements

• stepwise refined to C++ code controlling FZI simulator, each
intermediate model reflecting some design decision

– Production Cell : ASM ground model refined to C++ code to support

• code inspection (Dagstuhl Seminar 1997), changes, maintenance
(modularity, structural similarity of ground model and code)

• standard verification (PVS) and validation (model checking)
methods proving correctness, safety, performance, liveness, etc.

Copyright c© 2006 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 6



Starting 1994: ASMs in Industrial System Development (b)

Requirements Elicitation and Analysis: Light control Dagstuhl Seminar
1999 & JUCS 6(7), 2000: ASM method efficient to capture, validate
and document requirements by mix of rigorous, explicit (“formal”) and
interpretable implicit (“informal”) language elements

Code Generation from ASM model : reengineering project Falko
(May’98-March’99) creating first prototypical ASM based industrial
development environment supporting seamless flow from ASM ground
model definition to compilable code (using Schmid’s compiler to
C++), including high-level testing (using Del Castillo’s Workbench)
and code maintenance

Modeling Web Services: ASM ground model for Virtual Provider
refined to Semantic Web Service Discovery model (SAP 2005/6)

Modeling patterns for sw, communication, refinements: in progress

Integration of tool support for validation, verification, documentation,
maintenance: . . ., AsmL (2000), CoreAsm (2006)

Copyright c© 2006 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 7



Refinement for Management of Design Decisions

Needed: generalization of classical refinement method (Wirth/Dijkstra)

to cope with the “explosion of ‘derived requirements’ (the
requirements for a particular design solution) caused by the complexity
of the solution process” and encountered “when moving from
requirements to design” (Glass 2003, Fact 26)

to check and document by correctness proofs the design decisions
taken in linking through various levels of abstraction the system
architect’s view (at the abstraction level of a blueprint) to the
programmer’s view (at the level of detail of compilable code)

– split checking complex detailed properties into a series of simpler
checks of more abstract properties and their correct refinement

– provide systematic rigorous system development documentation,
including behavioral information and needed internal interfaces by
state-based abstractions

Copyright c© 2006 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 8



Foundation of Design Decisions: ASM Refinement Method

allows one to systematically separate, structure and document
orthogonal design decisions, relating different system aspects and
system architect’s to programmer’s views

supports

– cost-effective system maintenance and management of system
changes

– piecemeal system validation and verification techniques

σ1 · · · σn| {z }
n steps of M∗

-State S∗ S∗′

6

?

≡
6

?

≡

-State S S′

m steps of Mz }| {
τ1 · · · τm

With an equivalence notion ≡ between data in
locations of interest in corresponding states.

Copyright c© 2006 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 9



The parameters for defining an ASM refinement step

a notion of refined state

a notion of states of interest and of correspondence between M -states
S and M∗-states S∗ of interest, including usually initial/final states (if
there are any)

a notion of abstract computation segments τ1, . . . , τm, where each τi
represents a single M -step, and of corresponding refined computation
segments σ1, . . . , σn, of single M∗-steps σj, which in given runs lead
from corresponding states of interest to (usually the next)
corresponding states of interest (the resulting diagrams are called
(m, n)-diagrams and the refinements (m, n)-refinements)

a notion of locations of interest and of corresponding locations, i.e.
pairs of (possibly sets of) locations one wants to relate in
corresponding states

a notion of equivalence ≡ of the data in the locations of interest

Copyright c© 2006 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 10



ASM Method: Resumé

Supports, within a single precise yet simple conceptual framework , and
uniformly integrates the following activities/techniques:

the major software life cycle activities, linking in a controllable
way the two ends of the development of complex software systems:

– requirements capture by constructing rigorous ground models

– architectural and component design bridging the gap between
specification and code by piecemeal, systematically documented
detailing via stepwise refinement of models to code

– documentation for inspection, reuse, maintenance providing, via
intermediate models and their analysis, explicit descriptions of
software structure and major design decisions

the principal modeling and analysis techniques

– dynamic (operational) and static (declarative) descriptions

– validation (simulation) and verification (proof) methods at any
desired level of detail

Copyright c© 2006 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 11



Models and methods in the ASM-based development process

TEST
CASES

domains
transition system

stepwise
refinement
reflecting
design

dynamic functions
external functions

decisions

manual

mechanized

PROVER

adding assumptionsadding definitions

SIMULATOR

using data from
application domain

Verification

Application Domain Knowledge

Ground Model

Informal Requirements

Code

Validation

+

Copyright c© 2006 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 12



JVMI

C

T

E

O

Java I

C

E

T

O

imperative

static class features
(procedures)

exception
handling

concurrent
threads

oo features

compile

compile

compileO

compile

compileC

I

E

T

Java

Java

Java

Java

JVM

JVM

JVM

JVM

Case Study: ASM Modeling, Validation, Verification
R. Stärk, J. Schmid, E.Börger: Java and the JVM. Springer 2001.

horizontal refinement: Java/JVM ground models (reused for C#/CLR)

vertical refinement: via compilation and decomposition of JVM into
trustful, defensive, diligent (separating bytecode type assignment from
bytecode verification), dynamic (loading) machine

Copyright c© 2006 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 13



PC

PC

PC

Part II

(T
he

or
em

s 
7.

3.
1 

an
d 

8.
4.

1)
T

hr
ea

d 
S

yn
ch

ro
ni

za
tio

n 
an

d 
T

yp
e 

S
af

et
y

Type Safety and Compiler Soundness
(Theorems 8.4.1 and 14.2.1)

semantical equivalence

compile

Part IIIP
ar

t I

P
Java program

execJava
runs P

JVM program

(T
he

or
em

 1
6.

5)

C
om

pl
et

en
es

s
C

om
pi

le
r

typable
bytecode

(Theorem
 17.1)

Byte
co

de
 V

er
ifie

r

Com
pleteness/Soundness

assignment
bytecode type

defensiveVM
run−time checks

propagate type information
propagateVM

acceptsverifyVM

trustfulVM
runs in
diligentVM

no
 r

un
−

tim
e 

ch
ec

k 
vi

ol
at

io
ns

(T
he

or
em

 1
6.

4.
1)

B
yt

ec
od

e 
ty

pe
 a

ss
ig

nm
en

t S
ou

nd
ne

ss(Chap. 15) (Chap. 16)

(Chap. 17)

Copyright c© 2006 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 14



Mechanical Verification Technology Transfer Challenge

Starting from the structured and high-level ASM definition of Java and
of its implementation on the Java Virtual Machine

Verify : Theorem. Under explicitly stated conditions, any well-formed and
well-typed Java program:

upon correct compilation

passes the verifier

is executed on the JVM

– without violating any run-time checks

– correctly wrt Java source pgm semantics

in a way that can be applied by language developers, e.g. reused for
language extensions: C#, . . .

Copyright c© 2006 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 15



Hoare’s Logic-Based Verified Sw Grand Challenge Vision

“Construct a program verifier that would use logical proof to give an
automatic check of the correctness of programs submitted to it”

“program verifiers...transform a program and its specification into
verification conditions that can be discharged by the logical tools”

“The criterion of correctness is specified by types, assertions, and other
redundant annotations associated with the code of the program.”

But programming is more than producing annotated program texts!

T. Hoare: The Verifying Compiler : A Grand Challenge for Computing
Research. J. ACM 50.1 (2003) 63-69

T. Hoare and J. Misra: Verified software: theories, tools, experiments.
Vision of a Grand Challenge project (manuscript, July 2005)

Proc. IFIP Working Conference on the Program Verifier Challenge,
ETH Zürich, October 2005. Springer LNCS (in print)

Copyright c© 2006 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 16



Context where compilable code verification makes sense

Compilable programs are

software representations of computer-based systems, written for
mechanical elaboration by machines, not by humans

result of two development activities exercised mainly by humans and
not captured by a verifying compiler

– turning the requirements into ground models, defining application
centric system meaning abstractly and precisely, prior to coding

• calls for validation, by pragmatic reasoning and experiments, of the
application-domain-based correctness (semantical foundation)

– linking ground models to compilable code by a series of refinements,
which introduce step by step the details resulting from the design
decisions for the implementation

• calls for mathematical (not limited to logical) verification of
refinement correctness (foundation of design decisions)

Copyright c© 2006 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 17



3 Epistemological Ground Model Attributes

precise at appropriate level of detailing, excluding undesired
ambiguities: rigorous, but not more than needed (informal accuracy)

– semantically well founded (basis for verification and validation)

– overcoming infinite regress via

• inspection by domain experts establishing completeness &
correctness wrt empirical interpretation in intended requirements

• domain-specific reasoning checking properties (e.g. consistency)

minimal (abstract): abstracting from design details

simple and concise to be understandable & acceptable as contract by
domain experts/system designers

– using abstractions that “directly” reflect the structure of the
represented real-world phenomenon without extraneous encoding

– solving communication pbl: mediate bw software designers & domain
experts or real-world appl. domain & world of models

NB. These properties can be obtained with ASM models.

Copyright c© 2006 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 18



ASMs for Foundation of Ground Models & Design Decisions

Compilable programs, though often considered as the true definition of
the system they represent, seldom ground the design in reality

– needs investigation of correspondence between extra-logical
theoretical terms and their empirical interpretation (Carnap)

ASM ground models are math. application-centric system blueprints

– realizing justifiably correct transition from nat-lg descriptions to
formulations of mathematical nature that

• represent the algorithmic content (what Brooks calls “conceptual
construct” or “essence”) of the software contract, based upon a
clear empirical interpretation of the used concepts

ASM refinements provide a math. link from ground model construction
to verification of compilable code by verifying compiler

This calls for lifting Hoare’s verified sw challenge from program
verification to a discipline of verifiable system development

Copyright c© 2006 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 19



Challenges for Verified Software Project

refinement generator challenge: define practical model refinement
schemes (refinement patterns), which capture established programming
knowledge, together with justifications of their correctness—to turn
model properties into software interface assertions comprising
behavioral component aspects

– to be used where run-time features are crucial for a satisfactory
semantically founded correctness notion for code

refinement verifier challenge: enhance current logical or
computer-based verification systems by means to prove the correctness
of ASM refinement steps, enhancing work done with KIV/PVS and
exploiting link from Event-B to a class of ASMs

refinement validator challenge: link ground model refinements to tools
for generation and comparison of corresponding test runs of abstract
and refined machines (e.g. relating system and unit level test)

Copyright c© 2006 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 20



Challenges for Verified Software Project (Cont’d)

ground model pattern challenge: collect patterns of frequently
occurring model schemes, raising the level of abstraction of popular
programming and design patterns

runtime verifier challenge: instrument high-level model execution tools
(e.g. interpreters for ASMs or event-B models or model checkers for
TLA+ models) to monitor the truth of selected properties at runtime
(as done in AsmL), enabling in particular the exploration of ground
models to detect undesired or hidden effects or missing behavior

re-engineering method challenge: define methods to extract ground
models from legacy code as basis for analysis or re-implementation

system certification milestone: integrate ground model validation and
analysis into industrial system certification processes, e.g. formulating
the technical content of software reliability for embedded systems

verified compiler challenge: verify the verifying compiler itself

– extending the Verifix and related work with Coq etc.

Copyright c© 2006 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 21



References on ASM Method

E. Börger The ASM Ground Model Method as a foundation of
requirements engineering. LNCS 2772 (2003) 145-160

E. Börger The ASM Refinement Method . Formal Aspects of
Computing 15 (2003) 237-257

E. Börger and R. F. Stärk: Abstract State Machines.
Springer 2003. pp.X+438. http://www.di.unipi.it/AsmBook/

E. Börger: Linking Content Definition and Analysis to What the
Compiler Can Verify.
Proc. IFIP Working Conference on the Program Verifier Challenge,
ETH Zürich, October 2005. Springer LNCS (to appear)

Copyright c© 2006 Egon Börger, Dipartimento di Informatica, Università di Pisa, Pisa, Italy. 22


