
Egon Börger (Pisa)

An Architecture for Web Service Mediation and Discovery

Università di Pisa, Dipartimento di Informatica, I-56127 Pisa, Italy
boerger@di.unipi.it

In collaboration with
Michael Altenhofen, Andreas Friesen and Jens Lemcke
SAP Research, Karlsruhe, Germany

Copyright c© 2007 Altenhofen,Börger,Friesen,Lemcke 1



Goal

Provide a Programming Language Independent Precise Mediation Model

for mediation between message-based interactions of heterogeneous
systems. We want the model to be ‘designed for change’:

refinable (instantiatable) to current mediation concepts

offering accurate practical composition concepts

providing a basis for defining rigorous equivalence notions supporting

– discovery algorithms and service selection procedures in real-life
applications

– proofs of properties of interest in complex mediation schemes

offering abstractions for both data and data transformations (abstract
state and abstract behavior) that go beyond pure message sequencing
or control flow analysis

adaptable to different underlying communication mechanisms

Copyright c© 2007 Altenhofen,Börger,Friesen,Lemcke 2



The Method: using Machines operating on Abstract States

within a single precise yet simple conceptual framework

the ASM method naturally supports and uniformly links the major
activities occuring during the software life cycle:

requirements capture by constructing rigorous ASM ground
models, i.e. accurate concise high-level system blueprints (contracts)

architectural and component design bridging the gap between
specification and code by piecemeal, systematically documented
detailing of abstract models via intermediate models to code (general
ASM refinement notion)

validation of models by their tool-supported simulation

verification of model properties by tool-supported proof techniques

documentation for inspection, reuse and maintenance by providing,
through the intermediate models and their analysis, explicit
descriptions of the software structure and of the major design decisions

Copyright c© 2007 Altenhofen,Börger,Friesen,Lemcke 3



Variety of applications of ASMs (1)

industrial standards: ground models for the standards of

– OASIS for Business Process Execution Language for Web Services

– ECMA for C#

– ITU-T for SDL-2000

– IEEE for VHDL93

– ISO for Prolog

design, reengineering, testing of industrial systems:

– railway and mobile telephony network component software at
Siemens

– fire detection system in German coal mines

– implementation of behavioral interface specifications on the .NET
platform and conformence test of COM components at Microsoft

– compiler testing and test case generation tools

Copyright c© 2007 Altenhofen,Börger,Friesen,Lemcke 4



Variety of applications of ASMs (2)

programmming languages: definition and analysis of the
semantics and the implementation for the major real-life
programmming languages, among many others for example

– SystemC

– Java/JVM (including bytecode verifier)

– domain-specific languages used at the Union Bank of Switzerland

including the verification of numerous compilation schemes and
compiler back-ends

architectural design: verification (e.g. of pipelining schemes or of
VHDL-based hardware design at Siemens), architecture/compiler
co-exploration

protocols: for authentication, cryptography, cache-coherence,
routing-layers for distributed mobile ad hoc networks,
group-membership etc.

modeling e-commerce and web services (at SAP)

Copyright c© 2007 Altenhofen,Börger,Friesen,Lemcke 5



ASMs = FSMs with Abstract States

if ctl state = i then

if cond then

rule

ctl state := j

where cond ≡ input = a rule ≡ output := b for FSM

ASMs use parameterized locations and first-order conditions:

rule = set of updates f (t1, . . . , tn) := t

cond = arbitrary first-order formula

Copyright c© 2007 Altenhofen,Börger,Friesen,Lemcke 6



Basic Request Structure: Seq/Par Trees

each arriving request viewed as root of a seq/par tree of subrequests,
forwarded to and answered by subproviders

subrequests (seq-subtree nodes) can be elaborated in sequence

– forwarded to and to be answered by subproviders before proceeding
to the next subrequest, until the final answer can be compiled

subrequests may consist of multiple independent subsubrequests
(par-subtree nodes)

next sequential subrequest may depend on received answers to the
subsubrequests of the current sequential subrequest

Nestings of such alternating seq/par trees and other more sophisticated
hierarchical subrequest structures can be obtained by appropriate
compositions of VPs.

Copyright c© 2007 Altenhofen,Börger,Friesen,Lemcke 7



Separating Tree Processing and Communication

VP defined as interface with five methods:

ReceiveReq for receiving request messages from clients

SendAnsw for sending answer messages back to clients

Process to handle ReceivedRequests via the seq/par tree of auxiliary
subrequests and answers received for them

SendReq for sending request messages to (sub-) providers

ReceiveAnsw for receiving answer messages from (sub-) providers

MODULE VirtualProvider =

ReceiveReq

SendAnsw

Process

SendReq

ReceiveAnsw

Copyright c© 2007 Altenhofen,Börger,Friesen,Lemcke 8



Send/Receive Machines (Abstract Msgg Passing)

ReceiveReq(inReqMssg ,ReqObj ) =

if ReceivedReq(inReqMssg) then

CreateNewReqObj(inReqMssg ,ReqObj )

where CreateNewReqObj(m,R) =

let r = New (R) in Initialize(r ,m)

SendAnsw(outAnswMssg , SentAnswToMailer ) =

if SentAnswToMailer(outAnswMssg) then Send(outAnswMssg)

SendReq(outReqMssg , SentReqToMailer ) =

if SentReqToMailer(outreqMssg) then Send(outReqMssg)

ReceiveAnsw(inAnswMssg ,AnswerSet) =

if ReceivedAnsw(inAnswMssg) then

insert answer (inAnswMssg) into

AnswerSet(requestor (inAnswMssg))

Copyright c© 2007 Altenhofen,Börger,Friesen,Lemcke 9



VIRTUALPROVIDER

PROCESS

Scheduler

InReqMssg

OutAnswMssg InAnswMssg

OutReqMssg
SENDREQ

SENDANSW

RECEIVEREQ

RECEIVEANSW

Compositional VP Architecture

Sequential composition VP1 . . .VPn by connecting the communication
interfaces:

SendReq of VPi to ReceiveReq of VPi+1

– data mediation bw VPi -OutReqMssg and VPi+1-InReqMssg

SendAnsw of VPi+1 to ReceiveAnsw of VPi

– data mediation bw VPi+1-OutAnswMssg and VPi -InAnswMssg

Copyright c© 2007 Altenhofen,Börger,Friesen,Lemcke 10



Composing VP Mediator Structures: Example

A F
B C

D E

Fig. 0.1.

A

VP1

FB C D E

VP2 VP3

I I
I I

I
I

II III

I III II

InitialRequest FinalAnswer

Fig. 0.2.

Copyright c© 2007 Altenhofen,Börger,Friesen,Lemcke 11



SUBPROCESS-
ITERATOR(currReqObj)

started

compileAnswer

COMPILEOUTANSWMSG
for 

currReqObj
deliver

The core PROCESS(currReqObj) machine

currReqObj yields a sequence of SubRequests, to be elaborated by
an Iterator on SeqSubReq(currReqObj)

AnswMsg to the currReqObject is compiled from the
AnswerSet(seqReq) of all answers collected from the subrequests

CompileOutAnswMsg for o =

if AnswToBeSent(o) then

SentAnswToMailer (outAnsw2Msg(outAnswer (o))) := true

Copyright c© 2007 Altenhofen,Börger,Friesen,Lemcke 12



Elaboration of Sequential Subrequests: SubProcessIterator

SubProcessIterator(currReqObj ) =

InitializeIterator(currReqObj ) seq

IterateSubReqProcessg(currReqObj ) until

FinishedSubReqProcessg

where

yes(FinishedSubReqProcessg) = compileAnswer

no(FinishedSubReqProcessg) =

initStatus(IterateSubReqProcessg)

Realizes the sequential part of the hierarchical VP request processing
view: each incoming (top level) request object currReqObj triggers the
sequential elaboration of a finite number of immediate subrequests,
members of a set SeqSubReq(currReqObj )

Copyright c© 2007 Altenhofen,Börger,Friesen,Lemcke 13



FEEDSENDREQ with 
ParSubReq(seqSubReq(currReqObj))

INITIALIZE(AnswerSet(seqSubReq(currReqObj)))

waitingForAnswers

CONCLUDESTEP

Elaboration of Parallel Subrequests: IterateSubReqProcessg

each sequential SubRequest triggers forwarding finitely many
independent parallel SubRequests and waitingForAnswers

ReceivedAnswers are collected in the AnswerSet(seqSubReq)

until AllAnswersReceived triggers PROCEEDing to NextSubRequest

FeedSendReq with ParSubReq(seqSubReq) =

forall s ∈ ParSubReq(seqSubReq)

SentReqToMailer (outReq2Msg(s)) := true

Copyright c© 2007 Altenhofen,Börger,Friesen,Lemcke 14



Submachine Macros

ConcludeStep =

if AllAnswersReceived then

ProceedToNextSubReq

status(currReqObj ) :=

Nxt(status(currReqObj ))

where Nxt(waitingForAnswers) =

testStatus(FinishedSubReqProcessg)

AllAnswersReceived =

let seqSubReq = seqSubReq(currReqObj ) in

for each req ∈ ToBeAnswered(ParSubReq(seqSubReq))

there is some answ ∈ AnswerSet(seqSubReq)

Initialize(AnswerSet(seqSubReq)) =

AnswerSet(seqSubReq) := ∅

Copyright c© 2007 Altenhofen,Börger,Friesen,Lemcke 15



Adapting Standard Iterator Pattern to SeqSubReq

InitializeIterator(currReqObj ) =

let r = FstSubReq(SeqSubReq(currReqObj )) in

seqSubReq := r

ParSubReq(r ) := FstParReq(r , currReqObj )

FinishedSubReqProcessg =

seqSubReq(currReqObj ) = Done(SeqSubReq(currReqObj ))

ProceedToNextSubReq = let

o = currReqObj

s = NxtSubReq(SeqSubReq(o), seqSubReq(o),AnswerSet(o)) in

seqSubReq(o) := s

ParSubReq(s) := NxtParReq(s , o,AnswerSet(o))

NxtSubReq and NxtParReq may depend on answers accumulated so far

Copyright c© 2007 Altenhofen,Börger,Friesen,Lemcke 16



Analysis of Mediators

Definition of ServiceBehavior

ServiceBehavior (VP) =
{(inReqMssg , outAnswerMssg) |

originator (outAnswerMssg) = inReqMssg}
– originator is retrievable by CompileOutAnswMssg from

currReqObj if recorded as part of Initialize by
CreateNewReqObj(inReqMssg ,ReqObj )

Definition of Service Equivalence

VP ≡ VP ′ iff
ServiceBehavior (VP) ≡ ServiceBehavior (VP ′)

where the equivalence of ServiceBehavior can be defined in terms of
message contents extracted from InReqMssg and OutAnswMssg

– opens space for practical, not syntax-based but content-driven
semantical ≡-notions

Copyright c© 2007 Altenhofen,Börger,Friesen,Lemcke 17



Refinement of Mediators: A Simple Example

Refine VP by internal state component

– for recording request and answer data:

ReceiveReq(inReqMssg) =
if ReceivedReq(inReqMssg ,ReqObj ) then

if NewRequest(inReqMssg) then
CreateNewReqObj(inReqMssg ,ReqObj )

else
let r = prevReqObj(inReqMssg) in

RefreshReqObj(r , inReqMssg)

NB. This is a simple (but frequently occurring) case of the general ASM
refinement concept.

Copyright c© 2007 Altenhofen,Börger,Friesen,Lemcke 18



Refinement of VP for Semantic Web Service Discovery

concept instantiations (data refinement)

rule extensions

Concept instantiation: changing “view” of the abstractions from
requests/answers to goals/webservices, formally resulting in the following
substitutions:

Req → Goal

Answ , Answer , AnswerSet → {SetofWS ,WS}
Process → ProcessGoal

ParSubReq(seqSubReq(currReqObj )) →
ParGoalQuery(currGoalObj )

SentReqToMailer → SentGoalToProvider (in SendGoal)

SentAnswToMailer → SentSetOfWSToRequestor (in
SendSetOfWS)

Reducing SubReqSeq to Singleton determined by currReqGoal

Copyright c© 2007 Altenhofen,Börger,Friesen,Lemcke 19



Extending VP ReceiveGoal for DiscoveryServiceProvider DSP

ReceiveGoal(inGoalMsg ,GoalObj ) =

if ReceivedGoal(inGoalMsg) then

CreateNewGoalObj(inGoalMsg ,GoalObj )

where

CreateNewGoalObj(m,R) =

let g = new (R) in

Initialize(g ,m)

Initialize(SetOfWS (g))

if NewGoal(g ,m) then

status(g) := started

else

status(g) := loopDetected

Initialize(SetOfWS (g)) = (SetOfWS (g) := ∅)

Copyright c© 2007 Altenhofen,Börger,Friesen,Lemcke 20



Extending ProcessGoal for DiscoveryServideProvider DSP

Detection of loops (receiving a request for an already processed goal) to
guarantee that no goal query is serviced twice

extension

SUBPROCESS-
ITERATOR(currGoalObj)

started

compileAnswer

COMPILEOUTSETOFWSMSG
for 

currGoalObj
deliver

loopDetected

Fig. 0.3.

Copyright c© 2007 Altenhofen,Börger,Friesen,Lemcke 21



Refined IterateSubReqProcessg for DSP

extension

FEEDSENDGOAL with 
ParGoalQuery(currGoalObj)

waitingForAnswers

Break-
Condition

CONCLUDESTEP
GENERATE-
EXCEPTION

y n

Fig. 0.4.

Typical BreakCondition: timeout. SubReqSeq reduces to singleton,
reducing SubProcessIterator

Copyright c© 2007 Altenhofen,Börger,Friesen,Lemcke 22



Discovery Engine

DiscoveryEngine =

choose M ∈ {ReceiveGoal,SendSetOfWS} ∪
{MatchGoal}

M

Interface with three main methods:

ReceiveGoal for receiving goal queries from a requestor DSP

SendSetOfWS for sending sets of found Web services back to the
associated DSP

MatchGoal to handle ReceivedGoals (elements of a set GoalObj
of internal representations of received goals, say as goal objects),
typically by filtering and matching the locally available set of Web
services to service the currently handled goal request currGoalObj

Copyright c© 2007 Altenhofen,Börger,Friesen,Lemcke 23



MatchGoal submachine

Goal: stepwise reduction of the initial set inSetOfWS of Web services to
the final set of goal matching Web services, which is sent to DSP

MatchGoal(currGoalObj ) =

if status(currGoalObj ) = started then

Prefiltering(currGoalObj )

seq SemanticMatchmaking(currGoalObj )

seq QoSMatchmaking(currGoalObj )

seq

CompileOutSetOfWSMsg from currReqObj

status(currGoalObj ) := deliver

Prefiltering, SemanticMatchmaking and
QoSMatchmaking can be further and independently refined to
implement different filtering and matchmaking methods or strategies.

Copyright c© 2007 Altenhofen,Börger,Friesen,Lemcke 24



Applications and Future Work

Evaluate competing approaches in terms of the VP model abstractions

Implement a VP platform as mediation pattern

Analyse impact on VP of more general communication patterns

– ReceiveReq and SendAnsw: basic bilateral service interaction
patterns

– FeedSendReq with SendReq: instance of basic multilateral
mono-agent service interaction pattern OneToManySend

– ReceiveAnsw until AllAnswersReceived : instance of basic
multilateral mono-agent OneFromManyReceive pattern

Formulate and prove properties for practical VP instances

Copyright c© 2007 Altenhofen,Börger,Friesen,Lemcke 25



References

M. Altenhofen and E. Börger and J. Lemcke: An Abstract Model for
Process Mediation

– Proc. ICFEM 2005, Springer LNCS 3785, pp. 81-95

M. Altenhofen and E. Börger and A. Friesen and J. Lemcke: An
High-Level Specification for Virtual Providers

– International J. for Business Process Integration Management 2006

A. Barros and E. Börger: A compositional framework for service
interaction patterns and communication flows

– Proc. ICFEM 2005, Springer LNCS 3785, pp. 5-35

E. Börger: The ASM Refinement Method

– Formal Aspects of Computing 15:237-257, 2003.

E. Börger and R. F. Stärk: Abstract State Machines

– Springer 2003. pp.X+438.

Copyright c© 2007 Altenhofen,Börger,Friesen,Lemcke 26


