Books and Proceedings

A. General Literature

A1 INTRODUCTORY AND SURVEY
See: 0402-0150 [D.2.2~ Visual Basic]; 0402-0153 {D.4.0—Linux};
0402-0167 {1.7.2—XML]

C. Computer Systems
Organization

c.0 GENERAL
See: 0402-0168 [1.7.4]

System Architectures
See also: 0402-0168 [1.7.4]

BORGER, E.; AND STARK, ROBERT F. 0402-0141
Abstract state machines: a method for high-level
system design and analysis.

Springer-Verlag, Secaucus, NJ, 2003, 420 pp.,

ISBN 3540007024.

One of the well-known issues incidental to systems engi-
neering and software development today is the relative
lack of sophistication of the level of training many stu-
dents receive in appreciating the nitty-gritty of real-world
projects. This can be contrasted with the impressive depth
of theoretical understanding, engendered in these same stu-
dents, in classical curricula in the computing sciences. In
recent years, this tendency has, fortunately, been subjected
to vigorous efforts at correction.

This book addresses the theory of abstract state machines
(ASM), a salutary effort to impart rigor to the entire span of
systems development, from requirements analysis to imple-
mentation, testing, and maintenance. The existing standard
practices of unified modeling language (UML), though
impressive when compared with the chaos they replaced,
are often limited namely, by the cumbersome, yet limited

The basm of the’ method is the use of abstraction and
stepwise refinement, well-known syntactic concepts, in a
semantic domain. This is possible because the method
rests on ASMs, which are, at the basic level, finite sets
of transitions rules that map or transform abstract states to
abstract states. (This is, in some ways, similar to Dijkstra’s
well known guarded command language). This formulation
allows for a greater mathematical rigor, and consequent
ease of proofs, than is possible under UML. (Standard
concepts from mathematical logic, such as completeness
and compactness, are proved with respect to the ASM
model).

Borger and Stark do an admirable job of documenting
and extending a method for bridging the considerable gap
between theoretical system models, which often only allow

for toy systems to be modeled and require proofs to be done
only by hand, and real-life systems and practices. While the
ASM method is still young (though the authors valiantly
strive to illustrate it with many real-life examples), it is no
doubt a stride in the right direction.

The authors have provided an accompanying CD, with
carefully created lecture slides, and have also presented
student problems throughout the book. This considerably
eases the burden on a prospective instructor who is consid-
ering adopting this book as a course text. Considering the
breadth of the material covered, however, it seems unlikely
that it can be presented entirely in one semester, even in a
graduate class (which is probably the only place for mate-
rial of this depth). For the same reason, it is also unlikely
that there will be many students able to absorb all of it.
Practitioners may be unfamiliar with the mathematics, and
computer science students may be unfamiliar with the prac-
tical issues involved.

—Shrisha Rao, Cedar Rapids, [A

GENERAL TERMS: DESIGN

KLIR, GEORGE J.; AND ELIAS, DOUG 0402-0142
Architecture of systems problem solving. ‘
. Da Capo Press, Inc., New York, NY, 2002, 349 pp.,

ISBN 0306473577.

One of the major characteristics of science in the sec-
ond half of the twentieth century was the emergence of
a number of related intellectual areas, such as cybernetics,
general systems research, information theory, control the-
ory, mathematical systems theory, decision theory, opera-
tions research, and artificial intelligence. All of those areas,
whose appearance and development are strongly correlated
with the origins and advances of computer technology,
have one thing in common: they deal with such systems
problems in which informational, relational, or structural
aspects predominate, whereas the kinds of entities that form
the system are considerably less significant. It has increas-
ingly been recognized that it is useful to view these inter-
related developments as parts of a larger field of inquiry,
usually referred to as systems science. A course that covers
systems fundamentals is now offered not only in systems
science, information science, or systems engineering pro-
grams, but in many programs in other disciplines as well.
This book could serve as a text for a first-year graduate
or upper-division undergraduate course covering the fun-
damentals of systems problem solving.

A unique feature of this book is that the concepts, prob-
lems, and methods are introduced within the context of an
architectural formulation of an expert system, referred to
as the general system’s problem solver (GSPS). The GSPS
architecture, which is developed throughout the book, facil-
itates a framework that is conducive to a coherent, compre-
hensive, and pragmatic coverage of systems fundamentals.

Computing Reviews « February 2004 69



