
Design for Reuse
via Structuring Techniques for ASMs

Case Study:

Decomposing and Layering the Java VM

Egon Börger

Dipartimento di Informatica, Universita di Pisa
http://www.di.unipi.it/~boerger

© Egon Börger: Decomposing & Layering JVM 2

Composition of ASMs via Standard RefinementsComposition of ASMs via Standard Refinements

Submachine concepts for reuse in modular designSubmachine concepts for reuse in modular design

© Egon Börger: Decomposing & Layering JVM 3

ASMs with recursive parameterized submachinesASMs with recursive parameterized submachines

E. Börger & J.Schmid: Composition and Submachine Concepts, LNCS 1862, 41-60 (2000)

© Egon Börger: Decomposing & Layering JVM 4

The Problem
Java/JVM claimed by SUN to be a safe and secure, platform independent
programming env for Internet: correctness problem for compiler, loader (name space
support), verifier, access right checker (security manager) , interpreter.

Usr. Usr.class InternetCompiler

Interpreter

LoaderVerifier

Preparator
Input

Output

Sys.class

JVM

insecure

Java

Run Time
Machine

© Egon Börger: Decomposing & Layering JVM 5

Goal of the ASM Java/JVM Project

Abstract (platform independent), rigorous but
transparent, modular definition providing basis for
mathematical and experimental analysis
– Reflecting SUN’s design decisions (faithful ground model)

– Offering correct high-level understanding (to be practically
useful for programmers)

– Providing rigorous, implementation independent basis for
• Analysis and Documentation (for designers) through

– Mathematical verification

– Experimental validation

– Comparison of different implementations

• Implementation (compiln, loading, bytecode verification, security schemes)

© Egon Börger: Decomposing & Layering JVM 6

Main Result
A Structured and High-Level Definition of Java
and of its Provably Correct and Secure Implementation
on the Java Virtual Machine

Theorem.Under explicitly stated conditions, any
well-formed and well-typed Java program:

• upon correct compilation

• passes the verifier

• is executed on the JVM

• executes
– without violating any run-time checks

– correctly wrt Java source pgm semantics

© Egon Börger: Decomposing & Layering JVM 7

Decomposition of JVM into Submachines
• trustfulVM: defines the execution functionality

incrementally from language layered submachines

execVM, switchVM
• defensiveVM: defines the verifier functionality,

in terms of trustfulVM execution, from the language
layered submachine check; calls trustfulVM for execution

• diligentVM: checks the constraints at link-time,

using a language layered submachine verifyVM;
calls trustfulVM for execution

• verifyVM built up from language layered submachines
check, propagateVM, succ

• dynamicVM: refine execVM, switchVM by class loading/linking

© Egon Börger: Decomposing & Layering JVM 8

Diagram notation for Control State ASMs

cond1

condn

…

rule1

rulen

meaning

if ctl = i then
if cond1 then rule1

ctl:=j1
….

if condn then rulen

ctl:=jn

labeling of the arrowslabeling of the arrows
byby ““controlcontrol”” statesstates
often suppressedoften suppressed

UML: combinedUML: combined
branching/actionbranching/action
nodesnodes

© Egon Börger: Decomposing & Layering JVM 9

Stepwise refinement of trustfulVM

execVM

switch=Noswitch

switchVM

yes

no

execVM and switchVM incrementally extended (language driven)

trustfulVMI = execVMI ⊆ execVMC ⊆ execVMO ⊆ execVME instructionwise
defining changes of current frame

switchVMC ⊆ switchVME defining changes of frame stack
reflecting meth call/return, class initialization, capturing exceptions

no

execVMN

yes
isNative(meth)

execVMN ⊆ execVMD

⊆ switchVMD

and class loading/linking

© Egon Börger: Decomposing & Layering JVM 10

Language driven layering of
Java, JVM, compiler

JavaI

JavaC

JavaE

JavaO

JVMI

JVMC

JVME

JVMO

imperative

static class features
(procedures)

exception
handling

oo features

Split into horizontal language components (conservative extensions)

compile

NB. Multiple Threads can be added in a conservative extension JavaT

© Egon Börger: Decomposing & Layering JVM 11

Language driven decomposition of execVM &

switchVM into parallel trustfulVM submachines

execVM = execVMI imperative control constructs

execVMC static class features (modules)

execVMO oo features

execVME exception handling

execVMN ⊆⊆⊆⊆ execVMD native JDK library meths (also for load/linking)

switchVM = switchVMC method call/return & class initialization

switchVME capturing exceptions

switchVMD loading and linking classes

NB. Grouping similar instructions into one parameterized abstract instr
(expanding type params a locally controllable data/operation refinement)

© Egon Börger: Decomposing & Layering JVM 12

STATE frame

code: Instr*
pc : Pc
reg: Reg !!!! Word

(local variables)
opd: Word*
meth

execVMexecVMII: untyped 32: untyped 32--bit word oriented stack machine supporting exec obit word oriented stack machine supporting exec o
compiled while pgm instructions (e.g. purely imperative Javacompiled while pgm instructions (e.g. purely imperative JavaII pgms)pgms)

These 7 abstract
instrs comprise
already 150 out
of 200 real JVM
instructions

Main guard
(suppressed)
halt = undef

© Egon Börger: Decomposing & Layering JVM 13

Adding class variables, class initialization, class meth invocatAdding class variables, class initialization, class meth invocation & returnion & return

cEnv: Class ---> ClassFile providing name, kind,
superclass, implemented interfaces, fields, meths,...

© Egon Börger: Decomposing & Layering JVM 14

Frame stack manipulating submachineFrame stack manipulating submachine (push/pop)(push/pop)

Before its use, after
having been loaded &
linked (by dynamic
VM), a class and its
superclasses have to
be initialized (implicit
call of a clinit
method upon exec of
Put/Get/Invoke)

© Egon Börger: Decomposing & Layering JVM 15

pushFrame(newMeth, args) =

stack := stack [(pc, reg, opd, meth)

meth := newMeth

pc := 0

reg := makeRegs(args)

opd := []

popFrampopFramee(o(offffseset;t; resulresult)t) ==

letlet (stac(stackk**;; [[(p(pcc**;; reregg**;; opopdd**;; metmethh**)]) =)]) =

split (stacsplit (stack;k; 1)1)

pcpc :=:= ppcc** ++ ooffffsetset

regreg :=:= reregg**

opdopd :=:= opopdd** .. resultresult

methmeth :=:= metmethh**

stackstack :=:= stacstackk**

© Egon Börger: Decomposing & Layering JVM 16

heap: Ref ---> Object (Class, Map (Class/Field,Val))

Instance method calls with
- early binding:InvokeSpecial,
where the method reference
contains the class of the
implementing method
- late binding: Invoke Virtual,
where the implementing
method is looked up
dynamically

Ref ⊆ Word

InstanceInstance creation/initializn, access, methods, type castscreation/initializn, access, methods, type casts

© Egon Börger: Decomposing & Layering JVM 17

execVMexecVMEE:: adding the effect of exception handling instructionsadding the effect of exception handling instructions
upon the current frameupon the current frame

Run-time exceptions

Instructions to
- raise an exception
- jump to subroutine
- return from subroutine

raise(c) defined e.g. by
switch:=Call(fail(c), []))

© Egon Börger: Decomposing & Layering JVM 18

Adding frame stack manipulations for exceptionsAdding frame stack manipulations for exceptions
Java try/catch implemented by tables of exceptions

(from, upto, handle, type)

continue searching
exc table of invoker

searching exc table
of current method
for handler

class becomes unusable
when clinit exc not caught
(recursively)

© Egon Börger: Decomposing & Layering JVM 19

Specify Native Methods of JDK Libraries: 2 ExlsSpecify Native Methods of JDK Libraries: 2 Exls

Executable version contains other native meths

e.g. for loading and resolving classes and for
newInstance to create an instance for a given class
object (see the extension execVMD of VMN below)

© Egon Börger: Decomposing & Layering JVM 20

Deriving the Bytecode Verifier Conditions from
Type Checking Runtime Constraints

• Defensive VM: Checks at run-time, before every
execution step, the “structural constraints” which
describe the verifier functionality (restrictions on
run-time data: argument types, valid Ret addresses,
resource bounds,…) guaranteeing “safe” execution

• Static constraints (well-formedness) checked at link-time.

• Theorem: If Defensive VM executes P
successfully, then so does Trustful VM, with the
same semantical effect.

© Egon Börger: Decomposing & Layering JVM 21

Stepwise refinement of defensiveVM

check incrementally extended , language layered as for trustfulVM

i.e. checkI extended by checkC

extended by checkO

extended by checkE

extended by checkN

extended by checkD

no

report failureswitch=Noswitch
yes

trustfulVM validCodeIndex
& check

yes no

no

no
trustfulVMN checkN

yes
yes

isNative(meth)

© Egon Börger: Decomposing & Layering JVM 22

Lifting execVM to reg and opd types

Words/word fcts refined by type information, yielding (val,typ) pairs

type frames (type(reg), type(opd)) where type selects types

Checking conditions formulated in terms of value types,
so that they can be lifted from run-time to link-time checks

JVM weakly typed: reg/opd locations can hold
int, float, low/high word of long or double

© Egon Börger: Decomposing & Layering JVM 23

Primops executed with right no/types of args, no opd over/underfPrimops executed with right no/types of args, no opd over/underflow,low, double words notdouble words not
swapped/operated componentwiseswapped/operated componentwise,, locvars assigned when accessedlocvars assigned when accessed

[single] ⊆ mv single (for single = int,float)
[lowLD,highLD] ⊆ mv LD

for LD = Long,Double

validTypeSeq([])
validTypeSeq([t]) = not isHigh(t)
validTypeSeq([]) = not isHigh(t)
isHigh(t) = (t=highLong or

t = highDouble)

⊆ mv condition implies: a) reg(x) is assigned (regT(x)≠undef) when accessed
b) stored double words have correct low/high types

© Egon Börger: Decomposing & Layering JVM 24

Checking JVMChecking JVMCC instructionsinstructions for types of class fieldsfor types of class fields
and of method invocation arguments/resultsand of method invocation arguments/results

a)a) types of values put into class fields are compatible with theirtypes of values put into class fields are compatible with their declared typesdeclared types

b)b) types of actual args in class meth invocations are compatible witypes of actual args in class meth invocations are compatible with formal paramsth formal params

c)c) type of any returned result is compatible with the return type otype of any returned result is compatible with the return type of the method, which inf the method, which in
turn is compatible with the move type as specified by the instruturn is compatible with the move type as specified by the instruction parameterction parameter

[] ⊆ mv void

See later refinement by endinit for returns from instance initializn methods

© Egon Börger: Decomposing & Layering JVM 25

Compatibility refined by inher hierchy, field access/method callCompatibility refined by inher hierchy, field access/method call only for initd instancesonly for initd instances

Compatibility refined by inher hierchy, field access/method callCompatibility refined by inher hierchy, field access/method call only for initd instancesonly for initd instances

target ref type is initld subtype of param

top of opd stack has initialized ref type

Constraint on constructor invokations
on un-/partially initialized objects

Constraint on initializn status (in
regT(0)) upon return from an init

© Egon Börger: Decomposing & Layering JVM 26

Updating initState of objects in switchVM upon calling instanceUpdating initState of objects in switchVM upon calling instance initialization methsinitialization meths
along class hierarchy (only upon unalong class hierarchy (only upon un--initialized or partially initialized objects)initialized or partially initialized objects)

A newly created object of class c is considered as unA newly created object of class c is considered as un--initialized, reflected by settinginitialized, reflected by setting
initState(r):= New(pc) upon executing the instr New(c) in execVMinitState(r):= New(pc) upon executing the instr New(c) in execVMOO

© Egon Börger: Decomposing & Layering JVM 27

To guarantee: Athrow only applied upon throwable objectsTo guarantee: Athrow only applied upon throwable objects

Pgm counter values always denote valid adPgm counter values always denote valid addressesdresses

No computed gotos: only Jsr generates retAddr & pushes them on sNo computed gotos: only Jsr generates retAddr & pushes them on stacktack

only Store can move a retAddr ionly Store can move a retAddr into a registernto a register

In execVME refine Jsr(s) to record that
a retAddr is pushed on stack:
opd := opd . [(pc+1, retAddr(s))]
pc := s

© Egon Börger: Decomposing & Layering JVM 28

Checking native meths: 2 Exls

• Check guarantees that the VM has native
code for the meth to execute upon its call

• Exls: equal and clone
checkN (c/m) =

c/m = Object/equals or c/m = Object/clone

• Implementation must assure that return val
of native meths is of correct return type
(bytecode verifier cannot check this,
although it can be checked at run-time)

© Egon Börger: Decomposing & Layering JVM 29

Bytecode Type Assignments
• Link-time verifiable type assignments (conditions) extracted

from checking function of the Defensive VM
Main problem: return addresses of Jsr(s), reached using Ret(x)

• Soundness Theorem: If P satisfies the type assignment
conditions, then Defensive VM executes P without violating
any run-time check.

Proof by induction on runs of the Defensive VM

• Completeness Theorem: Bytecode generated by compile
from a legal Java program does have type assignments.

Inductive proof introduces certifying compiler assigning to each
byte code instr also a type frame, which then can be shown to
constitute a type assignment for the compiled code

© Egon Börger: Decomposing & Layering JVM 30

Type assignments without subroutine call stacksType assignments without subroutine call stacks

initial type frame, assigned to 0:
declared meth arg types more

specific than the types in regT0

(this in reg0 of meth class type
c & partly initlized by constr)

opd is empty

type frames assigned only to valid code indices
(not necessarily to all of them)

successor type frame more specific
than type frame assigned to succ index

retAddrs occur in regs only within
subroutines, on stack only at its start

Assume: a) compiled finally code is connected
b) subroutine starts with a Store(addr,x)

used for return by Ret(x)

© Egon Börger: Decomposing & Layering JVM 31

Type frames assigned to valid indices: conditions at 0 and at suType frames assigned to valid indices: conditions at 0 and at successorsccessors

Type frames have to satisfy the check conditionsType frames have to satisfy the check conditions

© Egon Börger: Decomposing & Layering JVM 32

Subroutine type frame conditionsSubroutine type frame conditions upon return to successor ofupon return to successor of
reachable subroutine callerreachable subroutine caller: type of: type of local variableslocal variables to be used at successor j+1 isto be used at successor j+1 is
less specific there than at return point iless specific there than at return point i -- if modified by the subroutineif modified by the subroutine -- , at caller j, at caller j
otherwise; type ofotherwise; type of opdopd at return point is more specific than at continuation point j+1at return point is more specific than at continuation point j+1

e)e) Proper nesting of subroutinesProper nesting of subroutines: a retAddr occuring at succ of caller of a: a retAddr occuring at succ of caller of a
subroutine, which did not modify it, is addr of an enclosing subsubroutine, which did not modify it, is addr of an enclosing subroutineroutine

f) no not fully initialized object can be used at succ of callerf) no not fully initialized object can be used at succ of caller of aof a
subroutine without having been modified by the subroutine (guarsubroutine without having been modified by the subroutine (guaranteesantees
that there is at most one type (c,k)that there is at most one type (c,k)newnew & prevents double initialization)& prevents double initialization)

successor index of subroutine caller is valid

© Egon Börger: Decomposing & Layering JVM 33

Stepwise refinement of diligentVMI,C,O,E

trustfulVM

verifyVM built out of langg layered check, succ, propagate

switchVMC in trustfulVM is refined to also link classes before their
initialization, where the linking submachine triggers verifyVM

no

set next meth up
for verification

yes

some meth still
to be verified

curr meth still
to be verified

verifyVM
yes

report
failure

no

© Egon Börger: Decomposing & Layering JVM 34

The state of the verifier
regVi, opdVi to store register and opd stack types computed for instr i
Initially opdVo = [], regV0 = types of meth args and target ref, otherwise undefined

visited(i) indicating that to instr i a type frame has been associated

changed(i) for instrs i whose type frame has still to be checked before
being propagated to successors

Initially changedo = visited0 = true, otherwise undef

verifyMeths: Class/MSig* methv = top(verifyMeths) verifyClass

Def: some method still to be verified iff verifyMeths ≠ []

curr method still to be verified iff dom (changed) ≠ ∅
report failure = (halt : = FailureReport)

For correct propagation of type frames upon return from subroutines, two
fcts enterJsr and leaveJsr are needed to record visited code indices
where a subroutine has been entered or exited

© Egon Börger: Decomposing & Layering JVM 35

Type correctness of meth invocation is guaranteed by formals (meth), which initially
assigns to the type registers the arg types of the meth and for inst meths/constructors
also the type of the target reference (i.e. the class of the meth or InInit)

let verifyMeths’ = drop(verifyMeths, 1)

verifyMeths := verifyMeths’

if length(verifyMeths’) > 0 then

initVerify(top(verifyMeths’))

else

classState(verifyClass) := Linked

set next meth up for verification

initVerify(meth) =

visited(0) := True

changed(0) := True

regV0 := formals(meth)

opdV0 := []

forall i ∈ dom(visited), i ≠0

visited(i) := undef

changed(i) := undef

regVi := undef

opdVi := undef

initVerify(meth)Macros for initializing VerifyVM

© Egon Börger: Decomposing & Layering JVM 36

Linking classesLinking classes before their initialization triggers their verificationbefore their initialization triggers their verification

switchVMswitchVMCC is extended by the ruleis extended by the rule

casecase switchswitch ofof

InitClasInitClasss((c)c) →→ ifif classStatclassStatee((c) =c) = ReferencedReferenced thenthen linkClaslinkClasss((c)c)

This recursive submachine terminatesThis recursive submachine terminates since the class inheritance hierarchy issince the class inheritance hierarchy is
finitefinite

The preparatory test checks the class format of the class file aThe preparatory test checks the class format of the class file and the static constraints fornd the static constraints for
the method bodiesthe method bodies

© Egon Börger: Decomposing & Layering JVM 37

Class preparation macroClass preparation macro to create andto create and initialize static fieldsinitialize static fields

prepareClasprepareClasss((c) =c) =

forallforall ff ∈ staticFieldstaticFieldss((c)c)

globalglobalss((cc//ff) :=) := defaultValdefaultVal (typ(typee((cc//ff))))

constraintViolation checks class file format and other static
conditions imposed on the method bodies

© Egon Börger: Decomposing & Layering JVM 38

Stepwise refinement of verifyVMI,C,O,E

propagateVM the checked type frame from pc to all possible
successor frames, simulating execVM on types frames

Stepwise refinement: propagateI ⊆ propagateE

(no propagation for native meths) succI ⊆ succC ⊆ succO ⊆ succE

check(pc)

report failure

no

choose pc for verification

propagateVM(succ,pc)
record pc as verified

yes

Defn. choose pc for verification = choose pc ∈ dom(changed)
record pc as verified = (changed(pc) := undef)

© Egon Börger: Decomposing & Layering JVM 39

Computing successor frames by simulating execVMComputing successor frames by simulating execVMII on types (reg/opd weakly typed)on types (reg/opd weakly typed)

© Egon Börger: Decomposing & Layering JVM 40

Extending successor type frames by simuln of execVMExtending successor type frames by simuln of execVMCC instrsinstrs

NB: Class fields are stronlgy typed, holding always only one sinNB: Class fields are stronlgy typed, holding always only one single typegle type
(differently from reg and opd). Unlike the DefensiveVM, VerifyVM(differently from reg and opd). Unlike the DefensiveVM, VerifyVM
therefore uses the declared type of the global field (stored astherefore uses the declared type of the global field (stored as instr param).instr param).

Similarly for class meth invocs, the declared return type is proSimilarly for class meth invocs, the declared return type is propagated.pagated.

Return instrs generate no successor (in the method they leave)Return instrs generate no successor (in the method they leave)

© Egon Börger: Decomposing & Layering JVM 41

LinkLink--time checkable requiremts on objects & their initializationtime checkable requiremts on objects & their initialization
To guarantee uniqueness of new
(uninitialized) objects, delete
uninitialized types from reg (to
become unavailable at succ) and
replace them in opd by unusable

addg
target
object
type
cond

After exec of inst initialzn meth,
obj becomes fully initialized

For partly initialzd objs,
fully initialzd type is the c
of curr initializn meth

© Egon Börger: Decomposing & Layering JVM 42

Determining handler frames for successors of JVMDetermining handler frames for successors of JVMEE instrsinstrs

We assume Jsr(_), Goto(_), Return(_), Load(_,_), which are used for the
compilation of abruption (jump and return) stms, not to throw exceptions
so that allhandlers(instr,m, pc, regT) = ∅ , otherwise we include into
successors all handlers which protect the code index (for instr = code(pc)):

allhandlers(instr, m, pc, regT) =

{(h, regT, [t]) | (f , u, h, t) ∈ excs(m) & f ≤ pc < u }

Ret taken into account by defn of type assignment, with types
of local vars propagated both from the subroutine return index
and from successor index of subroutine call

Every handler in exception table yields a possible successor

© Egon Börger: Decomposing & Layering JVM 43

Type reg/opd propagation to successors

propagateVMI (code, succ, pc) =

forall (s, regS, opdS) ∈
succ(code(pc), pc, regVpc, opdVpc)

propagateSucc(code, s, regS, opdS)

propagateVME (code, succ, pc) =

propagateVMI (code, succ, pc)
propagateJsrRet(code, succ, pc)

Adding constraints for excs & embedded subroutines

© Egon Börger: Decomposing & Layering JVM 44

retAddrs occur in regs only within
subroutines, on stack only at its start

restrict retAddr-types in reg and opd to valid ones

For not-yet-visited instrs copy computed frame, but:

No more verifcn if newly compd types
more specific than already assignd ones

Merge opd stacks (of same length) and registers

Each merge reduces the number of regs with assigned
type or introduces a new reg with type unusable, so that
if no failure is detected, dom(changed) gets empty

Propagating type frames (regS,opdS) computed by succ to successPropagating type frames (regS,opdS) computed by succ to successor code indices sor code indices s

© Egon Börger: Decomposing & Layering JVM 45

Propagating type framesPropagating type frames upon return to direct successors j+1 ofupon return to direct successors j+1 of
any (reachable) j from where subroutine s can be enteredany (reachable) j from where subroutine s can be entered

propagateJsrRet(code, succ, pc) =

enterJsr(s) = the set of visited indices of instrs Jsr(s)
leaveJsr(s) = set comprising all visited indices of instrs

Ret(x) which assign type retAddr(s) to reg x
both functions are initialized in initVerify by ∅

propagate to pc+1
types from correspndg
subroutine returns i

update enterJsr(s)

update leaveJsr(s)

propagate types to j+1
for each corresponding
subroutine entry j

© Egon Börger: Decomposing & Layering JVM 46

Propagating types to direct successor j+1 of a subroutine callPropagating types to direct successor j+1 of a subroutine call Jsr(s)Jsr(s)

a) Restrict registers from the caller frame at j, which have not been
modified by the subroutine s but will be used at j+1:
• for proper nesting of subroutines: to validJump types – i.e. of

addresses of enclosing subroutines,
• for uniqueness of new (uninitialized) objects: to those of

completely initialized objects.
b) Restrict registers from the return frame, which will be used at j+1, to

those which have been modified by the subroutine s.

© Egon Börger: Decomposing & Layering JVM 47

Proving Bytecode Verifier Complete and
Correct

• Bytecode Verifier Soundness Theorem: For
any program P, the Bytecode Verifier either
rejects P or during the verification satisfies
the type assignment conditions for P.

• Bytecode Verifier Completeness Theorem:
If P has a type assignment, then the
Bytecode Verifier does not reject P and
computes a most specific type assignment.

© Egon Börger: Decomposing & Layering JVM 48

Synopsis ofSynopsis of machine decomposition and proof structuringmachine decomposition and proof structuring

Dependency Graph of the book chaptersDependency Graph of the book chapters

© Egon Börger: Decomposing & Layering JVM 49

Dynamic Loading (finding binary form) & Linking
(preparation and verification) integrated into run-time

by extension execVMD for loader meths & switchVMD
to reference loaded classes and superclasses before linking

classState(c)=Loaded means c is loaded
classState(c)=SupersLoaded means all superclasses

loaded with classState ≥ SupersLoaded
classState(c)=Referenced means all superclasses

have classState ≥ Referenced and all
referenced classes have classState ≥
SupersLoaded

Classes extended by loader, which provides name space (for all types):
Class = (Ld,Name)

ldEnv:Class ! Ref yields the class object loaded by given loader under given name

cOf: Ref ! Class yields the class name with its defining (maybe ≠ initiating) loader

liftClass(c) = cOf(ldEnv(c)) yields the defining loader

cEnv:Class ! ClassFile dynamic fct

© Egon Börger: Decomposing & Layering JVM 50

Task: guarantee the complete availability of all types
which may occur during execution of a loaded class

1. reference all
superclasses

2. load all referenced classes

load all superclasses if class is loaded only

Strategy: classState(c) gets Referenced only when all superclasses are ≥
Referenced and all referenced classes are in state ≥ SupersLoaded

Upon return from loader reg(0), store the
loaded class obj res(0) under name in reg(1)

recursion
terminates
since class
hierarchy is

finite

© Egon Börger: Decomposing & Layering JVM 51

ImplicitImplicit callLoadcallLoad (ld,cn) = (switch := Call (<cload>,(ld,cn) = (switch := Call (<cload>, [ld,cnld,cn]))))

Load(addr, 0) loader
Load(addr, 1) class name
InvokeVirtual

(Class,loadClass(String))
Return(addr)

<cload> (String) calls the
possibly user defined

loadClass method

after having loaded all superclasses

set classState to SupersLoaded and replace loader of
superclasses in the class file by the defining loader

Similarly for references: 1. load
direct refs, 2. load indirect refs,

3. set classState to Referenced and replace loader
component in the class file by the defining loader

Indirect Refs: classes which appear in context of other refsIndirect Refs: classes which appear in context of other refs

© Egon Börger: Decomposing & Layering JVM 52

Extension of execVMN by native methods for
a) class loading/resolving
b) newInstance to create a new instance for a class object

Refine correspondingly checkN for defensiveVMD and diligentVMD to
recognize also native methods for dynamic loading:

checkD(c/m) =
c = ClassLoader & m∈{ findLoadedClass, findSystemClass, resolveClass, defineClass}
or c / m = Class / newInstance()
or checkN(c / m)

© Egon Börger: Decomposing & Layering JVM 53

Loading attempted by invoked loader, internal loader,Loading attempted by invoked loader, internal loader, nonnon--locallylocally

Did invoked loader already load the class?

a) load,
b) reference (loading & linking

all superclasses),
c) link the class,
d) return the loaded and

linked class object

Is class loadable by internal class loade
from local domain (the system loader)?

if not, return null; othw return the class ref
the class object already loaded by the
invoked loader under the given name

© Egon Börger: Decomposing & Layering JVM 54

Loading attemptedLoading attempted by invoked loader, internal loader,by invoked loader, internal loader, nonnon--locallylocally
If no local class was found

read bytecode from origin of referenced
class & create & return class object
(without referencing or linking yet)

Check that class name not already in loader name space

reference and link the
class specified by the
ref of the class object

implicitly called before initializing a class

© Egon Börger: Decomposing & Layering JVM 55

Macros for Loading, Defining, and Linking classesMacros for Loading, Defining, and Linking classes

Check whether the class exists in the local
file system

check whether the class name
coincides with the expected one

create a new class
object and initialize
its dynamic functions

© Egon Börger: Decomposing & Layering JVM 56

Macros for Loading, Defining, and Linking classesMacros for Loading, Defining, and Linking classes

The recursive submachine linkClass terminates because of theThe recursive submachine linkClass terminates because of the
finiteness of the class hierarchy.finiteness of the class hierarchy.

NB. Same machine linkClass as inNB. Same machine linkClass as in switchVMswitchVMCC except for usingexcept for using
only the submachine prepareClass of prepareVerify:only the submachine prepareClass of prepareVerify:

prepareClasprepareClasss((c)c) == forallforall ff ∈ staticFieldstaticFieldss((c)c)

globalglobalss((cc//ff) :=) := defaultValdefaultVal (typ(typee((cc//ff))))

© Egon Börger: Decomposing & Layering JVM 57

Validating Java, JVM, compile
• AsmGofer: ASM programming system, extending TkGofer

to execute ASMs (with Haskell definable external fcts)

• Provides step-by-step execution, with GUIs to support
debugging of Java/JVM programs.

• Allows for the executable ASM models of Java/JVM:
– to execute the Java source code P (no counterpart in SUN env)

– to compile Java pgms P to bytecode compile(P) (in textual
representation, using JASMIN to convert to binary class format)

– to execute the bytecode programs compile(P)
E.g. our Bytecode Verifier rejects Saraswat’s program

• Developed by Joachim Schmid, available at www.tydo.de/AsmGofer

© Egon Börger: Decomposing & Layering JVM 58

© Egon Börger: Decomposing & Layering JVM 59

Reference:

Java and the Java Virtual Machine.
Definition, Verification, Validation

R. Stärk, J. Schmid, E. Börger

Springer-Verlag , 2001.

http://www.inf.ethz.ch/~jbook/

