
A Structured and High-Level Definition of Java
and of its Provably Correct and Secure Implementation

on the Java Virtual Machine

(The ASM Java/JVM Project)

Egon Börger

Dipartimento di Informatica, Universita di Pisa
http://www.di.unipi.it/~boerger

© Egon Boerger: The ASM Java/JVM Project 2

Reference:

Java and the Java Virtual Machine -

Definition, Verification, and Validation

R. Stärk, J. Schmid, E. Börger

Springer-Verlag , 2001

see http://www.inf.ethz.ch/~jbook/

© Egon Boerger: The ASM Java/JVM Project 3

Goal: Real-life Industrial Case Study Book

Illustrate through a relevant & complex example how to
enhance practical syst design & analysis using ASMs

for rigorous high-level modeling
linked seamlessly to executable code

in a verifiable and validatable way
– developing succint ground models with precise,

unambiguous, yet understandable meaning
to provide the possibility for implementation independent system
analysis and validation

- refining & structuring models into a system (hierarchy) of
(sub)models, modularizing orthogonal design decisions
(“for change”), justifying them as correct

• linking the ground model to the implementation
• documenting the entire design for reuse and maintenance

© Egon Boerger: The ASM Java/JVM Project 4

Method: Separate & Combine Different Concerns
using ASMs

• Separating orthogonal design decisions
– to keep design space open (specify for change, avoiding premature design decisions)

– to structure design space (rigorous interfaces for system (de)composition)

• Separating design from analysis
– separating validation (by simulation) from verification (by proofs)

– separating verification levels (degrees of proof detail)
• reasoning for human inspection (design justification)
• rule based reasoning systems

– interactive systems
– automatic tools: model checkers, automatic theorem provers

• Crossing system levels by most general abstraction and
refinement notions offered by ASMs, tunable to the given problem

© Egon Boerger: The ASM Java/JVM Project 5

The Problem
Java/JVM claimed by SUN to be a safe and secure, platform independent
programming env for Internet: correctness problem for compiler, loader (name space
support), verifier, access right checker (security manager) , interpreter.

Usr. Usr.class InternetCompiler

Interpreter

LoaderVerifier

Preparator
Input

Output

Sys.class

JVM

insecure

Java

Run Time
Machine

© Egon Boerger: The ASM Java/JVM Project 6

Specific Goal of the ASM Java/JVM Project

Abstract (platform independent), rigorous but
transparent, modular definition providing basis for
mathematical and experimental analysis
– Reflecting SUN’s design decisions (faithful ground model)

– Offering correct high-level understanding (to be practically
useful for programmers)

– Providing rigorous, implementation independent basis for
• Analysis and Documentation (for designers) through

– Mathematical verification

– Experimental validation

– Comparison of different implementations

• Implementation (compiln, loading, bytecode verification, security schemes)

© Egon Boerger: The ASM Java/JVM Project 7

Main Result
A Structured and High-Level Definition of Java
and of its Provably Correct and Secure Implementation
on the Java Virtual Machine

Theorem.Under explicitly stated conditions, any
well-formed and well-typed Java program:

• upon correct compilation

• passes the verifier

• is executed on the JVM

• executes
– without violating any run-time checks

– correctly wrt Java source pgm semantics

© Egon Boerger: The ASM Java/JVM Project 8

Language driven decomposition of
Java, JVM, compilation

JVMI

JVMC

JVMT

JVME

JVMO

JavaI

JavaC

JavaE

JavaT

JavaO

imperative

static class features
(procedures)

exception
handling

concurrent
threads

oo features

Split into horizontal language components (conservative extensions)

compile

© Egon Boerger: The ASM Java/JVM Project 9

The language driven decomposition of

execJava and its submachines
execJava =

execJavaI imperative control constructs

execJavaC static class features (modules)

execJavaO oo features

execJavaE exception handling

execJavaT concurrent threads

execJavaI =

execJavaExpI expression evaluation

execJavaStmI statement execution

NB. Grouping similar instructions into one parameterized abstract instr

© Egon Boerger: The ASM Java/JVM Project 10

Pgm exec as walk thru annotated abstract syntax tree

STATE defined by pos : Pos restbody: Pos !!!! Phrase ∪∪∪∪ Val ∪∪∪∪ Abr

MACROS: context (pos) = if restbody/pos ∈ Exp ∪∪∪∪ Bstm or pos = first
then restbody/pos
else restbody/up(pos)

Replacing a phrase (in the current pos) by its result:
yield (result) = restbody:= restbody[result/pos]

Passing the result of a phrase (in the current pos) to its parent phrase:
yieldUp (result) = restbody:= restbody[result/up(pos)]

pos := up(pos)

Being positioned on a direct subphrase of a structure f (...t...):
s=f (...8888t ...) stands for s = f (...t...) & pos = 8888& restbody(pos)=t

Phrase: exps & block stms Val: values Abr: reasons for abruption

© Egon Boerger: The ASM Java/JVM Project 11

© Egon Boerger: The ASM Java/JVM Project 12

propagatesAbr
iff phrase is no:
labeled stm

Later refined : no
static initializer
try stm
finally stm
synchronized stm

© Egon Boerger: The ASM Java/JVM Project 13

The execJavaC/O extensions

execJavaC =

execJavaExpC extending expression evaluation

execJavaStmC extending statement execution

Adding
- class fields (global variables)

- class method invocation/return (procedures)

- class initializers (module initializers)

execJavaO =

execJavaExpO adding instance fields/methods

© Egon Boerger: The ASM Java/JVM Project 14

Fields treated similarly to local vars (with local replaced by global), but:
one has to initialize each class at its first active use, i.e.when for the first
time accessing (or assigning to) some of its fields or calling some of its
methods (after left-to-right arg evaluation) (or upon creation in JavaO)

© Egon Boerger: The ASM Java/JVM Project 15

Execution of initialization code for a class is started only when the
superclass is already initialized, and also at the top of the class hierarchy.
A class becomes initialized upon exiting from its initialization method.

© Egon Boerger: The ASM Java/JVM Project 16

instance field values of
objects stored (using
setField) in & retrieved
(using getField) from
Heap, under the ref of
the object; default values
assigned upon creation.

The class of new
parametrized class
instances is initialized
before parameter evaln.
this stored as local var ;
bound by inst meth call
& by return from a
constructor (to the newly
created object, see the
extension of exitMethod)

© Egon Boerger: The ASM Java/JVM Project 17

The execJavaE/T extensions

execJavaE =

execJavaExpE for evaluation of run-time exceptions

execJavaStmE for execution of exception statements

execJavaT =

execJavaStmT for synchronization statements

(as part of execJavaThread)

© Egon Boerger: The ASM Java/JVM Project 18

Abrs in try stms:
caught excs lead to
catch code exec,
othr abrs propagate

catch code yields
up Norm or an abr

For finally stms:
abrs suspend upon
entering finally stm
exiting propagates up
the suspended abr
(resumed) or a new abr

Uncaught excs
propagate up the method

call stack; in static class
initializers they make the
class unusable

© Egon Boerger: The ASM Java/JVM Project 19

Examples of run-time exceptions

where fail (exc) = yield (throw new exc() ;)

When classes become unusable, their initialization is impossible, so that initialize(c)
is extended by the following:

if classState(c) = Unusable then fail (NoClassDefFoundError)

© Egon Boerger: The ASM Java/JVM Project 20

Theorem: Java is type safe
• i.e. when a legal well-typed Java pgm is executed:

– run-time vals of static/instance fields/array elems are compatible
with their declared types

– references to objects are in the heap (no dangling pointers)

– run-time positions satisfy compile-time constraints (reachable,
definitely assigned vars are well-defined local vars with vals of
compile-time type,…)

– positions of normally completing stms are compile-time normal
– evaluated exprs/returned vals have compile-time compatible type
– abruptions (jump,return,exc) have compile-time compatible type
– stacks do not overflow nor underflow, …

• Proof: induction on Java ASM runs, based upon a
rigorous definition of the rules for definite assignment

© Egon Boerger: The ASM Java/JVM Project 21

Extending execJava, to become component of
ExecJavaThread

© Egon Boerger: The ASM Java/JVM Project 22

Abstract scheduling of Multiple Threads:
inserting execJava into ExecJavaThread

Thread scheduling separated from thread execution

ExecJavaThread ≡

choose q in dom(exec), runnable(q)

if q=thread and exec(q)=Active

then execJava

else
if exec(q)=Active then

cont(thread) := (frames,(methd,restbody,pos,locals))
thread := q
run(q)

© Egon Boerger: The ASM Java/JVM Project 23

Diagram notation for Control State ASMs

cond1

condn

…

rule1

rulen

meaning

if ctl = i then
if cond1 then rule1

ctl:=j1
….

if condn then rulen

ctl:=jn

labeling of the arrowslabeling of the arrows
byby ““controlcontrol”” statesstates
often suppressedoften suppressed

UML: combinedUML: combined
branching/actionbranching/action
nodesnodes

© Egon Boerger: The ASM Java/JVM Project 24

Defining execJavaThread as control state ASM

t is curr Active thread

Choose t in ExecRunnableThread

suspend thread
resume t yesno execJava

t in ExecRunnableThread = (t in dom(exec) & runnable(t))
t is curr Active thread = (t = thread & exec(t) = Active)
suspend thread = if exec(thread) = Active

then cont(thread) := (frames, currframe)
resume(t) = thread := t

run(t)

Thread scheduling separated from thread execution

© Egon Boerger: The ASM Java/JVM Project 25

Theorem: Correctness of Thread Synchronization in Java

• Runtime threads are valid threads (of type THREAD).
• If the execution state of a thread is Not Started, then the

thread is not synchronized on any object and is not in the
wait set of any object.

• If the state of a thread is synchronizing, then the thread is
not already synchronized on the object it is competing for.

• If a thread is synchronized on an object, then the object is a
valid reference in the heap.

• If a thread is waiting for an object, then it is synchronized
on and is in the wait set of the object (without holding the
lock of the object).

• If a thread has been notified on an object, then it is no
longer in the wait set of the object. It is still synchronized
on the object, but it does not hold the lock of the object.

© Egon Boerger: The ASM Java/JVM Project 26

Theorem: Correctness of Thread Synchronization in Java
(Cont’d)

• A thread cannot be in the wait set of two different objects.
• If a thread has terminated normally or abruptly, then it does

not hold the lock of any object.
• If a thread holds the lock of an object, then the lock counter

of the object is exactly the number of occurrences of the
object in the list of synchronized objects of the thread.

• It is not possible that at the same time, two different threads
hold the lock of the same object.

• If the lock counter of an object is greater than zero, then
there exists a thread which holds the lock of the object.

• …
PROOF. Induction on Java ASM runs.

© Egon Boerger: The ASM Java/JVM Project 27

Security Driven JVM Decomposition

• trustfulVM: defines the execution functionality
incrementally from language layered submachines
execVM, switchVM

• defensiveVM: defines the constraints to be checked,
in terms of trustfulVM execution, from the language
layered submachine check; calls trustfulVM for execution

• diligentVM: checks the constraints at link-time,
using a language layered submachine verifyVM;
calls trustfulVM for execution

• verifyVM built up from language layered submachines
check, propagateVM, succ

• dynamicVM: dynamic loading and linking of classes

© Egon Boerger: The ASM Java/JVM Project 28

© Egon Boerger: The ASM Java/JVM Project 29

Stepwise refinement of trustfulVM

execVM

switch=Noswitch

switchVM

yes

no

execVM and switchVM incrementally extended (language driven)

trustfulVMI = execVMI ⊆ execVMC ⊆ execVMO ⊆ execVME

execVMN ⊆ execVMD defining instructionwise changes of current frame

switchVMC ⊆ switchVME ⊆ switchVMD defining changes of frame stack
reflecting meth call/return, class initialization, capturing exceptions, class load/linking

no

execVMN

yes
isNative(meth)

© Egon Boerger: The ASM Java/JVM Project 30

Stating rigorously and proving the

Correctness of compiling from Java to JVM

• With respect to the ASM models for Java and JVM,
and wrt the definition of compile from Java to
JVM code, including the exception table, the
execution of P in Java and the execution of
compile(P) in Trustful VM are equivalent (in a
sense made precise), for arbitrary pgms P.

• PROOF. By induction on the runs of the Java/JVM ASMs,
using the type safety theorem.

• NB. This inlcudes the correctness of exception handling
see Börger E., Schulte W., A Practical Method for Specification and
Analysis of Exception Handling -- A Java/JVM Case Study. IEEE
Transactions of Software Engineering, Vol.26, No.10, October 2000
(Special Issue on Exception Handling, eds. D.Perry, A.Romanovsky,
A.Tripathi).

© Egon Boerger: The ASM Java/JVM Project 31

Deriving the Bytecode Verifier Conditions from
Type Checking Runtime Constraints

• Defensive VM: Checks at run-time, before every
execution step, the “structural constraints” which
describe the verifier functionality (restrictions on
run-time data: argument types, valid Ret addresses,
resource bounds,…) guaranteeing “safe” execution

• Static constraints (well-formedness) checked at link-time.

• Theorem: If Defensive VM executes P
successfully, then so does Trustful VM, with the
same semantical effect.

© Egon Boerger: The ASM Java/JVM Project 32

Stepwise refinement of defensiveVM

check incrementally extended , language driven as for trustfulVM

i.e. checkI extended by checkC

extended by checkO

extended by checkE

extended by checkN

extended by checkD

no

report failureswitch=Noswitch
yes

trustfulVM validCodeIndex
& check

yes no

no

no
trustfulVMN checkN

yes
yes

isNative(meth)

© Egon Boerger: The ASM Java/JVM Project 33

Bytecode Type Assignments
• Link-time verifiable type assignments (conditions) extracted

from checking function of the Defensive VM
Main problem: return addresses of Jsr(s), reached using Ret(x)

• Soundness Theorem: If P satisfies the type assignment
conditions, then Defensive VM executes P without violating
any run-time check.

Proof by induction on runs of the Defensive VM

• Completeness Theorem: Bytecode generated by compile
from a legal Java program does have type assignments.

Inductive proof introduces certifying compiler assigning to each
byte code instr also a type frame, which then can be shown to
constitute a type assignment for the compiled code

© Egon Boerger: The ASM Java/JVM Project 34

Stepwise refinement of diligentVMI,C,O,E

trustfulVM

verifyVM decomped into lang layered check, succ, propagate

switchVMC in trustfulVM is refined to also link classes before their
initialization, where the linking submachine triggers verifyVM

no

set next meth up
for verification

yes

some meth still
to be verified

curr meth still
to be verified

verifyVM
yes

report
failure

no

© Egon Boerger: The ASM Java/JVM Project 35

Stepwise refinement of verifyVM

propagateVM and succ incrementally extended

succI ⊆ succC ⊆ succO ⊆ succE

propagateI ⊆ propagateE

check(pc)

report failure

no
choose pc for verification

propagateVM(succ,pc)
record pc as verified

yes

propagateVM the checked type frame from pc to all possible
successor frames, simulating execVM on types frames

© Egon Boerger: The ASM Java/JVM Project 36

Proving Bytecode Verifier Complete and
Correct

• Bytecode Verifier Soundness Theorem: For
any program P, the bytecode verifier either
rejects P or during the verification satisfies
the type assignment conditions for P.

• Bytecode Verifier Completeness Theorem:
If P has a type assignment, then the
Bytecode Verifier does not reject P and
computes a most specific type assignment.

© Egon Boerger: The ASM Java/JVM Project 37

Validating Java, JVM, compile
• AsmGofer: ASM programming system, extending TkGofer

to execute ASMs (with Haskell definable external fcts)

• Provides step-by-step execution, with GUIs to support
debugging of Java/JVM programs.

• Allows for the executable ASM models of Java/JVM:
– to execute the Java source code P (no counterpart in SUN env)

– to compile Java pgms P to bytecode compile(P) (in textual
representation, using JASMIN to convert to binary class format)

– to execute the bytecode programs compile(P)
E.g. our Bytecode Verifier rejects Saraswat’s program

• Developed by Joachim Schmid, available at www.tydo.de/AsmGofer

© Egon Boerger: The ASM Java/JVM Project 38

© Egon Boerger: The ASM Java/JVM Project 39

Java and the Java Virtual Machine.
Definition, Verification, and Validation

R. Stärk, J. Schmid, E. Börger

Springer-Verlag , 2001.
see http://www.inf.ethz.ch/~jbook/

For ASMGofer see www.tydo.de/AsmGofer/

My home page http://www.di.unipi.it/~boerger

