A Structured and High-Level Definition of Java
and of its Provably Correct and Secure Implementation

on the Java Virtual Machine

(The ASM Java/JVM Project)

Egon Borger

Dipartimento di Informatica, Universita di Pisa
http://www.di.unipi.it/~boerger

Reference:

Java and the Java Virtual Machine -
Definition, Verification, and Validation

R. Stark, J. Schmid, E. Borger

Springer-Verlag , 2001
see http://www.inf.ethz.ch/~]book/

Goal: Real-life Industrial Case Study Book

lllustrate through a relevant & complex example how to
enhance practical syst design & analysis using ASMs
for rigorous high-level modeling
linked seamlessly to executable code

In a verifiable and validatable way

— developing succint ground models with precise,
unambiguous, yet understandable meaning
to provide the possibility for implementation independent system
analysis and validation
- refining & structuring models into a system (hierarchy) of
(sub)models, modularizing orthogonal design decisions
(“for change”), justifying them as correct
* linking the ground model to the implementation
« documenting the entire design for reuse and maintenance

Method: Separate & Combine Different Concerns
using ASMs

e Separating orthogonal design decisions
— to keep design space open (specify for change, avoiding premature design decisions)
— to structure design space (rigorous interfaces for system (de)composition)
o Separating design from analysis
— Separating validation (by smulation) from verification (by proofs)
— separating verification levels (degrees of proof detail)
 reasoning for human inspection (design justification)
e rule based reasoning systems

— Interactive systems
— automatic tools: model checkers, automatic theorem provers

* Crossing system levels by most general abstraction and
refinement notions offered by ASMs, tunable to the given problem

The Problem

JavalJVM claimed by SUN to be a safe and secure, platform independent
programming env for Internet: correctness problem for compiler, loader (name space
support), verifier, access right checker (security manager) , interpreter.

vs. @D @B -vs o - e

Specific Goal of the ASM Java/lJVM Project

Abstract (platform independent), rigorous but
transparent, modular definition providing basis for
mathematical and experimental analysis

— Reflecting SUN’ s design decisions (faithful ground model)

— Offering correct high-level understanding (to be practically
useful for programmers)

— Providing rigorous, implementation independent basis for

* Analysis and Documentation (for designers) through
— Mathematical verification
— Experimental validation
— Comparison of different implementations

 |mplementation (compiln, loading, bytecode verification, security schemes)

Main Result

A Structured and High-Level Definition of Java
and of its Provably Correct and Secure Implementation

on the Java Virtual Machine

Theorem. Under explicitly stated conditions, any
well-formed and well-typed Java program:

upon correct compilation
passes the verifier
IS executed on the VM

executes
— without violating any run-time checks
— correctly wrt Java source pgm semantics

L anguage driven decomposition of
Java, VM, compilation

Imperative

static class features
(procedures)

exception
handling

concurrent
threads

‘ oo features
>

Split into horizontal language (conservative extensions)

The language driven decomposition of

execJava and I1ts submachines
execJavas-

execJ ava imper ative control constructs

exeCJavaC static class featur es (modules)
execJ ava, oo features

execJ avac exception handling

execJ ava; concurrent threads

execJava, -

execJavakExp, expression evaluation
SCAEVEN m, statement execution

NB. Grouping similar instructionsinto one parameterized abstract instr

Pgm exec as walk thru annotated abstract syntax tree

STATE definedby pos: Pos restbody: Pos-> Phrased Val O Abr

MACROS: context (pos) = if restbody/pos 0 Exp O Bstm or pos = first
then restbody/pos
el se restbody/up(pos)

Replacing a phrase (in the current pos) by its result:
yield (result) = restbody:= restbody|[result/pos]

Passing the result of a phrase (in the current pos) to its parent phrase:
yieldUp (result) = restbody:= restbody|result/up(pos)]
POS := up(pos)
Being positioned on a direct subphrase of a structuref (...t...):
sf (...”t..) standsfor s=f(...t...) & pos= * & restbody(pos)=t

Phrase: exps & block ssms Val: values Abr: reasons for abruption

file Edit Document Miew Window Help

L

&S| E MR B es DOO &

execJavaFExrpr = case context(pos) of

lit — yield(JLS(lit))
loc — yield(locals(loc))

uop “exp — pos := «
uop ” val — yieldUp(JLS (uop, val))

*exp1 bop ” expa — pos =

> val bop Pexp — pos = 3

“waly bop ® valy — if —(bop € divMod A isZero(valy)) then
yieldUp(JLS (bop, valy, valy))

loc = Yexp — pos .= «
loc =% val — locals := locals & {(loc, val)}
yieldUp (val)

“expo TP expr 1 Vexps — pos ‘= «

>val ?Pexp; : Texps — if val then pos := 3 else pos :=~
“True?® val : Texp — yieldUp(val)

*False ?Pexp : ®val — yieldUp(val)

mocne Jwllnal a M === InlmlFee e 1= 1l |

erectavaStm; = case contert(pos) of
— yreld [Norm)
TErp: — pos 1= o
* val; — yieldUp(Norm)

break lah; —s grield | Break(lab))
continue [ah: — grield({ Continue{ lah))
lab = “stm — M8 1= 0

lah = * Norm — grield Up(Norm)

lah = * Break(laby,) —s if lab = lab, then yieldUp(Norm)
else yield Up(Break(lab,)

lah : * Continue({lab.) — if lab = lab. then yicld(body/ pos) Iff phrase IS Nno:
else yieldUp(Continue{lab.))
phrose(™ abr) — if pos # firstPos A propagatesAbr{resthody /up(pos)) then Iabel ed stm

yield Upl abr)

. NO

[} — yield{ Norm)

1 “Vatma .. 7" st) — S 1= (1]

1% Norm ... * Norm} — ieldUp(Norm)
1% Norme . .. Norm ™ stmagr .. " stmn } — pos = i

if (Texp) st else Tstmz — pos 1= n

if (™ wal) ® sty else Tstime — if val then pos := 7 else pos :=
if (" True)™ Norm else "sim — yieldUp(Novm)

if (™ False) " stm else ™ Norm — yieldUp{ Norm)

while (" exp) “ st — IS 1= (%
while (™ val)” stm — if vl then pos = 7 else yieldUp{ Norm)
while (™ True) ™ Norm — yieldUp(body [up(pos))

Type x: — yield Norm)

The execJava,, extensions

execJava,..-
execJ avaExpC extending expression evaluation
execJavast M extending statement execution
Adding
- classfields (global variables)
- class method invocation/retur n (procedur es)
- classinitializer s (module initializers)
execJava,-
execJavakExp, adding instance fields/methods

Fields treated similarly to local vars (with local replaced by), but:

one hasto each class at itsfirst active use, i.e.when for the first
time accessing (or assigning to) some of itsfields or calling some of its
methods (after) (or upon creation in Java,)

recJavalxpc = case context(pos) of
1 — if wnitialized(c) then yield(globals(c/f)) else initialize(c
.f = Yexp — pos := «
.f =¥ wval — if initialized(c) then
globals(c/f) := val
yield Up(val)

else initialize(c)

c.m”(exps) — pos := «

c.m” (vals) — if initialized(c) then invoke(up(pos), ¢/m, vals)
else initialize(c)

— yield([])

— POS = Q1

— yieldUp([valy, . .., valy,))
L Texpy) — pos = vy

Execution of initialization code for aclass is started only when the
Is already initialized, and also at the top of the class hierarchy.
A class becomes initialized upon exiting from its initialization method.

erecJavaStmc = case context(pos) of
static “stm — let ¢ = classNm(meth)
if ¢ = Object V initealized(super(c)) then pos := «
else wnitialize(super(c))
static ” Return — exitMethod(Norm)
classState(classNm(meth)) := Initialized

return “exp; — pos = «
return ” val; — yieldUp(Return(val))

return; — yield(Return)

lab : * Return — yieldUp(Return)

lab : * Return(val) — yieldUp(Return(val))

Return — if pos = firstPos N —~null(frames) then
exitMethod(Norm)

Return(val) — if pos = firstPos N —null(frames) then
exitMethod(val)

> Norm; — yieldUp(Norm)

crecovalirpo = case conterf(pos) of

InS[anCe fl@ld Val ues Of this — yield(locals| "this")
Ob] ECtS StOred (US ng new ¢/m" (erps) — iF imihialized () then pos = o else nilialize| o)

| 2

7 7 . new «/m" (vals) — create r'-'-_."
Setl:leld) In & retrle\/ed heap(ref) = Object{c, {(f, defauwlt Val{ type(f)))

!
I'y:

(uS ng getFI el d) from invoke(up(pos), e/ m. ',r-.r"l'l'lli. .(r'rIIJ.I:'lf:.]f“ neelields(e)t)
. under the ref of @ ap.c/f — pos e o

the ObJ eCt, default Val ues » .rrl'..' AF ref £ null then yield Up{ getField (ref e/)

assigned Upon Creation. e/ = e pos = o

= Ir_!_llr-- I"_.':.|I- ¥ l"-ul.llll) J!'n'll_n'."" : 1'

The CI a$ Of ne’v . |"|"_|'-.r II > il - 1F 1 I| __.-". !l then

setField (vef, e/f. val)

parametrized class yield Up(val)

inStanceS iS |n|t|allzed “erp instanceof ¢ — pos 1= 0

before parameter evaln. " ref instanceof ¢ — yieldUp(ref # nudl A classOf (ref) <u ¢)
stored aslocal var ; (L0 =2 P05 = L classOf (ref) <o ¢ then gieldEp(re)

bound by inst meth call * ap.c/mP (exps) — pos = o

& by return from a > ref.c/m(eaps) — pos :=

“refe/m® (vals) — if ref # null then

Congructor (to the naNIy let ¢ = case callKind{up{pos)) of

Virtual — lookup{classOf (ref). o/ m)

Crea[eCI Obj eCt’ %e the Super = Aookup(super(clossNm{meth)), o/ m)

Special — ¢
i

EXtenSi on Of) invoke{up(pos), ¢ /m, [ref| - vals)

The execJava.; extensions

execJava,-
execJavaEXpPg for evaluation of run-time exceptions
execJ avaStmE for execution of exception statements

execJava, -
exeCJavaStmT for synchronization statements

(as part of execJaval hread)

. e
AbrS N try stms: erectovaStmyg = case context(pos) of

throw " erp; — pos = 0

caught excslead to | turow ™ ref;
if ref = null then fai(NullPointerException) else yieldlUpl Erc{ref)
catch code exec,

try “stin catch ... NS L= O

Othr abrS propagate try ™ Norm catch ... — yieldUp(Norm)
. try * Exc{vef) catch (¢ 1) 1 gt ...catch (e, 7,) T gt .
catch code yields if31< 7 < n: classOf(ref) <y ¢ then
let § = min{i | classOf(ref) =, o}
up Norm or an abr pos =5
Lol Lorals & -:I_ T, r.'_,'-::}
" . else yicld Up Exc(ref))
For fl nal Iy Sth try * abr catch () z,) "' stm, ... catch (¢, x,) " stm, — yieldUp(abr)
try “Erc({ref)... catch (i z:) ™ Norm ... — yieldUp(Norm)
abrs Suspend upon try “ Erc(ref) ... catch (c; oy} " abr. .. » greld Uplabr)
entering finally stm | {
st finally ©stme — pos = 0
.- . .. 1 5
exiting propagates up * Norm finally " stm — pos := /3
* abr finally © stm P = 3

the Suspended abr “s finally * Norm yeldpl s
(resumed) or anew abr “s finally * abr - yield Up(abr)

Ereliret)] — it pos = firstPos A —nadl| frames) then
U n Ca.u ght eXCS eritMethod| Exclref)
propagate up the method lab - * Brc(ref) — yieldUp(Eze(ref))
cal stack; in static class static * Exe(ref)
Initializers they make the classState(classNm{meth)) := Unusabls

it classOf(ref) =y, Error then ermitMethod | Exc{ref))
class unusable else fail(ExceptionInInitializerErr)

Examples of run-time exceptions

execJavaFErpr = case context(pos) of

“valy bop® vals — if bop € divMod A isZero(valz) then
fail(ArithmeticException)

> ref.c/f — if ref = null then fail(NullPointerException

“ref.c/f =% wval — if ref = null then fail(NullPointerException

“ref.c/m” (vals) — if ref = null then fail(NullPointerException

(c)” ref — if ref # null A classOf (ref) Zn ¢ then
fail(ClassCastException)

where fail (exc) =yield (throw new exc() ;)

When classes become unusable, their initialization isimpossible, so that initialize(c)
Is extended by the following:

If classState(c) = Unusable then fail (NoClassDef FoundError)

Theorem: Javalistype safe

* |.e. when alegal well-typed Java pgm Is executed:

— run-time vals of static/instance fields/array elems are compatible
with their declared types

— references to objects are in the heap (no dangling pointers)

— run-time positions satisfy compile-time constraints (reachable,
definitely assigned vars are well-defined local vars with vals of

compile-time type,...)
— positions of normally completing stms are compile-time normal
— evauated exprs/returned vals have compile-time compatible type
— abruptions (jump,return,exc) have compile-time compatible type
— stacks do not overflow nor underflow, ...

e Proof: induction on Java ASM runs, based upon a
rigorous definition of the rules for definite assignment

Extending execJava, to become component o
ExecJavaTl hread

tmT = case context(pos) o
synchronized (“exp) " stm — pos := «

synchronized (* ref) ” stm —
if ref = null then fail(NullPointerException)
else
if ref € sync(thread) then
sync(thread) := [ref] - sync(thread)
locks(ref) := locks(ref) + 1
pos =
else
exec(thread) := Synchronizing
syncObj(thread) := ref
cont(thread) := (frames, (meth, restbody, (3, locals))
synchronized (“ref)” Norm — releaseLock(Norm)
synchronized (“ref) ™ abr — releaseLock(abr)

static * abr — notify Threads WaitingForInitialization
abr — if pos = firstPos N null(frames) then killThread

Abstract scheduling of Multiple Threads:
Inserting execJava into ExecJaval hread

Thread scheduling separated from thread execution
ExecJaval hread =

choose g N dom(exec), runnable(q)
| f g=thread and exec(qg)=Active
then execlava
else

If exec(g)=Activethen

cont(thread) := (frames,(methd,restbody,pos,locals))
thread :=

run(q)

Diagram notation for Control State ASMs

T e

-

meaning

|labeling of the arrows
by “control” states
often suppressed

UML: combined
branching/action
nodes

Defining execJavarl hread as control state ASM

- I

Thread scheduling separated from thread execution

tin = (tindom(exec) & runnable(t))
tiscurr Activethread = (t=thread & exec(t) = Active)
thread = If exec(thread) = Active
then cont(thread) := (frames, currframe)
resume(t) = thread =t
oy

Theorem: Correctness of Thread Synchronization in Java

Runtime threads are valid threads (of type THREAD).

If the execution state of athread is Not Started, then the
thread is not synchronized on any object and is not in the
walt set of any object.

If the state of athread is synchronizing, then the thread is
not already synchronized on the object it is competing for.

If athread is synchronized on an object, then the object isa
valid reference in the heap.

If athread iswaiting for an object, then it Is synchronized
on and isin the wait set of the object (without holding the
ock of the object).

f athread has been notified on an object, then it isno
onger inthewalit set of the object. It is still synchronized
on the object, but it does not hold the lock of the object.

Theorem: Correctness of Thread Synchronization in Java
(Cont’d)

A thread cannot be in the wait set of two different objects.

If athread has terminated normally or abruptly, then it does
not hold the lock of any object.

If athread holds the lock of an object, then the lock counter
of the object Is exactly the number of occurrences of the
object in the list of synchronized objects of the thread.

t Isnot possible that at the same time, two different threads
nold the lock of the same object.

f the lock counter of an object Is greater than zero, then
there exists a thread which holds the lock of the object.

PROOF. Induction on Java ASM runs.

Security Driven VM Decomposition

trustful VM : defines the execution functionality
Incrementally from language layered submachines

execVM, switchVM

defensiveV M: defines the constraints to be checked,

Interms of trustfulVM execution, from the language
layered submachine check; calls trustfulVM for execution

diligentVM: checks the constraints at link-time,
using alanguage layered submachine verifyVM;
calls trustful VM for execution

verifyV M built up from language layered submachines
check, propagateVM, succ

dynamicV M: dynamic loading and linking of classes

FlE EdE Document WIEW Winddw Help

=S EMA T Y|« s DDOO A

Java program compile JVM program
P T Part i e
_
£ Partlll 235
. = <
' “ 3|2
°lE
run—time checks bytecode type ¥ typable
defensiveVM — — = assignment " | bytecode
(Chap. 15) (Chap. 16)

(Theorems 7.3.1 and 8.4.1)

verifyVM accepts F.

/((:hap_ 17N

propagate type information

Thread Synchronization and Type Safety

no run—time check violations
(Theorem 16.4.1)

Bytecode type assignment Soundness

propagate VM
Y i ¥
exec v semantical equivalence o trustfil VM
runs P Type Safety and Compiler Soundness runs F. in
(Theorems 8.4.1 and 14.2.1) diligentVM

2005 | w|[M) 4 eeris [rm|[esxiiin |E.|4] [

Stepwise refinement of trustfulVM

isN ative(metrD

execVM and switchVM incrementally extended (anguage driven)

trustfulVM, = execVM, LI execV M LlexecVM, LI execVM¢
execVM, LI execVM, defining instructionwise changes of current frame

switchV M U switchVMg U switchVM defining changes of frame stack
reflecting meth call/return, class initialization, capturing exceptions, class load/linking

Stating rigorously and proving the
Correctness of compiling from Javato VM

* With respect to the ASM models for Javaand JVM,
and wrt the definition of compile from Javato
JVM code, including the exception table, the
execution of P in Java and the execution of
compile(P) in Trustful VM are equivalent (in a

sense made precise), for arbitrary pgms P.

PROOF. By induction on the runs of the Java/lIZVM ASMs,
using the type safety theorem.

* NB. Thisinlcudes the correctness of exception handling

see Borger E., Schulte W., A Practical Method for Specification and
Analysis of Exception Handling -- A Java/lJVM Case Study. |IEEE
Transactions of Software Engineering, Vol.26, No.10, October 2000

(Special Issue on Exception Handling, eds. D.Perry, A.Romanovsky,
A.Tripathi).

Deriving the Bytecode Verifier Conditions from
Type Checking Runtime Constraints

e Defensive VM: Checks at run-time, before every
execution step, the “structural constraints’ which
describe the verifier functionality (restrictions on
run-time data: argument types, valid Ret addresses,

resource bounds,...) guaranteeing “safe” execution
o Static constraints (well-formedness) checked at link-time.
e Theorem: If Defensive VM executes P

successfully, then so does Trustful VM, with the
same semantical effect.

Stepwise refinement of defensiveV M

y€es

check incremental Iy extended, language driven as for trustful VM

I.e. check, extended by check,
extended by check,
extended by check,
extended by check
extended by check,

Bytecode Type Assignments

* Link-time verifiable type assignments (conditions) extracted
from checking function of the Defensive VM

Main problem: return addresses of Jsr(s), reached using Ret(x)

Soundness Theorem: If P satisfies the type assignment
conditions, then Defensive VM executes P without violating
any run-time check.

Proof by induction on runs of the Defensive VM

Completeness Theorem: Bytecode generated by compile
from alegal Java program does have type assignments.
Inductive proof introduces certifying compiler assigning to each

byte code instr also atype frame, which then can be shown to
constitute atype assignment for the compiled code

Stepwise refinement of diligentVM,

) yes
curr meth -Stl|| verifyVM
to be verifieo

no

set next meth up

report
for verification =

fallure

trustfulVM

switchVM¢ in trustful VM isrefined to also link classes before their
Initialization, where the linking submachine triggers verifyVM

verifyVM decomped into lang layered check, succ, propagate

Stepwise refinement of verifyVM

yes
propagateVM succ

propagateV M the checked type frame from pc to all possible
SUCCessor frames, ssmulating execVM on types frames

and Incrementally extended

succ, L] succ. LI succy L succe

propagate, [propagate;

Proving Bytecode Verifier Complete and
Correct

e Bytecode Verifier Soundness Theorem: For
any program P, the bytecode verifier either
rgjects P or during the verification satisfies

the type assignment conditions for P.

e Bytecode Verifier Completeness Theorem:
If P has atype assignment, then the
Bytecode Verifier does not rgject P and
computes a most specific type assignment.

Validating Java, VM, compile

AsmGofer: ASM programming system, extending TkGofer
to execute ASMs (with Haskell definable external fcts)

Provides step-by-step execution, with GUIs to support
debugging of Java/lJZVM programs.

Allows for the executable ASM models of Javal/JVM:

— to execute the Java source code P (no counterpart in SUN env)

— to compile Java pgms P to bytecode compile(P) (in textual
representation, using JASMIN to convert to binary class format)

— to execute the bytecode programs compile(P)
E.g. our Bytecode Verifier rgects Saraswat’s program

Developed by Joachim Schmid, available at www. t ydo. de/ AsnGof er

/

Compiler-ASM

i

-

JIVM-ASM

|

Java

| =]

Sun-Compiler

|

class

./

Sun-JVM

:

Java and the Java Virtual Machine.
Definition, Verification, and Validation

R. Stark, J. Schmid, E. Borger

Springer-Verlag , 2001.
see http://www.inf.ethz.ch/~book/

For ASMGofer seewww. t ydo. de/ Asnof er/

My home page http://www.di.unipi.it/~boerger

